Symbolic Implementation of the Best Transformer

Thomas Reps ${ }^{1}$, Mooly Sagiv ${ }^{2}$, and Greta Yorsh ${ }^{2}$
${ }^{1}$ Comp. Sci. Dept., University of Wisconsin; reps@cs.wisc.edu
${ }^{2}$ School of Comp. Sci., Tel-Aviv University; \{msagiv,gretay\} @ post.tau.ac.il

Abstract

This paper shows how to achieve, under certain conditions, abstract-interpretation algorithms that enjoy the best possible precision for a given abstraction. The key idea is a simple process of successive approximation that makes repeated calls to a decision procedure, and obtains the best abstract value for a set of concrete stores that are represented symbolically, using a logical formula.

1 Introduction

Abstract interpretation [6] is a well-established technique for automatically proving certain program properties. In abstract interpretation, sets of program stores are represented in a conservative manner by abstract values. Each program statement is given an interpretation over abstract values that is conservative with respect to its interpretation over corresponding sets of concrete stores; that is, the result of "executing" a statement must be an abstract value that describes a superset of the concrete stores that actually arise. This methodology guarantees that the results of abstract interpretation overapproximate the sets of concrete stores that actually arise at each point in the program.

In [7], it is shown that, under certain reasonable conditions, it is possible to give a specification of the most-precise abstract interpretation for a given abstract domain. For a Galois connection defined by abstraction function α and concretization function γ, the best abstract post operator for transition τ, denoted by Post ${ }^{\sharp}[\tau]$, can be expressed in terms of the concrete post operator for $\tau, \operatorname{Post}[\tau]$, as follows:

$$
\begin{equation*}
\operatorname{Post}^{\sharp}[\tau]=\alpha \circ \operatorname{Post}[\tau] \circ \gamma . \tag{1}
\end{equation*}
$$

This defines the limit of precision obtainable using a given abstraction. However, Eqn. (1) is non-constructive; it does not provide an algorithm for finding or applying Post ${ }^{\sharp}[\tau]$.

Graf and Saïdi [11] showed that decision procedures can be used to generate best abstract transformers for abstract domains that are fixed, finite, Cartesian products of Boolean values. (The use of such domains is known as predicate abstraction; predicate abstraction is also used in SLAM [2] and other systems [8, 12].) The work presented in this paper shows how some of the benefits enjoyed by applications that use the predicate-abstraction approach can also be enjoyed by applications that use abstract domains other than predicate-abstraction domains. In particular, this paper's results apply to arbitrary finite-height abstract domains, not just to Cartesian products of Booleans. For example, it applies to the abstract domains used for constant propagation and common-subexpression elimination [14]. When applied to a predicate-abstraction domain, the method has the same worst-case complexity as the Graf-Saïdi method.

To understand where the difficulties lie, consider how they are addressed in predicate abstraction. In general, the result of applying γ to an abstract value l is an infinite set of concrete stores; Graf and Saïdi sidestep this difficulty by performing γ symbolically, expressing the result of $\gamma(l)$ as a formula φ. They then introduce a function that, in effect, is the composition of α and $\operatorname{Post}[\tau]$: it applies $\operatorname{Post}[\tau]$ to φ and maps the result
back to the abstract domain. In other words, Eqn. (1) is recast using two functions that

To provide insight on what opportunities exist as we move from predicate-abstraction domains to the more general class of finite-height lattices, we first address a simpler problem than $\widehat{\alpha \operatorname{Post}}[\tau]$, namely,

How can $\widehat{\alpha}$ be implemented? That is, how can one identify the most-precise abstract value of a given abstract domain that overapproximates a set of concrete stores that are represented symbolically?
We then employ the basic idea used in $\widehat{\alpha}$ to implement our own version of $\widehat{\alpha \operatorname{Post}}[\tau]$. The contributions of the paper can be summarized as follows:

- The paper shows how some of the benefits enjoyed by predicate abstraction can be extended to arbitrary finite-height abstract domains. In particular, we describe methods for each of the operations needed to carry out abstract interpretation.
- With some logics, the result of applying $\operatorname{Post}[\tau]$ to a given set of concrete stores (represented symbolically) can also be expressed symbolically, as a formula ϕ^{\prime}. In this case, we can proceed by computing $\widehat{\alpha}\left(\phi^{\prime}\right)$. For other logics, however, ϕ^{\prime} cannot be expressed symbolically without passing to a more powerful logic. For instance,
- If sets of concrete stores are represented with quantifier-free first-order logic, it may require quantified first-order logic to express Post $[\tau]$.
- If sets of concrete stores are represented with a decidable subset of first-order logic, it may require second-order logic to express Post $[\tau]$.
In such situations, the procedure that we give to compute $\widehat{\alpha \operatorname{Post}}[\tau]$ provides a way to compute the best transformer while staying within the original logic.
The remainder of the paper is organized as follows: Sect. 2 motivates the work by presenting an $\widehat{\alpha}$ procedure for a specific finite-height lattice. Sect. 3 introduces terminology and notation. Sect. 4 presents the general treatment of $\widehat{\alpha}$ procedures for finite-height lattices. Sect. 5 discusses symbolic techniques for implementing transfer functions (i.e., $\widehat{\alpha \text { Post }[\tau]) . ~ S e c t . ~} 6$ makes some additional observations about the work. Sect. 7 discusses related work.

2 Motivating Examples

This section presents several examples to motivate the work. The treatment here is at a semi-formal level; a more formal treatment is given in later sections. (This section assumes a certain amount of background on abstract interpretation; some readers may find it helpful to consult Sect. 3 before reading this section.)

