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Abstract

Employing Decision Procedures
for Verification of Heap-Manipulating Programs

Greta Yorsh
Doctor of Philosophy
School of Computer Science
Tel-Aviv University

The goal of software verification is to guarantee the reliighof software via rigorous methods that can
establish its correctness, or to detect subtle designserras the size and the complexity of software grows,
verification tasks become more challenging.

The first part of this thesis provides novel algorithms thetnless automated reasoning tools (e.g., theorem
provers and decision procedures) to perform program aisadyel verification. These algorithms automate the
process of developing program analyses, for instance, impating the precise effect of program statements.

While these algorithms are applicable to a wide range ofyamaproblems, the main focus of this thesis is
analysis of programs that manipulate linked data-strestsuch as singly-linked lists, doubly-linked lists, &ee
etc. Specifications of these programs often involve praggeregarding reachability (via pointer dereference)
between heap-allocated objects, e.g., to establish thatibastiructure is acyclic; every element is reachable from
the root of the data-structure; two data-structures afeidts

The second part of this thesis provides a way to automatioedison about interesting reachability properties,
using a new decidable logi€,RP. A decision procedure fof R P can be employed in the algorithms developed
in the first part of this thesis.
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Chapter 1

Introduction

Software technologies affect a wide range of areas in todaylsl, starting from the way people communicate and
interact with each other, and including safety-criticgblgations, such as aerospace and medicine technologies.
As our dependance on software grows, the importance of aodtweliability increases. The goal of software
verification is to guarantee the reliability of software vigorous methods that can establish its correctness, or to
detect subtle design errors. The verification process rakistinto account many complex and expressive features
supported by modern programming languages. One of the rhallenges is to handle unbounded resources such
as dynamic data-structures with no given (or no reasonabie)d on the their maximal size.

As the size and the complexity of software grows, it becomesenimportant tcautomatethe verification
tasks. Automatic software verification can be carried ouitstatic program analysis. It usually relies aio-
stractionto reason about all possible program executions, withowiadlg executing the program. The choice
of abstraction is guided by the program and the propertiéstefest. There is a trade-off between the precision
of the abstraction and the cost (in terms of time and spactjeoforresponding program analysis. Substantial
progress has been made to develop scalable analyses tisafffariently precise for certain classes of programs
and properties. Currently, the focus is shifting to analyafi more complex programs and properties. In this
setting, where significantly more precise and inherentlyarexpensive analyses are required, scaling an analy-
sis is no longer a matter of engineering; it becomes a relsednallenge that requires developing radically new
approaches.

Theorem provers have been employed successfully to préeeesiing properties of hardware and software
systems, e.g.MLK98, FLLT02]. In this thesis, we enrich the program analysis desigriecbox with theorem
provers: the designer of a program analysis defines an abstrand the concrete meaning of basic statements,
and our techniques harness theorem provers to automwtigdérmine the abstract meaning of basic statements.

For parametric abstractions, our techniques alleviatpdireand suffering of manually computing the abstract
meaning for every instance of the parametric abstractidris iB particularly important for expressive abstrac-
tions such as those used for verifying properties of heapimodating programs. Additionally, given a formal
specification of a procedure, our technigues can be usedipute its abstract meaning. This enables modular
reasoning in that the effect of calls to that procedure caamiadyzed without using the code of the procedure. The
abstract meaning computed in this way is guaranteed to bmdiséprecise with respect to the given abstraction,
under certain conditions, detailed later.

1.1 Thesis Contributions

The first part of this thesis (Chapte2sand 3) provides two novel algorithms for computing an abstrapree
sentation of a set of concrete program states describedebgptbcification. These algorithms allow program
analysis tools to reason about human-provided specifitgtiand thus enable modular program analysis. For
instance, we can use these algorithms to automatically atthe effect of a procedure call in any (abstract)
calling context, using the procedure’s formal specificatioreover, these algorithms can be used to implement
abstract transformer€[C79 and other abstract operations for parametric abstractaitnsuch as canonical
abstraction FRWO0Z and predicate abstractio®F97. Under certain conditions, the most precise result can be
computed. These algorithms rely on automated reasoning (®@g., theorem provers and decision procedures).
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While these algorithms are applicable to a wide range ofyamaproblems, the main focus of this thesis is
analysis of programs that manipulditked data-structurgssuch as singly-linked lists, doubly-linked lists, trees,
etc.

Linked data-structures are important and widely used, itiqudar because they provide a way to efficiently
handle an unbounded amount of data. However, this also nitadasy to introduce subtle errors, e.g., by violating
global invariants, which cause a program to produce unegdeesults and possibly crash. Therefore, it is
important to verify programs that manipulate linked data«gures.

Specifications of these programs often invalachabilityproperties. For example, to establish that a memory
configuration contains no garbage elements, we can shovetleay element is reachable from some program
variable. Another example is acyclicity of data-structfregments, i.e., every element reachable from nede
cannot reachu.

For programs that manipulate linked data-structures, ibeess of the algorithms mentioned above depends
on having a tool that supports automated reasoning abochabdity. Automated reasoning about reachability
is a difficult task. For instance, many reasoning problemiglwvhre decidable become undecidable when (even
limited) support for reachability is added, e.g5NIE99, IRRT044.

The second part of this thesis (Chapteprovides a way to automatically reason about interesgaghability
properties, using a newdecidablelogic. This logic, calledLRP, is both decidable and expressive enough to
describe important properties of data-structures withrhitrary number of pointer fields and of arbitrary shapes.
A decision procedure fdtRP can be employed, as a theorem prover, in the algorithms or@adiabove. This
allows us, for instance, to compute an abstract representaitthe effect of calling a procedure, provided that its
specification is expressed iR P.

1.2 Thesis Organization

The main results of this thesis are described in (Cha@e3sand4), each of which can be read independently
from others. In Sectio.3 we provide an informal overview of each of these chapterd,autline the connec-
tions between them. In Chapt2rwe present an algorithm that computes abstract repraégargaf reachable
program states using a novel combination of concrete eiegbstraction, and an automatic theorem prover.
In addition, this algorithm explains the results of abdtiaterpretation in terms of concrete execution and ab-
straction, providing an intuitive introduction to the cepts that we use in the next chapter. Next, in Chapiter
we present a different algorithm that is specialized forocacal abstraction, and thus, for reasoning about linked
data-structures. When verifying properties of linked esttactures, both algorithms require an automated rea-
soning tool that can handle reachability properties. Magd by this requirement, we develop a decidable logic
that can express interesting reachability propertieshaais in Chapted. Finally, in Chapteb, we summarize
the results of this thesis and discuss future researchtidinsc

1.3 Overview

This section provides an informal overview of the conterthig thesis. The section contains forward references
to chapters that formally discuss the presented material.