The example concerns a simple concrete domain: let Var denote the set of variables in the program being analyzed; the concrete domain is $2^{\operatorname{Var} \rightarrow \mathcal{Z}}$.
Predicate Abstraction A predicate-abstraction domain $\mathcal{P} \mathcal{A}[\mathcal{B}]$ is based on a set \mathcal{B} of predicate names, each of which has an associated defining formula: $\mathcal{B}=\left\{B_{j} \stackrel{\text { def }}{=} \varphi_{j} \mid\right.$ $1 \leq j \leq k\}$. Each value in $\mathcal{P} \mathcal{A}[\mathcal{B}]$ is a set of possibly negated symbols drawn from \mathcal{B}, where each symbol B_{j} is either present in positive or negative form (but not both), or absent entirely. For instance, with $\mathcal{B}=\left\{B_{1} \stackrel{\text { def }}{=} \varphi_{1}, B_{2} \stackrel{\text { def }}{=} \varphi_{2}, B_{3} \stackrel{\text { def }}{=} \varphi_{3}\right\}$, values in $\mathcal{P} \mathcal{A}[\mathcal{B}]$ include $\left\{\neg B_{1}, B_{2}, \neg B_{3}\right\},\left\{B_{1}, B_{2}\right\},\left\{\neg B_{3}\right\}$, and \emptyset.

[^0]We will use a predicate-abstraction domain in which there is a Boolean predicate $B \stackrel{\text { def }}{=}(x=c)$ for each $\mathrm{x} \in \operatorname{Var}$ and each distinct constant c that appears in the program. For instance, if the program is

$$
\begin{align*}
& \mathrm{y}:=3 \tag{2}\\
& \mathrm{x}:=4 * y+1
\end{align*}
$$

the predicate-abstraction domain is based on the predicate set $\left\{B_{1} \stackrel{\text { def }}{=}(y=1), B_{2} \stackrel{\text { def }}{=}\right.$ $\left.(y=3), B_{3} \stackrel{\text { def }}{=}(y=4), B_{4} \stackrel{\text { def }}{=}(x=1), B_{5} \stackrel{\text { def }}{=}(x=3), B_{6} \stackrel{\text { def }}{=}(x=4)\right\}$. Note that this domain does not provide an exact representation of the final state that arises, $[x \mapsto 13, y \mapsto 3]$. The best that can be done is to use the abstract value $\left\{\neg B_{1}, B_{2}, \neg B_{3}, \neg B_{4}, \neg B_{5}, \neg B_{6}\right\}$, which provides limited information about the value of x .

Our choice of predicate-abstraction domain $\mathcal{P} \mathcal{A}\left[\left\{B_{1}, B_{2}, B_{3}, B_{4}, B_{5}, B_{6}\right\}\right]$ was made solely for the sake of simplicity. With a different choice of predicates, we could have retained a greater or lesser amount of information about the value of x in the state after program (2); however, there would always be some program that gives rise to a state in which information is lost.

The $\boldsymbol{\alpha}$ Function for Predicate-Abstraction Domains One of the virtues of the predicate-abstraction method is that it provides a procedure to obtain a most-precise abstract value, given (a specification of) a set of concrete stores as a logical formula ψ [11]. We will call this procedure $\widehat{\alpha}_{P A}$; it relies on the aid of a decision procedure, and can be defined as follows:

$$
\begin{equation*}
\widehat{\alpha}_{\mathrm{PA}}(\psi)=\left\{B_{j} \mid \psi \Rightarrow \varphi_{j} \text { is valid }\right\} \cup\left\{\neg B_{j} \mid \psi \Rightarrow \neg \varphi_{j} \text { is valid }\right\} \tag{3}
\end{equation*}
$$

For instance, suppose that ψ is the formula $(y=3) \wedge(x=4 * y+1)$, which captures the final state of program (2). For $\widehat{\alpha}_{\mathrm{PA}}((y=3) \wedge(x=4 * y+1))$ to produce the answer $\left\{\neg B_{1}, B_{2}, \neg B_{3}, \neg B_{4}, \neg B_{5}, \neg B_{6}\right\}$, the decision procedure must demonstrate that the following formulas are valid:

$$
\begin{array}{ll}
(y=3) \wedge(x=4 * y+1) \Rightarrow \neg(y=1) & (y=3) \wedge(x=4 * y+1) \Rightarrow \neg(x=1) \\
(y=3) \wedge(x=4 * y+1) \Rightarrow(y=3) & (y=3) \wedge(x=4 * y+1) \Rightarrow \neg(x=3) \\
(y=3) \wedge(x=4 * y+1) \Rightarrow \neg(y=4) & (y=3) \wedge(x=4 * y+1) \Rightarrow \neg(x=4)
\end{array}
$$

Going Beyond Predicate Abstraction We now show that the ability to implement the α function of a Galois connection between a concrete and abstract domain is not limited to predicate-abstraction domains. In particular, we will demonstrate this for the abstract domain used in the constant-propagation problem: $\left(\operatorname{Var} \rightarrow \mathcal{Z}^{\top}\right)_{\perp}$. The abstract value \perp represents \emptyset; an abstract value such as $[\mathrm{x} \mapsto 0, \mathrm{y} \mapsto \mathrm{T}, \mathrm{z} \mapsto 0$] represents all concrete stores in which program variables x and z are both mapped to $0 .{ }^{4}$

The procedure to implement $\widehat{\alpha}$ for the constant-propagation domain, which we call $\widehat{\alpha}_{\mathrm{CP}}$, is actually an instance of a general procedure for implementing $\widehat{\alpha}$ functions that applies to a family of Galois connections. It is presented in Fig. 1; $\widehat{\alpha}_{\mathrm{CP}}$ is the instance of this procedure in which the return type L is $\left(\operatorname{Var} \rightarrow \mathcal{Z}^{\top}\right)_{\perp}$, and "structure" in line [5] means "concrete store".