A Few Words on Terminology To provide some intuition to the readers who are not very ffamuith abstract
interpretation, the informal explanation in this sectises an abstract domain that is a powerset of “abstract
states”. However, our algorithms are not restricted to peatedomains.

We use the term “most-precise abstract interpreter” fortatract domain (with a finite height) to refer to the
abstract interpreter that uses the best abstract transfeffior all (intraprocedural) statemen@J79.

To simplify the presentation, we assume that an abstracewvebllectively describes states at all program
points, rather than having a separate abstract value forgragram point. This can be achieved by encoding the
program counter in the representation of a concrete state.

Finally, we use the term “theorem prover” for an automata for checking validity of formulas in a (decid-
able or undecidable) logic.
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Figure 1.1: Overview of the method! denotes the set of concrete states reachable from the istétesA is
the set of abstract states coveredihy.e., Ar = a(Cr).

1.3.1 Combining Concrete Execution, Abstraction and Theam Proving

It is well known that the problem of proving safety propestis undecidable in general. Fortunately, these
properties often can be proved using abstraction to oveoappate the reachable concrete states of a program.
Abstraction and abstract interpretatid®f77 are key tools for automatically proving properties of syss,

both for hardwareCGL94, Dam9§ and software system&NH99|. An abstraction functiorx maps concrete
program states to the corresponding abstract states. Teestization functiony maps every abstract state to the
set of concrete states that it represents. A concrete stagachable if it can arise in some program execution.
A set of abstract states soundif it represents all reachable concrete states of the pnogfen abstract state is
reachable if it is the abstraction of some reachable coastate. |dentifying exactly the reachable abstract states
is undecidable in general. Abstract interpretation presid way to compute supersebdf all reachable abstract
states. Thus, the result of abstract interpretation carsbd to check safety properties: if safety properties hold
on (a superset of) all reachable abstract states, then slaésty properties also hold on all reachable concrete
states.

We propose a new method for computing a superset of all rééeladstract states. In contrast to abstract
interpretation, which “executes” the program on abstréates, our method executes the program on concrete
states, and then performs abstraction. Our method has éige,ghown in Figl.1, as follows.

1. Execute Given a programP and a setl” of test inputs, execute the program and collect the concrete

program state€'r obtained during execution.
2. Abstract Given an abstraction functiom, obtain the set of abstract statesi = a(Cr). We say thatd
is the set of abstract states coverediby

3. Check Invariants Check thatdr is invariant under the progra: if a concrete state is representeddy
then its successor states are also representet-byFormally, we check that for all concrete statesnd
¢ such thau({c}) C A andc’ is a successor state ofn the programP, a({c'}) C Ar. This condition
is expressed as a logical formula using strongest (libpjconditionsDij76] such that if the formula is
valid thenA7 is an invarianf The validity of the formula is checked using a theorem prover

4. Fabricate Stateslf Ar is not an invariant then there are concrete statasdc’ such thatu({c}) C Ar

andc’ is a successor state ofin P, buta({c'}) € Ar. Our method finds such a stateusing a model
generator, i.e., a theorem prover that produces a conaratgarexample for invalid formulas. We say that

1Test input are represented as concrete states at the lodilon of the program.
2Alternatively, a formula based on the weakest (liberalppralition can be used, see SecthB.3for details.
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a statec/, obtained using a model generator as above fibdcated state Note that a fabricate state is a
concrete state at some intermediate program point, that isetessarily reachable from any initial state of
the program.

Then, our method augmenitswith ¢’ and repeats the process, executing the program from a dadsdic
state, and so on, as shown in Flgl This guarantees that the coverage increases in the neattorg and

if the process terminated, is an invariant.

5. Check Safety PropertiesWe check, using a theorem prover, whether the covered abstedesA satisfy
the safety properties. W is an invariant then it contains all reachable abstracéstéissuming that the
input test sef” covers all initial program states). ThusAfr is an invariant, and the safety check succeeds
on Ar, we have proven that all reachable concrete states of thgrarosatisfy the safety properties. If
the safety check fails, we reporpatential error, which may indicate a real error in the program dakse
alarm, due to the imprecision of the abstraction.

This algorithm allows us to perform modular program analyssing procedure specifications, as follows.
When analyzing one module, in the “Execute” step, we cancbogrete execution at call sites of procedures, and
proceed to the following steps of our algorithm (“Abstraatid “Check Invariants”). When checking invariants,
we can use procedure specifications (instead of strongsttgralitions), to compute the effect of a procedure
call. This way, we can check invariants in a modular fashieithout using the code of the procedure. If the
invariant check fails, it also provides a fabricate statth@fprogram point where the procedure call returns to, and
we can continue concrete execution from it.

Fig. 1.2(a) depicts the idea behind the iterative process in thisralgn. It shows the concrete and the abstract
state spaces as the left and the right ovals, respectivath Boint in the right oval represents the valuedgfin
some iteration of the algorithm, and the correspondingafatencrete states are shown on the left.

Let X denote all reachable concrete states of the program (é€pittig.1.2(a) as the dashed region inside
the left oval). The goal of our algorithm is to computeX ). This operation is not computable directly, because
X can be infinite in general. In contrast, the “Abstract” stépur algorithm in each iteration computa$Cr),
whereCr is a finite set of concrete states. For most abstractiongheationa can be easily computed for a
finite set.

Our algorithm works its way up in the right oval, which on tleétlcorresponds to progressively representing
more and more concrete states, until the entireXsés represented. Of course, because of the inherent loss of
information due to abstraction, the result can also repitescrete states outside ®&f Under certain conditions,
detailed later, the result of the algorithm represents idjietd@st set of concrete states that contalhsand is
expressible with the given abstraction.

The algorithm spends a significant amount of time in checkialgdity and model generation. Moreover,
failure of these tasks (see Sectibi3.4 might causes loss of precision. An existing test set andcoal gboice of
fabricated states allows us to reduce the number of itersitdd the algorithm, and thus, the number of calls to a
theorem prover and a model generator. Intuitively, in eéetation, we would like to “jump” further up in the
right oval of Fig.1.2(a), increasing the coverage as much as possible usingetistr of concrete states obtained
from concrete executions, before performing the invaridwetck and the fabrication.

Properties of the Algorithm  For finite-height abstract domains, our method is guarareerminate and the
result is the same as the result of the most-precise absitagireter (over the same abstract domain), assuming
that all theorem prover calls were conclusive. In partigudar method produces the same false alarms as abstract
interpretation.

It is noteworthy that we can make these guarantees even ifevagiurely halt concrete execution in order to
perform the coverage check. In this way, we can control theuarnof time spent executing the program vs. the
amount of time spent calling the theorem prover.

If the algorithm is stopped prematurely, before an invdriafiound, then the results might be unsound (i.e.,
might miss errors) or imprecise (i.e., might produce falsemas). As opposed to this algorithm, in the algorithm
described in Sectioh.3.2 the intermediate results are always sound: they can befaspobving safety proper-
ties even if the analysis terminated prematurely (losirggahility to guarantee the precision), but that algorithm
is less general.

As usual, our analysis (and abstract interpretation) doedistinguish between a false error and a real error.
It is possible to combine our method (and abstract integticet) with an analysis for classifying potential errors
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Concrete Abstract

(a) The algorithm described in Chaprabstract value is increased in each step of the algorithm.

Concrete Abstract

(b) The algorithm described in Chap&&rabstract value is decreased in every step of the algorithm.

Figure 1.2: Schematic view of the algorithms.

into real errors and false alarms. In this thesis, we asshatéte abstraction is given. Itis possible to combine
our method with abstraction refinement to find a suitablerabson.

Applications To evaluate the feasibility of this approach, we have im@etad two prototypes: the first pro-
totype uses predicate abstracti®dg97 and the XRT model checkeTS0Y infrastructure as its platform; the
second prototype uses canonical abstract®8R\W/073 and the TVLA systeml[ASO(Q] as its platform. The latter

was used for checking memory safety properties of smallrititate programs that manipulate linked lists.

This material is described in detail in Chapgr It was originally published inYBS06 and an extended
version was invited for a journal publication iINBS07]. This material is closely related to, and was inspired by,
an earlier work RSY04, as explained in Sectio®.7.

1.3.2 Symbolically Computing Most-Precise Abstract Opertions for Shape Analysis

The automatic verification of programs with dynamic memadlgcation and pointer manipulation is a challenging
problem. In fact, due to dynamic memory allocation and desitre updates of pointer-valued fields, the program
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memory can be of arbitrary size and structure. This reqtiresbility to reason about a potentially unbounded

number of memory structures, even for programming langsititet have good capabilities for data abstraction.

Usually abstract-datatype operations are implementawusbps, procedure calls, and sequences of low-level
pointer manipulations; consequently, it is hard to prowa th data-structure invariant is reestablished once a
sequence of operations is finishétba73.

To tackle the verification problem of programs that manifgildynamically allocated memory, several ap-
proaches emerged in the last few years with different espregpowers and levels of automation, including
works based on abstract interpretatibA5F00, SRW02 RSW04 DOYO06, LYY05], logic-based reasoning@01,
Rey03, and automata-based techniqukS$93 MS01, BHPVOS.

Shape-analysis algorithms based on canonical abstrd@RWO07 are capable of establishing that certain
invariants hold for (imperative) programs that performtdestive updates on dynamically allocated storage. For
example, they have been used to establish that a prograerpessreeness properties, as well as that a program
satisfies certain correctness criteicARSWO0(. The TVLA system [AS0Q] automatically constructs shape-
analysis algorithms from a description of the operatioeahantics of a given programming language, and the
shape abstraction to be used. The methodology of absttacpirtation has been used to show that the shape-
analysis algorithms generated by TVLA a@und(conservative), but these algorithms do not necessanhpce
the most-precise results with respect to the given abgiract

To improve the precision of these algorithms, TVLA systerasuBocus and Coerce operations. The Focus
operation, also known as “partial concretization”, is a aatit reduction that is guided by user-specified formulas.
Writing useful Focus formulas is not trivial — it may requinaderstanding of the abstract domain and TVLA
system. The Coerce operation uses Kleene evaluation torpedemantic reduction. Kleene evaluation can
only recover very limited properties about the concrettestaThe motivation of the work described below is to
improve the precision, the scalability, and the automadioiVLA by employing a theorem prover.

Recall that the abstraction functienmaps a potentially infinite set of concrete states to the {ipecise)
abstract value for it. The concretization functipmmaps an abstract value to the set of concrete states that the
abstract value represents. ¥of03, YRSWO07, we introduce the symbolic operatigrwhich maps every abstract
valuea to a logical formula, called aharacteristic formulawhose meaning is exactly the sgi:).® That is, a
concrete state is representeddifand only if it satisfies the formuld(a). Specifically, [for03, YRSWO07, gives
an algorithm foy that characterizes canonical abstraction using firstrdodgc with transitive closure. Here, we
use they operation to develop algorithms for the following opera@n shape abstractions:

e Computing the most-precise abstract value that repretfem{potentially infinite) set of states defined by
a formula. We call this operatiah because it is a symbolic version of the algebraic operatidformally,
a(p) computesy([¢]) where[y] is the set of concrete states that satigfy

e Computing the most-precise abstract value for the set tdssthat are represented bynd satisfyp. We
call this operatiorussume[yp](a). Intuitively, assume[y](a) refines the abstract valueaccording top.
Formally, assume[p](a) computesy([¢] N vy(a)).

e Computingbest abstract transformefsr atomic program statements and conditioBE€F'9. The current
transformers in TVLA are conservative, but are not necédgdhe best. Moreover, transformers automat-
ically constructed by TVLA are often not precise enough fovving the properties of interest (require
user-specified Focus formulas). The algorithm we propaseretes the need for Focus and Coerce oper-
ations, thus improving the automation of TVLA.

Technically, if the concrete semantics of a statement isessged as the formutaover the input and output
states, and is the input abstract value, then computing the result obtés abstract transformer amounts
to computingassume|7](a), and projecting. Similarly, we can compute best transfosnfier loop-free
code fragments (i.e., blocks of atomic program statemerd<anditions).

In a similar way, we can compute the effect of a procedure galen the procedure’s specification, and
therefore perform modular shape analysis. This is perfapsnost exciting application of the method,
because it would permit TVLA to be applied to large programsising procedure specifications.

e Computing the most-precise overapproximation of the meésto abstract values. Such an operation pro-
vides a natural way of handling conditional statementstieumore, this operation is useful for combining

3As a convention, a name of an abstract operation marked withta (") denotes the corresponding symbolic operation.
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Operation Meaning Algorithm

ap) a(e]) See Sectio3.2
assumelp](a) a([el Ny(a)) a(e A7y(a))
Best transformer of anda | (« o [7] o v)(a) see Sectio.3
Meet ofa; andas a(y(ar) Ny(az)) | a(¥(ar) Ay(az))
Domain change froml to B | ap(ya(a)) ag(Fa(a))

Figure 1.3: Symbolic algorithms for most-precise abstoparations for shape analysis.

forward and backward shape analysis to establish tempaaépties, and when performing interprocedural
analysis in the Sharir and Pnueli functional styg&B1. An algorithm for computing an overapproximation
of the meet operation for canonical abstraction is desdribAMSS04.

Technically, the meet operation of abstract valugandas computesy(y(ai) Ny(az)).

e Computing the most-precise abstract value in the absteactth B for the set of concrete states represented
by the abstract value from some other abstract domaih This domain-change operation is useful in
modular analysis when different parts of the program aréyasd using different abstractions.