[^1]```
L \widehat{\alpha}(formula \psi) {
 ans := \perp
 \varphi := \psi
 while (\varphi is satisfiable) {
 Select a structure S such that S}=
 ans := ans \sqcup }\beta(S
 \varphi:= \varphi\wedge \neg\widehat{\gamma(ans)}
 }
 return ans
}
```

Fig. 1. An algorithm to obtain, with the aid of a decision procedure, a most-precise abstract value that overapproximates a set of concrete stores. In Sect. 2, the return type L is $\left(\operatorname{Var} \rightarrow \mathcal{Z}^{\top}\right)_{\perp}$, and "structure" in line [5] means "concrete store".

As with procedure $\widehat{\alpha}_{\mathrm{PA}}, \widehat{\alpha}_{\mathrm{CP}}$ is permitted to make calls to a decision procedure (see line [5] of Fig. 1). We make one assumption that goes beyond what is assumed in predicate abstraction, namely, we assume that the decision procedure is a satisfiability checker that is capable of returning a satisfying assignment, or, equivalently, that it is a validity checker that returns a counterexample. (In the latter case, the counterexample obtained by calling ProveValid $(\neg \varphi)$ is a suitable satisfying assignment.)

The other operations used in procedure $\widehat{\alpha}_{\mathrm{CP}}$ are $\beta$, $\sqcup$, and $\widehat{\gamma}$ :

- The concrete and abstract domains are related by a Galois connection defined by a representation function $\beta$ that maps a concrete store $S \in \operatorname{Var} \rightarrow \mathcal{Z}$ to an abstract value $\beta(S) \in\left(\operatorname{Var} \rightarrow \mathcal{Z}^{\top}\right)_{\perp}$. For instance, $\beta$ maps the concrete store $[x \mapsto$ $13, y \mapsto 3]$ to the abstract value $[\mathrm{x} \mapsto 13, \mathrm{y} \mapsto 3]$.
$-\sqcup$ is the join operation in $\left(\operatorname{Var} \rightarrow \mathcal{Z}^{\top}\right)_{\perp}$. For instance,

$$
[\mathrm{x} \mapsto 0, \mathrm{y} \mapsto 43, \mathrm{z} \mapsto 0] \sqcup[\mathrm{x} \mapsto 0, \mathrm{y} \mapsto 46, \mathrm{z} \mapsto 0]=[\mathrm{x} \mapsto 0, \mathrm{y} \mapsto \top, \mathrm{z} \mapsto 0] .
$$

- There is an operation $\widehat{\gamma}$ that maps an abstract value $l$ to a formula $\widehat{\gamma}(l)$ such that $l$ and $\widehat{\gamma}(l)$ represent the same set of concrete stores. For instance, we have

$$
\widehat{\gamma}([\mathrm{x} \mapsto 0, \mathrm{y} \mapsto \top, \mathrm{z} \mapsto 0])=(x=0) \wedge(z=0)
$$

The resulting formula contains no term involving $y$ because $\mathrm{y} \mapsto \top$ does not place any restrictions on the value of $y$.

Operation $\widehat{\gamma}$ permits the concretization of an abstract store to be represented symbolically, using a logical formula. This allows sets of concrete stores to be manipulated symbolically, via operations on formulas.

To see how $\widehat{\alpha}_{\mathrm{CP}}$ works, consider the program

$$
\begin{align*}
& \mathrm{z}:=0 \\
& \mathrm{x}:=\mathrm{y} * \mathrm{z} \tag{4}
\end{align*}
$$

and suppose that $\psi$ is the formula $(z=0) \wedge(x=y * z)$, which captures the final state of program (4). The following sequence of operations would be performed during the