Technically, the domain change operation computgéy(a)), whereap and~4 denote the abstraction
and the concretization functions for the correspondingaiom

The core algorithm described in Secti8r2 implements thex operation. Figl.2b) depicts the idea behind
the algorithm. We us& to denote], i.e., the set of concrete states that satisfyl he algorithm works its way
down in the abstract domain, which on the left correspongsagressing from the outer oval towards the inner
region, labeledX. The algorithm repeatedly refines the intermediate alistedae by eliminating the ability to
represent concrete states that are naXin At every point, the intermediate abstract state is sourdabse it
always represents all the statesXof Therefore, even if the algorithm is stopped prematurély,intermediate
result can be used to check safety properties (unlike trarigtign described in Sectioh.3.7).

Properties of the Algorithm  Under certain conditions, detailed later, the algorithimdorces an abstract value
that represents the tightest set of concrete states thiioeX and expressible in the abstract domain. Of course,
because not all sets of concrete states are expressible ab#tract domain, the result may also represent states
outside ofX. Thea algorithm requires a theorem prover for the logic that isregpive enough to characterize the
canonical abstraction, as discussed in Sedi8m Even if a theorem prover call is not conclusive, our aldornt
will still produce an abstract value that represent a sgtesX, but we will lose the ability to guarantee that it
represents the tightest supersefaf

Using & and~ operations, we can implemeassumeand other operations, as shown in Fig3. The algo-
rithms are obtained from the meaning of the operations blacam the abstract operators with their symbolic
counterparts. It is straightforward to see the correctoédisese algorithms, assuming the correctness afid
a. The implementation of the best abstract transformergh#ii more involved due to the use of both input and
output states, and it is explained in greater detail in $a&i3.

In practice, using a direct algorithm fassume[p](a) is more efficient than implementing it &g A Y(a)),
because the direct algorithm can start the iterative psoésefinement from the value instead of T, thus
avoiding some of the refinement steps. Moreover, if we haveeatdhlgorithm forassumewe can also implement
a(p) asassumelp](T). Therefore, having an algorithm for eithassumeor @, we can implement all other
operations mentioned above. In Sect®Awe give direct algorithms for botlssume anda.

This material is described in detail in Chapter This chapter is largely based on the material originally
published in ¥RS04. In addition to the material published i'YRS04, AppendixB of this thesis contains a
formal proof of correctness of the algorithm.
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1.3.3 Comparison between the Algorithms

We summarize the similarities and the differences betwieervto algorithms described above. The first one is
described in Sectioh.3.1(details in ChapteR), and the second in Sectidn3.2(details in ChapteB).

e Both algorithms use a process of iterative refinement, eyimpdoa theorem prover in each step, but they
operate differently. The first algorithm works its way up #igstract domain, increasing the coverage of
X in each iteration. The second algorithm works its way dovenahstract domain, eliminating concrete
states that are not iX .

e For both algorithms, if all theorem prover calls are coneeisind the algorithm terminates, its result is the
same as the result of the most-precise abstract intergogtire given abstraction.

o If the first algorithm is stopped prematurely, then the rissalight be unsound (i.e., might miss errors) or
imprecise (i.e., might produce false alarms). For the sg@@gorithm, the intermediate results are always
sound, and thus they can be used for verification even if tyarigthm terminated prematurely, but we lose
the precision guarantees.

e For both algorithms, if a theorem prover or a model geneffaits, as discussed in Sectidn3.1, we can
use standard techniques to guarantee that the result wilbbed if the algorithm eventually terminates.
However, for the first algorithm, we lose the ability to guaese precision or termination (sometime both,
depending on the strategy that we use to recover from theéailf the model generator, see Sect2zoh.5.

For the second algorithm, we only lose the precision guastiut not termination.

e Both algorithms rely on a validity checker for certain foriams! In addition, the first algorithm requires a
model generator, while the second algorithm does not.

In practice, it is not clear whether this difference makessbcond algorithm easier to use than the first. On
one hand, it might be difficult to find a model generator, aitiepart of the theorem prover or as a separate
tool. Moreover, model generation might require a signifianount of time and resources. On the other

hand, model generation enables the use of concrete exe¢irbm fabricated states), which can reduce the

number of iterations of the algorithm and thus, the numbeotém prover and model generation calls.

e The first algorithm is applicable to any (possibly infinitéstract domain with a finite height. The second
algorithm is specialized for canonical abstracti®@RV03.4 However, the canonical abstraction, being
parametric, is applicable to many interesting problempairticular, reasoning about linked data-structures,
which is the main application of this thesis.

e Both algorithms can be used for modular analysis, becagseptovide a way to compute the effect of a
procedure call from a procedure’s specification.

1.3.4 The Role of a Theorem Prover

The success of the algorithms described above depends mglzevautomatic tool that can check validity of cer-
tain formulas and generate concrete counterexamplesvalidformulas. Technically, there are off-the-shelf au-
tomatic theorem provers that can be used, e.g., SPA®H, [Vampire [RV01], Simplify [DNS03, Zap [BLMO5],
Darwin [BFT05. Unfortunately, most such theorem provers do not prodeceete counterexamples for invalid
formulas (with the exception of DarwiBFT05]). Instead, a separate tool for model generation can be(esgd
Paradox CS03).

The following difficulties arise when using theorem provansl model generators:

e The theorem prover might fail to prove validity of a (validyfula (e.g., Simplify DNS03 might return

“invalid” for a valid formula with quantifiers).

e The theorem prover might timeout without a conclusive amstecause it exceeds the time or the amount

of resources allocated for it.

e The model generator might fail to produce a counterexanapie,(because the formulais, in fact, valid, but

the theorem prover failed to prove its validity, or even witesformula is invalid).

For certain abstractions, the queries posed by our algosittan be expressed in a decidable logic, which
guarantees a (terminating) decision procedure. In pgaidecision procedure might also fail to give a conclusive
answer within a reasonable amount of time. Even if the thaqnever or the model generator fail for one of the
reasons above, our algorithm can use standard techniquestantee that the result is sound, while losing the
ability to guarantee precision or termination.

4Extending the second algorithm beyond canonical abstraétia subject of an ongoing work.
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The algorithms spend a significant amount of time in checkialgdity and model generation. Moreover,
failure of these tasks for one of the reasons above mighesdoss of precision or termination guarantees. The
choice of a theorem prover and the model generator depentieajueries posed by the algorithms, which can
include the following components:

e user-provided procedure specifications and assertions,

e characterization of abstract domain (vi@peration),

e strongest postconditions
Therefore, it is crucial to choose a theorem prover and a hgeteerator that match the expressive power of the
abstraction, the properties of interest, and the semaotibasic program statements. For our main application,
namely shape analysis, it boils down to expressing pragseofilinked data-structures, that often involve reasoning
about reachability between elements of a data-structune.pfoblem is that automatic theorem provers usually
do not support reachability.

A natural formalism to specify properties involving reabhigy is the first-order logic over graph structures
with transitive closure. Unfortunately, even simple detié fragments of first-order logic become undecidable
when transitive closure is adde@IME99, IRRT044. While first-order logic is also undecidable, there are ynan
automatic theorem provers that can be useful for certaiblpnos.

One approach to handling reachability is to harness egigi@orem provers for first-order logic. By providing
sufficient axiomatizationlJAIR 05|, we can, in some cases, automatically prove propertigsitialve the
(absence) of reachability. However, in general, there ctlo@a complete, recursively-enumerable axiomatization
of transitive closureAvr03, LAIR +05)].

We take an alternative approach, and develop a formalist{iji@n express relevant properties (invariants)
of various kinds of linked data-structures, including temgd violations of data-structure invariants, and (ii) has
the closure and decidability features needed for automasefication. The aim of the work described in the next
section is to study such a formalism based on logics ovetrarigraph structures, and to find a balance between
expressiveness, decidability and complexity.

1.3.5 The Logic of Reachable Patterns

Reachability is a crucial notion for reasoning about linkata-structures. For instance, to establish that a memory
configuration contains no garbage elements, we must shavetieay element is reachable from at least one
program variable. Other examples of properties that canaberally modeled using reachability are (1) data-
structure invariants, e.g., the tail of a queue is reachfbta the head of the queue, (2) the acyclicity of data-
structure fragments, i.e., every element reachable fralemcannot reach, (3) the property that a data-structure
traversal terminates, e.g., there is a path from a node ttkagide of the data-structure, (4) the property that, for
programs with procedure calls when references are passed@asents, elements that aret reachable from an
actual parameter are not modified.

In this work, we propose a logic that can be seen as a fragniéme dirst-order logic with transitive closure.
Our logic (1) is simple and natural to use, (2) is expressiaugh to cover important properties of a wide class of
arbitrary linked data-structures, and (3) allows for altjmnic modular verification using programmer-specified
loop-invariants, preconditions, and postconditions.

Alternatively, our logic can be seen as a propositionaldogith atomic propositions (called reachability
constraints) modelling reachability between heap objecisted-to by program variables and other heap objects
with certain properties. The properties are specified usattgrnsthat limit the neighborhood of an object.

For example, we can specify the property that an ohjéxzan element of a doubly-linked list using the pattern
invyp, defined by(v /. w) = (w_bv). This pattern says that if has an emanating forward pointgthat leads
to an objectw, thenw has a backward pointérinto v. Using the patterinv¢;, we can describe a doubly-linked
list pointed-to by a program variable by the atomic proposition:[i)*]z‘nvf_,b in our logic. This reachability
constraint says that any objecteachable from an object pointed-to bysing a (possibly empty) sequence of
forward pointers satisfies the propeity ;.5

The design of our logic is guided by the following principl€srst, reachability constraints are closed formu-
las without quantifier alternations. This guarantees tteatve dealing with alternation-free formulas. Second,
reachability is expressed via the Kleene star operator. #lieve that regular expressions yield a more user-

5This and other examples are explained in detail in Seeti8r2
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friendly notation than the transitive closure operatorirdhdecidability is obtained by syntactically restrigin

the way patterns are formed. In particular, the use of egyualiimited. Semantically, the restriction means that

a pattern cannot relate two nodes that are distant from oothar unless these nodes are “named”. As a result, a
pattern can only describe local properties. Global pragedan only be described using reachability along reg-
ular paths that start from “named” nodes. Therefore, cormpteperties can be enforced only between “named”
nodes. For example, complex sharing patterns can be craedadd objects pointed-to by program variables;
arbitrary sharing is allowed but cannot be enforced deepérdata-structure, because the objects that are deep
are indistinguishable and distant nodes cannot be relgtadlattern.

The contributions of this work can be summarized as follows:

e We define the logi€, where reachability constraints such as those mentionegtatam be used. Patterns
in such constraints are defined by (restricted) quantifeg-first-order formulas over graph structures and
sets of access paths are defined by regular expressions.

e We show thatZ, has a finite-model property, i.e., every satisfiable forniaa a finite model. Therefore,
invalid formulas are always falsified by a finite graph stumet

e \We prove that the logi€, is undecidable.

e We define restrictions on the patterns which lead to a fragwfefy, called ;.

e We prove that the satisfiability and validity problems@fformulas are decidable. The fragméhtis the
main technical result of this work and the decidability grionon-trivial. The main idea is to show that
every satisfiabl&€, formulais also satisfied by a tree-like graph. Thus, evengh@; expresses properties
of arbitrary data-structures, the syntax of the logic istét enough to ensure that a formula that is satisfied
on an arbitrary graph is also satisfied on a tree-like graperéfore, it is possible to answer satisfiability
(and validity) queries foiZ; using a decision procedure for weak monadic second-ord&QMogic on
trees.

e We show that despite the restriction on patterns we intredihe logicZ, is still expressive enough for use
in program verification: various important data-structjr@nd loop invariants concerning their manipula-
tion, are in fact definable if;.

e We show that the proof of decidability df; holds “as is” for many useful extensions 6f.

We defineThe Logic of Reachable Patter(isRP for short) to be one of the decidable extension£ of(see
Section4.8 for details). For instance, in contrast to decidable logfia restrict the graphs of interest (such as
weak monadic second-order logic on trees), our logic allarkétrary graphs with an arbitrary number of fields.
We show that this is very useful even for verifying prograhet imanipulate singly-linked lists in order to express
postconditions and loop invariants that relate the inpdtthe output state.

Our logic is expressive enough to encode many interestitaystaucture invariants and loop invariants. Note
that loop invariants often describe more complex strusttinan those satisfying data-structure invariants. The
reason is that loop invariants also capture intermediatesbf high-level operations, in which the data-structure
invariant may be violated. The ability to express loop iiear is important to reestablish the data-structure
invariant after a sequence of low-level mutations that teraply violate the data-structure invariant.

By restricting the syntax, we guarantee that queries pogedavbitrary graphs can be answered by consider-
ing only tree-like graphs. This approach allows us to auterttee reasoning about limited but interesting proper-
ties of arbitrary graphs. Moreover, our logic strictly geadzes the decidable logic iBRS99, which inspired our
work. Therefore, it can be shown that certain heap abstregincluding Hen9Q SRW98 MYRSO05, LAIS06]
can be expressed usihiPformulas.