```
invocation of \(\widehat{\alpha}_{\mathrm{CP}}((z=0) \wedge(x=y * z))\) :
 Initialization: ans := \(\perp\)
 \(\varphi:=(z=0) \wedge(x=y * z)\)
 Iteration 1: \(\quad S:=[x \mapsto 0, y \mapsto 43, z \mapsto 0] \quad / /\) Some satisfying concrete store
 ans \(:=\perp \sqcup \beta([x \mapsto 0, y \mapsto 43, z \mapsto 0])\)
 \(=[\mathrm{x} \mapsto 0, \mathrm{y} \mapsto 43, \mathrm{z} \mapsto 0]\)
 \(\widehat{\gamma}(\) ans \()=(x=0) \wedge(y=43) \wedge(z=0)\)
 \(\varphi:=(z=0) \wedge(x=y * z) \wedge \neg((x=0) \wedge(y=43) \wedge(z=0))\)
 \(=(z=0) \wedge(x=y * z) \wedge((x \neq 0) \vee(y \neq 43) \vee(z \neq 0))\)
 \(=(z=0) \wedge(x=y * z) \wedge(y \neq 43)\)
 Iteration 2: \(\quad S:=[x \mapsto 0, y \mapsto 46, z \mapsto 0] \quad / /\) Some satisfying concrete store
 ans \(:=[\mathbf{x} \mapsto 0, \mathrm{y} \mapsto 43, \mathrm{z} \mapsto 0] \sqcup \beta([x \mapsto 0, y \mapsto 46, z \mapsto 0])\)
 \(=[\mathrm{x} \mapsto 0, \mathrm{y} \mapsto 43, \mathrm{z} \mapsto 0] \sqcup[\mathrm{x} \mapsto 0, \mathrm{y} \mapsto 46, \mathrm{z} \mapsto 0]\)
 \(=[\mathrm{x} \mapsto 0, \mathrm{y} \mapsto \mathrm{T}, \mathrm{z} \mapsto 0]\)
 \(\widehat{\gamma}(\) ans \()=(x=0) \wedge(z=0)\)
 \(\varphi:=(z=0) \wedge(x=y * z) \wedge(y \neq 43) \wedge((x \neq 0) \vee(z \neq 0))\)
 \(=\mathbf{f f}\)
 Iteration 3: \(\quad \varphi\) is unsatisfi able
 Return value: \(\quad[\mathrm{x} \mapsto 0, \mathrm{y} \mapsto \mathrm{T}, \mathbf{z} \mapsto 0]\)
```

At this point the loop terminates, and $\widehat{\alpha}_{\mathrm{CP}}$ returns the abstract value [ $\mathrm{x} \mapsto 0, \mathrm{y} \mapsto \mathrm{T}, \mathrm{z} \mapsto 0$ ]. In effect, $\widehat{\alpha}_{\mathrm{CP}}$ has automatically discovered that in the abstract world the best treatment of the multiplication operator is for it to be non-strict in $T$. That is, 0 is a multiplicative annihilator that supersedes $T: 0=T * 0$.

In general, $\widehat{\alpha}(\psi)$ carries out a process of successive approximation, making repeated calls to a decision procedure. Initially, $\varphi$ is set to $\psi$ and ans is set to $\perp$. On each iteration of the loop in $\widehat{\alpha}$, the value of ans becomes a better approximation of the desired answer, and the value of $\varphi$ describes a smaller set of concrete stores, namely, those stores described by $\psi$ that are not, as yet, covered by ans. For instance, at line [7] of Fig. 1 during Iteration 1 of the second example of $\widehat{\alpha}_{\mathrm{CP}}(\psi)$, ans has the value [ $\mathrm{x} \mapsto 0, \mathrm{y} \mapsto 43, \mathrm{z} \mapsto 0]$, and the update to $\varphi, \varphi:=\varphi \wedge \neg \widehat{\gamma}($ ans $)$, sets $\varphi$ to $(z=$ $0) \wedge(x=y * z) \wedge(y \neq 43)$. Thus, $\varphi$ describes exactly the stores that are described by $\psi$, but are not, as yet, covered by ans.

Each time around the loop, $\widehat{\alpha}$ selects a concrete store $S$ such that $S \models \varphi$. Then $\widehat{\alpha}$ uses $\beta$ and $\sqcup$ to perform what can be viewed as a "generalization" operation: $\beta$ converts concrete store $S$ into an abstract store; the current value of ans is augmented with $\beta(S)$ using $\sqcup$. For instance, at line [6] of Fig. 1 during Iteration 2 of the second example of $\widehat{\alpha}_{\mathrm{CP}}(\psi)$, ans's value is changed from [ $\mathrm{x} \mapsto 0, \mathrm{y} \mapsto 43, \mathrm{z} \mapsto 0$ ] to $[\mathrm{x} \mapsto 0, \mathrm{y} \mapsto 43, \mathrm{z} \mapsto 0] \sqcup \beta([x \mapsto 0, y \mapsto 46, z \mapsto 0])=[\mathrm{x} \mapsto 0, \mathrm{y} \mapsto \mathrm{T}, \mathrm{z} \mapsto 0]$. In other words, the generalization from two possible values for $y, 43$ and 46 , is $T$, which indicates that y may not be a constant at the end of the program.

Fig. 2 presents a sequence of diagrams that illustrate schematically algorithm $\widehat{\alpha}$ from Fig. 1 .

## 3 Terminology and Notation

For us, concrete stores are logical structures. The advantage of adopting this outlook is that it allows potentially infinite sets of concrete stores to be represented using formulas.

Definition 1. Let $P=\left\{p_{1}, \ldots, p_{m}\right\}$ be a finite set of predicate symbols, each with a fixed arity; let $P_{i}$ denote the set of predicate symbols with arity $i$. Let $C=\left\{c_{1}, \ldots, c_{n}\right\}$


Definition 4. Given a complete join semilattice $L=\langle L, \sqsubseteq,\lfloor, \perp\rangle$ and a rep-
resentation function $\beta:$ ConcreteStruct $[V, I] \rightarrow L$ such that for all $S \in$
 finite height if every strictly increasing chain is finite. ing chain in $L$ is a sequence of values $l_{1}, l_{2}, \ldots$, such that $l_{i} \sqsubset l_{i+1}$. We say that $L$ has Definition 3. Let $L=\langle L, \sqsubseteq,\lfloor, \perp\rangle$ be a complete join semilattice. A strictly increasThe powerset of concrete stores $2^{\text {ConcreteStruct }[V, I]}$ is a complete join semilattice,
where (i) $X \sqsubseteq Y$ iff $X \subseteq Y$, (ii) $\perp=\emptyset$, and (iii) $\bigsqcup=\bigcup$. The minimal element $\perp \in L$ is $\bigsqcup \emptyset$. We use $x \sqcup y$ as a shorthand for $\bigsqcup\{x, y\}$. We
write $x \sqsubset y$ when $x \sqsubseteq y$ and $x \neq y$. with partial order $\sqsubseteq$, such that for every subset $X$ of $L$, $L$ contains a least upper bound
(or join), denoted by $\bigsqcup X$. Definition 2. A complete join semilattice $L=\langle L, \sqsubseteq, \sqcup, \perp\rangle$ is a partially ordered set
with partial order $\sqsubseteq$, such that for every subset $X$ of $\bar{L}, L$ contains a least upper bound