This material is described in detail in Chap#erThe main technical result is the proof of decidability®f.
Part of this material was originally published MRS*06], and an extended version of RST06] was invited for
a journal publication and appeared ¥RS™07]. In addition to the material already published ¥HS07], Sec-
tion 4.7.20f this thesis contains a proof of the upper bound on the cexitglof the validity problem foL.RP.

The methods presented in Chapt2i@nd3 use abstraction and automatically infer loop invarianmsChap-
ter 4, we motivate the design of a new logicRP, using examples of classical verification with user-predd
loop invariants. In addition, we show (in SectidiB.9 that LRP is expressive enough to characterize, ¥ja
certain shape abstractions. Theref@f®P can also be used with the algorithms described in Chaptansi3 for
inferring loop invariants that involve properties of linkdata-structures.



Chapter 2

Combining Concrete Execution,
Abstraction, and Theorem Proving

In this chapter, we present a method for static program arsatiiat leverages tests and concrete program ex-
ecutions. State abstractions generalize the set of prograi®s obtained from concrete executions. A theorem
prover then checks that the generalized set of concretsstavers all potential executions and satisfies additional
safety properties. Our method finds the same potentialssa®the most-precise abstract interprefier a given
abstraction and is potentially more efficient. Our methodesahe process of designing new program analyses
easier and more automatic, because we do not require alistragformers. Additionally, it provides a new way
to tune the performance of the analysis by alternating batveencrete execution and theorem proving.

To evaluate the feasibility of our technique, we have imm@ated two prototypes: the first prototype is based
on the XRT model checker infrastructure as its platform asekipredicate abstraction; the second prototype is
based on the TVLA system as its platform and uses canonisaicaion.

The material described in this chapter, was originally giiad in [YBS0§ and an extended versiolfBS0g
was invited for a journal publication i'YBS07]. This material is closely related to, and was inspired bygarlier
work [RSY04, as explained in Sectio?.7.

2.1 Introduction

Recently, there has been much interest in combining dynanmdcstatic methods for analyzing prograrN&D2
GKS05 CS05 PPV05 GHK'06]. Dynamic analysis (or testing) is based on concrete praogrgecutions and
underapproximatethe set of program behaviors. That isAf denotes the set of all behaviors of a progrBm
then dynamic analysis explores a finite subseBpf Static analysis is based on an abstract interpreta@Qv[]

of program behavior and typicallgverapproximateshe set of program behaviors. That is, static analysis has
the effect of analyzing a supersetBf-, which may includénfeasiblebehaviors that cannot be exhibited by the
program.

The pros and cons of the two techniques are clear. If dynanglysis detects an error then the error is real.
However, dynamic analysis cannot provide a proof of the atxsef errors. On the other hand, if static analysis
does not find an error (of a particular kind) in the supersét pfthen Bp clearly cannot contain an error (of that
same kind). However, if static analysis detects an erranay be a false error as the behavior that induces the
error may lie outsidé3p.

We show how to perform static analysis using a novel comhnaif dynamic analysis, abstraction, and an
automated theorem prover. Our technique is oriented tawfarding a proof rather than detecting real errors. As
a result, it has the pros and cons of a static analysis, betdges dynamic analysis as its execution vehicle.

Our method uses state abstractions to generalize the seb@rfgm states gathered by monitoring concrete
executions of a prograrf?. An automated theorem prover is used to check that the gereataet of concrete

1we use the term “most-precise abstract interpreter” tor riefehe abstract interpreter that uses the best abstraxtforaners for all
(intraprocedural) statements and does not use widening.

11
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foo(int x, int y) {
int »px = NULL;

A x =x + 1;

B: if (x<4)

C px = &X;

D if (px==&y)

E: X = X+1;

F: if (x<b)

G *pPX = *px+1;
H return;

Figure 2.1: The procedufeno contains a null pointer dereference error at lhe

states covers all potential executionsdfessentially the séBp) and satisfies additional safety properties. If this
check succeeds, we have a proof that all executions of thgrgmmosatisfy the given properties.

However, if this check fails, our technique creatéalaricatedconcrete state from which we continue concrete
program execution. We use a model generator (a theoremmttatecan produce concrete counterexamples) to
create fabricated states that increase the coverage. Yooy standard assumptions (detailed later) our method
is guaranteed to converge and obtain the same result asdasdaabstract interpretation of the program In
particular, our method produces the same amount of falsmalas a standard abstract interpretation (over the
same abstract domain). It is noteworthy that we can makegtiisantee even if we prematurely halt concrete
execution in order to perform the coverage check. In this, weycan control the amount of time spent executing
the program vs. the amount of time spent calling the theonewvep.

Additionally, we show in Sectio.6that our method can find safety proofs with much simpler albstins
than those used by other methodl¥'92, PPV03 which combine concrete execution, abstraction and threore
proving.

Finally, this method explains the result of abstract intetgtion in terms of concrete executions and abstrac-
tion. This sheds some light on the trade-offs that arise vdoembining dynamic and static analyses.

We implemented our method in two platforms: the XRT syst&i$03 for generating unit tests and the
TVLA system [LASOQ] for performing shape analyses. The former prototype, dhasepredicate abstraction,
employs the Simplify theorem provedNS03 and a naive model generator. The XRT implementation stippo
all C# features including pointers and procedures. Therlgttototype, based on canonical abstraction, employs
the Paradox model findeC[S03 and a naive theorem prover (based on “coer&R\|V07). The prototypes
demonstrate the feasibility of our approach for two différabstractions, but not yet engineered to perform
modular program analysis.

The remainder of this chapter is organized as follows. Be&i2 illustrates the method using a simple ex-
ample. Sectior2.3formalizes our method using the terminology of abstra@rimtetation. Sectio8.4 discusses
some of the practical issues that arise when implementmgldorithm. Sectio2.5describes the two prototype
implementations: one based on the XRT infrastructure, axecbased on the TVLA system. Secti1® demon-
strates, using the example of Bakery mutual exclusion pmdtéhat our method avoids unnecessary refinements,
compared to other methods that combine dynamic and stadlgsis. Sectior.7further compares our approach
to related work. Finally, AppendiA reviews standard definitions, and contains the proofs dhatbrems from
Section2.3

2.2 Example

We now illustrate our basic method using a simple examplewshn Fig.2.1 The proceduré 0o, written in

C syntax, contains a null pointer dereference error at@nA concrete state of this procedure is described by a
quadruplgpc, i, 7, ptr), wherepc is the value of the program counter ranging over the lahel$ i and; are the
integer values of variablesandy, andptr is the value opx of type integer pointer. In the rest of this example,
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we abuse the notations slightly and ust refer to the program variable and to its value. Similadsy:sf.

To simplify the exposition, we assume tlaio can be called with any integer values for the varialesd
y, which defines the set of all possible initial states.

Whenf oo is called withz = 3, the value ofpx is NULL on the left-hand side of the assignment statement at
label G causing a null pointer dereference@tNote that the conditional at labBlalways evaluates to false, so
the assignment statement at lages dead code.