> $\llbracket(x=0) \wedge(z=0) \rrbracket=\left\{\begin{array}{l}\iota_{c}=[x \mapsto 0, y \mapsto 0, z \mapsto 0], \iota_{c}=[x \mapsto 0, y \mapsto 1, z \mapsto 0], \\ \iota_{c}=[x \mapsto 0, y \mapsto 2, z \mapsto 0], \ldots\end{array}\right\}$ Example 2. $\llbracket \varphi \rrbracket=\{S \mid S \in$ ConcreteStruct $[V, I], S \models \varphi\}$. logic (e.g., see $[10])$. We use $\llbracket \varphi \rrbracket$ to denote the set of concrete structures that satisfy $\varphi$ : with equality. If $S$ is a logical structure and $\varphi$ is a closed formula, the notation $S=\varphi$
means that $S$ satisfies $\varphi$ according to the standard Tarskian semantics for first-order To manipulate sets of structures symbolically, we use formulas of first-order logic
with equality. If $S$ is a logical structure and $\varphi$ is a closed formula, the notation $S \models \varphi$


$$
\cdot\left\langle\emptyset^{‘}\left[0 \leftrightarrow z^{\prime} \square \leftarrow \kappa^{\prime} 0 \leftrightarrow x\right]^{‘} \emptyset^{\prime} \mathcal{Z}\right\rangle
$$

instance, an example concrete store for a program in which $\operatorname{Var}=\{x, y, z\}$ is ables to integers, and the symbols in IntPreds $=\{<, \leq,=, \neq, \geq,>, \ldots\}$, IntConsts $=$
$\{0,-1,1,-2,2, \ldots\}$, and IntFuncs $=\{+,-, *, /, \ldots\}$ have their usual meanings. For $\langle$ IntPreds, Var $\cup$ IntConsts, IntFuncs $\rangle$, where $\iota_{\text {Var }}$ is a mapping of program variables are bound to integer values is a logical structure $\langle\mathcal{Z}, \emptyset, \iota$ Var,$\emptyset\rangle$ over vocabulary This is a common way to define concrete stores; however, in the remainder of the paper Example 1. In Sect. 2, we considered concrete stores to be members of $\operatorname{Var} \rightarrow \mathcal{Z}$. fixed in advance, by ConcreteStruct $[V, I]$. We denote the (infinite) set of structures over $V$, where the interpretations of $I \subseteq V$ are Typically, some subset of the predicate symbols, constant symbols, and function symbols
have an interpretation that is fixed in advance; this defines a family of intended models. $-\iota_{f}$ is the interpretation of function symbots, i.e., for
$\iota_{f}(f): U^{i} \rightarrow U$ maps $i$-tuples into an individual.


- $\iota_{c}$ is the interpretation of constant symbols, i.e., for every constant symbol $c \in C$
general, however, other logics could be used.)
 ically, using a logical formula, which allows sets of concrete stores to be manipulated



## $\cdot(l) \swarrow=\llbracket(l)$ ) $\rrbracket$


 The concrete and abstract domains are related by a Galois connection defined by
a representation function $\beta$ that maps a structure $S \in$ ConcreteStruct $[V, I]$ to an - The concrete domain is the power set of ConcreteStruct $[V, I]$. The assumptions of the framework are rather minimal: mula $\psi . \widehat{\alpha}$ represents sets of concrete stores symbolically, using formulas, and invokes
a decision procedure on each iteration. a finite-height lattice, given a specification of a set of concrete stores as a logical forThis section presents a general framework for implementing $\alpha$ functions of Galois con-
nections using procedure $\widehat{\alpha}$ from Fig. 1. $\widehat{\alpha}(\psi)$ finds the most-precise abstract value in
4 Symbolic Implementation of the $\alpha$ Function
$\gamma(l)=\left\{\begin{array}{l}\iota_{c}=[x \mapsto 0, y \mapsto 0, z \mapsto 0], \iota_{c}=[x \mapsto 0, y \mapsto 1, z \mapsto 0], \\ \iota_{c}=[x \mapsto 0, y \mapsto 2, z \mapsto 0], \ldots\end{array}\right\}$
Suppose that abstract value $l$ is $[\mathrm{x} \mapsto 0, \mathrm{y} \mapsto \mathrm{T}, \mathrm{z} \mapsto 0]$. Because $\mathrm{y} \mapsto \mathrm{T}$ does not
place any restrictions on the value of y , we have


$$
\alpha\left(\left\{\begin{array}{c}
\iota_{c}=[x \mapsto 0, y \mapsto 0, z \mapsto 0], \\
\iota_{c}=[x \mapsto 0, y \mapsto 2, z \mapsto 0]
\end{array}\right\}\right)=\begin{array}{r}
\beta\left(\iota_{c}=[x \mapsto 0, y \mapsto 0, z \mapsto 0]\right) \\
\sqcup \beta\left(\iota_{c}=[x \mapsto 0, y \mapsto 2, z \mapsto 0]\right)
\end{array}
$$

Example 3. In our examples, the abstract domain will continue to be the one introduced
in Sect. 2, namely, $\left(\operatorname{Var} \rightarrow \mathcal{Z}^{\top}\right)_{\perp}$. As we saw in Sect. $2, \beta$ maps a concrete store like
$\iota_{c}=[x \mapsto 0, y \mapsto 2, z \mapsto 0]$ to an abstract value $[\mathrm{x} \mapsto 0, \mathrm{y} \mapsto 2, \mathrm{z} \mapsto 0]$. Thus, straightforward to show that $\alpha(X S)$ is the most-precise (i.e., least) abstract value that
overapproximates $X S$. We say that $l$ overapproximates a set of concrete stores $X S$ if $\gamma(l) \supseteq X S$. It is
straightforward to show that $\alpha(X S)$ is the most-precise (i.e., least) abstract value that It is straightforward to show that this defines a Galois connection, i.e., (i) $\alpha$ and $\gamma$ are
monotonic, (ii) $\alpha$ distributes over $\cup$, (iii) $X S \subseteq \gamma(\alpha(X S)$, and (iv) $\alpha(\gamma(l)) \sqsubseteq l$. $\bigsqcup_{S \in X S}$
$\alpha(X S)=\bigsqcup_{S \in S S} \beta(S) \quad \gamma(l)=\{S \mid S \in$ ConcreteStruct $[V, I], \beta(S) \sqsubseteq l\}$ fined by extending $\beta$ pointwise, i.e., for $X S \subseteq$ ConcreteStruct $[V, I]$ and $l \in L$,

${ }^{5}$ For economy of notation, we will not duplicate the symbols $I \subseteq V$ whose interpretation is
over vocabularies $V=\langle P, C, F\rangle$ and $V^{\prime}=\left\langle P^{\prime}, C^{\prime}, F^{\prime}\right\rangle$, respectively; $\left\langle S, S^{\prime}\right\rangle$ is called
a two-vocabulary structure. two-vocabulary formula $\tau$ will be written as $\left\langle S, S^{\prime}\right\rangle \vDash \tau$, where $S$ and $S^{\prime}$ are structures
over vocabularies $V=\langle P, C, F\rangle$ and $V^{\prime}=\left\langle P^{\prime}, C^{\prime}, F^{\prime}\right\rangle$, respectively; $\left\langle S, S^{\prime}\right\rangle$ is called symbols, and primed symbols as next-state symbols. ${ }^{5}$ The satisfaction relation for a using formulas. Such formulas will be over a "double vocabulary" $V \cup V^{\prime}=$
$\left\langle P \cup P^{\prime}, C \cup C^{\prime}, F \cup F^{\prime}\right\rangle$, where unprimed symbols will be referred to as present-state The interpretation of statements involves the specification of transition relations
using formulas. Such formulas will be over a "double vocabulary" $V \cup V$ " $=$
If $Q$ is a set of predicate, constant, or function symbols, let $Q^{\prime}$ denote the same set of
symbols, but with a ${ }^{\prime}$ attached to each symbol (i.e., $q \in Q$ iff $q^{\prime} \in Q^{\prime}$ ). $\begin{array}{lll}\text { 5 } & \text { Symbolic Implementation of Transfer Functions } \\ \text { 5.1 } & \text { Transfer Functions for Statements }\end{array}$

(ii) $\widehat{\alpha}(\psi)=\alpha(\llbracket \psi \rrbracket)$ (i.e., $\widehat{\alpha}(\psi)$ computes the most-precise abstract value that overap(i) The loop on lines [4]-[8] in procedure $\widehat{\alpha}$ is executed at most $h$ times. Theorem 1. Suppose that the abstract domain has finite height of at most h. Given
input $\psi, \widehat{\alpha}(\psi)$ has the following properties: $43, z \mapsto 0]$, we would now write $S:=\iota_{c}=[x \mapsto 0, y \mapsto 43, z \mapsto 0]$. been identified with logical structures, so instead of writing, e.g., $S:=[x \mapsto 0, y \mapsto$ was presented in Sect. 2. In generalizing the idea from Sect. 2, concrete stores have Example 5. A trace of a call on $\widehat{\alpha}$ for the constant-propagation domain $\left(\operatorname{Var} \rightarrow \mathcal{Z}^{\top}\right)_{\perp}$ Implementation of Alpha Procedure $\widehat{\alpha}$ is given in Fig. 1. (and hence $\widehat{\alpha}(\psi)$, as well) is the most-precise abstract value that overapproximates the
set of concrete stores represented symbolically by $\psi$. Note that a logical formula $\psi$ represents the set of concrete stores $\llbracket \psi \rrbracket$; thus, $\alpha(\llbracket \psi \rrbracket$ )
(and hence $\widehat{\alpha}(\psi)$, as well) is the most-precise abstract value that overapproximates the all $\psi, \widehat{\alpha}(\psi)=\alpha(\llbracket \psi \rrbracket)$.
Specification of Alpha Procedure $\widehat{\alpha}$ is to implement $\alpha$, given a specification of a set
of concrete stores as a logical formula $\psi$. Therefore, $\widehat{\alpha}$ must have the property that for
$\begin{aligned} \llbracket(x=0) \wedge(z=0) \rrbracket & =\left\{\begin{array}{l}\iota_{c}=[x \mapsto 0, y \mapsto 0, z \mapsto 0], \iota_{c}=[x \mapsto 0, y \mapsto 1, z \mapsto 0], \\ \iota_{c}=[x \mapsto 0, y \mapsto 2, z \mapsto 0], \ldots\end{array}\right\} \\ & =\gamma([\mathrm{x} \mapsto 0, \mathrm{y} \mapsto \top, \mathrm{z} \mapsto 0]),\end{aligned}$ nd 3 , we know that

Example 4. As we saw in Sect. 2, because $\mathrm{y} \mapsto \mathrm{\top}$ does not place any restrictions on
the value of y , we have $\widehat{\gamma}([\mathrm{x} \mapsto 0, \mathrm{y} \mapsto \top, \mathrm{z} \mapsto 0])=(x=0) \wedge(z=0)$. From Exs. 2
fi xed in advance.


guish next-state abstract values from present-state ones The motivation for using two abstract domains is to eliminate a possible source of confusion
in the examples. By using separate abstract domains $L$ and $L^{\prime}$, primed symbols always distin-
guish next-state abstract values from present-state ones.


$$
[\Lambda] \text { pпииио }_{J} \leftarrow T: \text { 亿. }
$$

$$
\left.\begin{array}{ll}
{[8]} & \} \\
{[9]} & \text { return ans' } \\
{[10]}
\end{array}\right\}
$$

[^2] . ConcreteStruct $[V, I] \rightarrow L$
> plying $\tau$ to a set of concrete stores $X S$ is Specification Given a formula $\tau$ for a statement's transition relation, the result of approduced by one transition, e.g., $\left.\mathrm{x}^{\prime} \mapsto 0, \mathrm{y} \mapsto \mathrm{T}, \mathrm{z} \mapsto 0\right] \in L$, can be identified as
the present-state abstract value $[\mathrm{x} \mapsto 0, \mathrm{y} \mapsto \mathrm{T}, \mathrm{z} \mapsto 0] \in L$ for the next transition. ${ }^{6}$ For the constant-propagation domain, this just means that a next-state abstract value
$\operatorname{Post}[\tau](X S)=\left\{S^{\prime} \mid\right.$ exists $S \in X S$ such that $\left.\left\langle S, S^{\prime}\right\rangle \models \tau\right\}$.
For parallel form, we will also assume that we have two isomorphic abstract do-
mains, $L$ and $L^{\prime}$, and associated variants of $\beta$ and $\widehat{\gamma}$
noted by $\tau_{\mathbf{x}:=\mathrm{y} * \mathrm{z}}$, can be specified as $\tau_{\mathbf{x}:=\mathrm{y} * \mathrm{z}} \stackrel{\text { def }}{=}\left(x^{\prime}=y * z\right) \wedge\left(y^{\prime}=y\right) \wedge\left(z^{\prime}=z\right)$. Example 6. The formula that expresses the semantics of an assignment $\mathrm{x}:=\mathrm{y} * \mathrm{z}$ with
respect to stores over vocabulary $\left\langle\right.$ IntPreds, Var $\cup \operatorname{Var}^{\prime} \cup$ IntConsts, IntFuncs $\rangle$, de-
$\cdot(\alpha \vee(l) \swarrow) \underline{D}=(l)[\alpha]_{\sharp} \partial$ unnss $V$

 must "pass through" all structures that are both represented by $l$ and satisfy $\varphi$, i.e., those Specification The interpretation of a condition $\varphi$ with respect to a given abstract value $l$