We use the following abstraction function: for every setaficrete stateX’,

a(X) = {(pc,x < 5,pr = NULL) | (pc,z,y,pzr) € X}

Here, a concrete program state is mapped to a triple of védueise following expressions: the program counter
pe (ranging over eight labels), the predicéte< 5) and the predicatépz = NULL). A predicate evaluates to
true () or false (f). For a singleton sef’, we abuse the notations slightly by writindpc, =, y, px) instead of
a({(pe, .y, px)}).

The abstract state space is finite, and it consistsdf x 2 = 32 possible triples. The reachable abstract states
are shown in Fig2.2(a). Our method does not construct these abstract statesehahd. Instead, we execute the
procedure on a set of tests and compute, usinthe abstraction of the concrete states encountered digstg
executions.

Now consider executinigoo( 2, 0) ,f oo( 6, 0) ,f oo( 11, 0) , thatdefine thetestsét= {(A4,2,0, NULL),
(A,6,0,NULL), (A,11,0,NULL)}. The test sef’ does not uncover the null-pointer dereference in the pro-
gram. The abstract states covered by the executidh, afenoted byAr, are marked in Fig2.2(a) with bold-
circles. Note that the error abstract stet& ¢, ¢) is not in Ap.

2.2.1 Example of Finding a Bug

Next, we check whether the test gétis adequate under. That is, is the set of covered abstract statesan
invariant? This check fails, because there is a concrete lstuch thatn({b}) = (B, t,t), a covered abstract
state, from which in one step of the program it is possible#azh a concrete stafesuch thaw({d}) = (D, ¢, 1),

an uncovered abstract state. Using a model generator, dhoth&bricates such a pair of concrete states, say
b= (B,4,0, NULL)andd = (D, 4,0, NULL). Execution from staté leads to a null pointer dereference error
at labelG as shown in Fig2.2(a). Thus, our analysis reports a potential error. In thiedhe program contains a
real error, because the states a reachable concrete state (reachable from the iniitgd(&t, 3,0, NULL)).

2.2.2 Example of Finding a Proof

Now, let us consider what our technique does on a versionefbove procedure obtained by modifying the
conditional at labeB from (z < 4) to (x < 5), which eliminates the null pointer dereference. Let us tl
new versiorf i xed_f 00. The abstract state spacefafxed_f oo, obtained using the abstraction functieras
before, is shown in Fig2.2(b).

Again, the set of covered abstract states is not an invadiamarticular, there is a concrete stdtesuch that
a({d'}) = (D,t, f) from which in one step of the program it is possible to reaclomcrete state’ such that
a({e'}) = (E,t, f), an uncovered abstract state. A pair that satisfies thistreanisisd’ = (D, 4,0, &y) and
e = (E,4,0,&y). Note that neither of these states is a reachable concegés at the address of the variaple
is never assigned to the variable in the program, and thus the laliels not reachable. However, in the abstract
state space, the labElis reachable whenever the predicgie = NULL) is false at labeD.

Concrete execution from the statecovers the additional abstract stat€g, ¢, f), (F, f, ), and(H, f, f).

At this point, our method shows that the set of covered atisttates is an invariant. This implies that the abstract
states represent all reachable concrete statesxéd_f 00. Since these abstract states do not contain the error
state(G, ¢, t), we have found a proof that there cannot be any null pointexfdeence at labés, in any execution

of the proceduréi xed_f oo.

Interestingly,(H, f, f) represents some reachable concrete states, i.e., thets axiest input (not in our
test set) that cover&d, f, f). However, finding such an input is a non-trivial task, beeatsscover(H, f, f)
fi xed_f oo must be called with precisely = 3 as an argument (and any valueyf Random or symbolic
path-exploration techniques can be used to address thkeprolbut we avoid this problem using fabrication. The
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fixed_foo(6,0)
fixed_fpo(Z,O) fixed_fqo(ll,O)

foo(6,0)
foo(=2,0) foo(}l,O)

foo(3,0)

(@) (b) (©

Figure 2.2: Reachable abstract states for (a) finding a wiriter dereference ihoo usinga(pc, z,y, px) = (pc,z < 5,pxr = NULL); (b) finding a proof for
fixed_f oo usinga(pe, z,y,pxr) = (pc,x < 5,pr = NULL); (c) finding a false error ifi i xed_f 0o usingd/(pe, x,y, px) = (pe,z < 10,pxr = NULL).
Abstract states covered by the set of t&5ts {(A,2,0, NULL), (A,6,0, NULL), (A,11,0, NULL)} are marked with bold-circles.
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abstract stateH, f, f) is covered by a test execution that starts from the fabrdcstigted’. 1t shows that we can
benefit from fabricated states to discover abstract sthtgste reachable via rare executions.

Moreover, execution of’ covers the abstract state, f, f), which does not represent any reachable concrete
state (although the statement at labé$ reachable). Fortunately, all executions from this arststate are safe.
That s, the current abstraction shows the absence of émratkfeasible executions as well as in some infeasible
executions. This shows the strength of our method: we olatginoof using a much coarser abstraction than
the existing method$9PV05 Bal04] that are based only on feasible executions. In this exantipése methods
would unnecessarily refine the abstraction, even thoughuhent abstraction is sufficient to prove the absence
of null pointer dereferences (and our method obtains a jproof

2.2.3 Example of Finding a False Error

Now, let us show an abstraction function that is not precissugh to prove the correctness of the (corrected)
programf i xed_f oo above. Suppose our abstraction function is:

o/ (C) = {(pe,x < 10,px = NULL) | (pc,z,y,px) € C}

In this case, the abstraction function cannot precisebktthe relationship between the valueaond the pred-
icate (px = NULL) in the program. Fig2.2(c) shows the reachable abstract states for this new atistrac
function.

Using a theorem prover and a model generator, we find a censtatef’ such thate/({f'}) = (F,t,t)
from which in one step of the program it is possible to reachreceete statg such that'({¢'}) = (G, t,t), an
uncovered abstract state. A pair that satisfies this canstsgf’ = (F,4,0, NULL) andg’ = (G,4,0, NULL).
Note thatf’ is not a reachable concrete state. Running the program ftate £ will cause a null pointer
dereference to occur at lab@l At this point, our analysis reports a potential error. Taise error would also be
reported by an abstract interpreter using the abstraatioctiona’.

Our analysis does not distinguish between a false error asi¢his one, and a real error such as the one in
Section2.2.1 Both are reported gsotentialerrors. In particular, our method might not discover the imgut
(A,3,0, NULL) mentioned in Sectio@.2.1

2.3 Formal Description

This section formalizes our method and compares it to thditipaal static analysis by abstract interpretation.
Section2.3.1quickly reviews relevant terminology about abstract iptetation. Sectior2.3.2presents an ide-
alized version of our method and discusses its basic pliepeit does not provide an effective algorithm, as it
uses an incomputable operation. Secfiah3discusses how to realize the method as a symbolic algorithichw
employs a theorem prover and a model generator.