The operator $\operatorname{Pre}[\tau]$ can be implemented using a procedure that is dual to Fig. 3.
5.2 Transfer Functions for Conditions
stract value in $L^{\prime}$ that overapproximates $\left.\operatorname{Post}[\tau](\gamma(l))\right)$.

(i) The loop on lines [4]-[8] in procedure $\widehat{\alpha \operatorname{Post}[\tau](l)}$ is executed at most $h$ times.


Fig. 4. Operations performed during a call $\widehat{\alpha \operatorname{Post}}\left[\tau_{\mathrm{x}:=\mathrm{y} * \mathrm{z}}\right]([\mathrm{x} \mapsto \top, \mathrm{y} \mapsto T, \mathrm{z} \mapsto 0])$. $\begin{array}{ll}\text { Iteration 3: } & =\mathbf{f} \\ \text { Return value: } & \quad\left[\mathbf{x}^{\prime} \mapsto 0, \mathbf{y}^{\prime} \mapsto \mathrm{J}, \mathbf{z}^{\prime} \mapsto 0\right]\end{array}$

$$
\begin{array}{r}
\left.\varphi:=(z=0) \wedge(x=y * z) \wedge\left(x^{\prime} \neq 0\right) \vee\left(z^{\prime} \neq 0\right)\right) \\
\wedge
\end{array}
$$

$\begin{aligned} & \gamma \\ & \varphi:=(z=0) \wedge\left(x^{\prime}=y * z\right) \wedge\left(y^{\prime}=y\right) \wedge\left(z^{\prime}=z\right) \wedge\left(y^{\prime} \neq 17\right)\end{aligned}$
ans $^{\prime}:=\left[\mathrm{x}^{\prime} \mapsto 0, \mathrm{y}^{\prime} \mapsto 17, \mathrm{z}^{\prime} \mapsto 0\right] \sqcup\left[\mathrm{x}^{\prime} \mapsto 0, \mathrm{y}^{\prime} \mapsto 99, \mathrm{z}^{\prime} \mapsto 0\right]$

$$
\begin{aligned}
& \text { Iteration 2: } \\
& (\angle \mathrm{I} \neq, \kappa) \vee(z=, z) \vee(\bar{\kappa}=, \kappa) \vee(z * \kappa=x) \vee(0=z)= \\
& \begin{aligned}
\left(\mathrm{ans}^{\prime}\right) & =\left(x^{\prime}=0\right) \\
\varphi & :=(z=0)
\end{aligned} \\
& \langle, S\rangle:\left[\begin{array}{l}
x \mapsto 5, y \mapsto 17, z \vdash 0 \\
x \mapsto 0, y \mapsto 17, z \mapsto 0
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
\text { ans }^{\prime} & :=\perp^{\prime} \\
\varphi & :=(z
\end{aligned}
\end{aligned}
$$

 $\left(x^{\prime}=y * z\right) \wedge\left(y^{\prime}=y\right) \wedge\left(z^{\prime}=z\right)$. Fig. 4 shows why we have Example 7. Suppose that $l=[\mathrm{x} \mapsto \top, \mathrm{y} \mapsto \top, \mathrm{z} \mapsto 0]$, and the statement to be inter-
preted is $\mathrm{x}:=\mathrm{y} * \mathrm{z}$. Then $\widehat{\gamma}(l)$ is the formula $(z=0)$, and $\tau_{\mathrm{x}:=\mathrm{y} * \mathrm{z}}$ is the formula
$\begin{array}{ll}\text { Fig. 5. A program with corre- } & \begin{array}{l}\text { propagation/predicate-abstraction domain determines } \\ \text { that the variable } \mathrm{x} \text { must be } 13 \text { at the end of the program } \\ \text { given in Fig. } 5 .\end{array}\end{array}$

 to generate the best transformer for combined doan additional benefit of the approach: it can be used



әч рәу!əәл әлеч әм ‘Кџ! quantifier-free first-order logic with linear arithmetic, such a structure can be obtained quantifier-free first-order logic with linear arithmetic, such a structure can be obtained a particular satisfying structure, such as $[x \mapsto 7, y \mapsto 3]$. This presents an obstacle
because at line [6] $\beta$ requires an argument that is a single structure. In the case of at line [5] of Fig. 1, the value returned would be the formula $(x \geq y)$ itself, rather than form, i.e., as a formula. The formula represents a set of counterexamples; any structure
that satisfies the formula is a counterexample to the query. For example, if $\varphi$ is $x \geq y$ Some tools, such as Simplify [9] and SVC [1], provide counterexamples in symbolic
form, i.e., as a formula. The formula represents a set of counterexamples; any structure satisfies $\varphi$. Such tools also exist for logics other than first-order logic; for example,
MONA [15] can generate counterexamples for formulas in weak monadic second-order
logic. counterexamples to validity: a counterexample to the validity of $\neg \varphi$ is a structure that Automatic theorem provers-such as MACE [16], SEM [20], and Finder [19]-
can be used to implement the procedures presented in this paper because they return less powerful). For the basic approach to carry over, all that is required is that a decision
procedure exist for the logic. ered as alternative structure-description formalisms (possibly more powerful, possibly
less powerful). For the basic approach to carry over, all that is required is that a decision straightforward to generalize the approach to other types of logics, which can be considing) a set of concrete structures, namely, the set of structures that satisfy $\varphi$. Not every
subset of concrete structures can be described by a first-order formula; however, it is
 This paper shows how the most-precise versions of the basic operations needed to create
an abstract interpreter are, under certain conditions, implementable. These techniques
6 Discussion

$$
\begin{aligned}
& = \\
& \text { (5) } x
\end{aligned}
$$

$((z>k) \vee(L=z) \vee(0$
(s)
This paper shows how the most-precise versions of the basic operations needed to create

[^3]$\gamma_{1}\left(l_{1}\right)$ is obtained by $l_{2}=\widehat{\alpha}_{2}\left(\widehat{\gamma}_{1}\left(l_{1}\right)\right)$. framework; given $l_{1} \in L_{1}$, the most-precise value $l_{2} \in L_{2}$ that overapproximates that $L_{1}$ and $L_{2}$ are two different abstract domains that meet the conditions of the only speculate. However, we have observed that our approach does provide a fundaplied. This is the subject of future work, and thus something about which one can The question of how to go about improving an abstract domain has not yet been
studied for abstract domains as rich as the ones in which our techniques can be ap-
 given abstract domain?". Iterative refinement addresses a different problem: "How heuristics-based machinery for changing the abstract domain in use.
This paper studies the problem "How can one obtain most-precise results for a ical machinery (i.e., the availability of a decision procedure), but do not rely on
heuristics-based machinery for changing the abstract domain in use.
 For the simple examples used for illustrative purposes in this paper, iterative re-
finement would obtain suitable predicates with appropriate constant values in one
 general setting (oxaction to more cates, as in SLAM [3] or BLAST [12]?". We do not have a complete answer to this
question; however, a few observations can be made: abstraction augmented with an iterative-refinement scheme that generates new predi-
 cept in hand, namely, the formula $\psi$; on each iteration, the decision procedure is used negative examples of the concept. $\widehat{\alpha}$ already starts with a precise statement of the conpositive training example that falls outside its current hypothesis. The problem settings
for the two algorithms are slightly different: Find-S receives a sequence of positive and ing examples, and generalizes its current hypothesis each time it is presented with a
positive training example that falls outside its current hypothesis. The problem settings hypotheses" to find the most-specific hypothesis that is consistent with the positive
training examples of the "concept" to be learned. Find-S receives a sequence of train"hypotheses" to find the most-specific hypothesis that is consistent with the positive Procedure $\widehat{\alpha}$ is also related to an algorithm used in machine learning, called Find-S
[17, Section 2.4]. In machine-learning terminology, both algorithms search a space of from concrete value $S$ to an abstract value. Fig. 1 makes use of the domain of concrete values in a critical way: each time around
the loop, $\widehat{\alpha}$ selects a concrete value $S$ such that $S \models \varphi ; \widehat{\alpha}$ uses $\beta$ and $\sqcup$ to generalize Fig. 1 makes use of the domain of concrete values in a critical way: each time around multiple calls on a decision procedure to pass from the space of formulas to the domain
of abstract values, $\widehat{\alpha}_{\text {PA }}$ goes directly from a formula to an abstract value, whereas $\widehat{\alpha}$ of tally different from the one used in predicate abstraction. Although both approaches use
multiple calls on a decision procedure to pass from the space of formulas to the domain infinite cardinality. However, procedure $\widehat{\alpha}$ of Fig. 1 uses an approach that is fundamen-

 I[ interpretation operations. Predicate abstraction only applies to a family of finite-height
abstract domains that are finite Cartesian products of Boolean values; our results gen-
 This paper is most closely related to past work on predicate abstraction, which also
1104 of Lec. Notes in Art. Intell., pages 308-312. Springer-Verlag, 1996.
19. J. Slaney. Finder - Finite Domain Enumerator, Version In. Conf. on Auto. Deduc., volume
20. J. Zhang and H. Zhang. Generating models by SEM. Int.
1104 of Lec. Notes in Art. Intell., pages $308-312$. Springer-Verlag, 1996 .

T.M. Mitchell. Machine Learning. WCB/McGraw-Hill, Boston, MA, 1997.
 N. Klarlund and A. Møller. MONA Version 1.4 User Manual. BRICS Notes Series NS-01-1,
Univ. of Aarhus, January 2001.
W. McCune. MACE User Manual and Guide. Argonne Nat. Lab., May 2001. G.A. Kildall. A unifi ed approach to global program optimization. In Princ. of Prog. Lang.,
pages 194-206, New York, NY, 1973. ACM Press. Lang., pages 58-70, New York, NY, January 2002. ACM Press.
LOG. ILOG optimization suite: White paper. ILOG S.A., Gentilly, France, 2001. S. Graf and H. Sa"1 di. Construction of abstract state graphs with PVS. In Computer-Aided
Verif., pages 72-83, June 1997.
T.A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In Princ. of Prog.




 E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-guided abstraction
refi nement. In Computer-Aided Verif, pages $154-169$ July 2000 .

 Stanford validity checker. Mttp://verify.stanford.edu/Sver,
T. Ball, R. Majumdar, T. Millstein, and S.K. Rajamani. Automatic predicate abstraction of
C programs. In Prog. Lang. Design and Impl., New York, NY, 2001. ACM Press. sәэиә.ıəəу and symbolic approaches to abstract interpretation. to improve an abstract domain, they contribute to a better understanding of abstraction issue of how to obtain most-precise results for a given abstract domain and that of how

 atic way to salvage information from the counterexample trace: for instance, it can state of the prefix. The domain-changing primitive appears to provide a systemtify the shortest invalid prefix of a spurious counterexample trace, and then refine For example, counterexample-guide surious counterexample trace, and then refine
tify the shortest invalid prefix of a spurates
The domain-changing primitive opens up several possibilities for future work


[^0]:    ${ }^{3}$ We use the diacritic ${ }^{\wedge}$ on a symbol to indicate an operation that either produces or operates on a symbolic representation of a set of concrete stores.

[^1]:    ${ }^{4}$ We write abstract values in Courier typeface (e.g., $[\mathrm{x} \mapsto 0, \mathrm{y} \mapsto \mathrm{T}, \mathbf{z} \mapsto 0]$ ), and concrete stores in Roman typeface (e.g., $[x \mapsto 0, y \mapsto 43, z \mapsto 0]$ ).

[^2]:    
    

[^3]:    Thic naner cho