2.3.1 Abstraction and Concretization

Let C be a set of concrete states of progr&n(not necessarily reachable). Ldtbe a set of abstract values (not
necessarily reachable).

In abstract interpretation, we usually assume thdbrms a lattice, with partial order, meetr and joinL
operations (see Appendi1). In the previous section, we used a powerset lattice, irthvbih element (abstract
value) is a set of abstract states, ordered by set inclysjoneet is set-intersectian, and join is set-union.

An abstraction function o: 2¢ — A yields an abstract value that represents a set of concitesstA
concretization function v: A — 2€ yields a set of concrete states that an abstract value exyisesThe partial
order onA satisfies for alk, o’ € A,

aCad = v(a) Cyd). (2.2)

The concretization and the abstraction functions for@adois connectionbetween2¢ and 4, i.e., for all
ac AandX CC:
(X)Ca <= X C~(a) (2.2)
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[ 1] procedur e basi c(To)

[2] a:= L
[3] T :="1To
[4] while(true) begin

[ 5] C = Execute(f,T)
[ 6] a:= ala(C)

[7] if exists o€ f(y(a)) s.t. o¢~(a)
[8] then T : = {o}

[9] else return a

[10] end

Figure 2.3: The basic procedure. He®e, 7,C C C, anda € A. If o(Ty) = «(I), then the result of the
procedure is a sound approximation/of

This implies thatX C ~(«a(X)) anda(y(a)) C a. That is, abstraction followed by concretization potdiytia
yields more states, and concretization followed by absStragotentially yields a more precise abstract value.
Also, it follows from (2.2) thata uniquely determines.

Given an abstraction functioa, it is easy to define the corresponding concretization fancty(a) =
{¢ | a({c}) C a}. For example, using the abstraction functiehfrom Section2.2.3 v({(G, f,t)}) =
{(G,z,y, NULL) | x > 10}. Note that the set({(G, f,t)}) is infinite and the values af are not restricted.

To simplify the presentation, we assume that an abstragéeval4 collectively describes states at all program
points, rather than having a separate abstract value for@agram counter. This can be achieved by encoding
the program counter in the representation of a concretetais we did in the previous section.

The programP defines a transition relation on concrete states: C x C. Foro, o’ € C, we say that’ is a
successor of if ¢ —p o’. Intuitively, o’ is a result of executing a single statemenfih the stater. We define
the functionfp: 2¢ — 2¢ as follows:

fp(X)={o"|oc—po,ce X}U{X}

Note thatfp is monotone and extensive (i.&,C fp(X)). We drop the subscrigf when it is understood from
the context. The set of concrete states reachable om C is the least fixed point of w.r.t. X, denoted by
LFPox (f).

Let I C C be the set of all possible initial states of a progrBmThe meaning of the program is the set of
all concrete states reachable from some initial state:44P).

An abstract value € 4 is asoundoverapproximation oP if a represents all concrete states reachable from
I (but possibly other states):

LFPor(f) € v(a). (2.3)
An abstract value € A isinvariant under P if
f(v(a)) € ~v(a) (2.4)

Theorem 2.3.1 (Soundnesdyf an abstract valueé € A is invariant underP and I C ~(b) thenb is a sound
overapproximation of.

2.3.2 Basic Procedure

Fig. 2.3shows a high-level description of our method. Implemeatatietails are discussed in the next sections.
We assume that the basic procedure is called with a finit€setinitial states {, C ), such thatv(Tp) = «(I).

Line [ 5] corresponds to thExecutestep, described in Sectidn3.1 Formally, Execute(f,T) returns a
finite subset of the states reachable fromsing f that contains at least the statedin

Ezxecute(f,T) C LFPor(f) andT C Execute(f,T). (2.5)

Note that it is not necessary (and sometimes impossible)lteat all states reachable froff In particular, this
step allows us to handle non-terminating executions or l@rg running executions. We require tliatecut e
terminates (and can always guarantee it, for example udiingeaut).
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In line [ 6] the abstraction of the obtained concrete states is compusied «. This corresponds to the
Abstractstep described in Sectidn3.1 The procedure terminates when it is not possible to fatwiasstater
that satisfies the condition in lirfe7] , i.e.,a is invariant underP. This implies that: is a sound approximation
of the reachable states 6f(by Theoren?.3.1).

Furthermore, the procedure computes the same abstraet faali? as is computed by the most-precise ab-
stract interpreter for the given abstraction, as statedheydllowing theorem:

Theorem 2.3.2Let f%: A — A be defined by = a o f o y. The procedure in Fig2.3computes the least fixed
point of f w.rt. a(I): LFP o1y (f7).

The particular choice of a fabricated concrete state in[life does not affect the final result of the procedure,
but it may affect the number of iterations needed to find tisalteas explained below.

Let S, be the set of all possible fabricated states for an abstedigew, i.e., the set of statesthat satisfy the
conditionin line[ 7] :

Sa = {0 |0 € f(y(a),o & y(a)}

Inline [ 8], a single fabricated state is chosen frém It is easy to modify the procedure to work with several
fabricated states together in the same iteration. Thatagzam choos@’ to be any finite non-empty subset.gf.
We cannot use the entire s€f because it may be infinite. Using several fabricated stdtea@ may increase
coverage more than with a single state, but it might incré@seost of concrete execution. More importantly, it
might be costly to fabricate states (see Sec#ighj.

Because fabricated states are not covered by the absthaeswallected so far, the coverage strictly increases
in successive iterations.

Theorem 2.3.3If the lattice.A has a finite height, the procedure in Fig.3terminates.

Remark. If the lattice.4 admits infinite ascending chains (e.g., polyhe@HT8), it is possible to use standard
wideningtechniques to enforce and accelerate termination of owgghare, sacrificing the precision of its result.
Lety: A x A — A denote the widening operator of (see AppendipA.1). We replace lind 6] with a : =

a 57 o(C). The resulta of the procedure satisfies LIjB(I)(f“) C a, but the resultz may be less precise than

LFPa() (f9).

Choosing Fabricated States

Choosing any state ifi, strictly increases the coverage, but some states increasmverage more than others.
Intuitively, we would like to choose a fabricated state tt@aters as many new abstract states as possible, “jump-
ing” higher in the abstract lattice. A good choice of fabtézhstates reduces the number of the iterations of the
procedure, and thus, the number of calls to a theorem proneaanodel generator.

Example 2.3.4 Consider the following code fragment:

whi | e(x < 1000) {
A if (x %2 == 0)

B: X += 2;
el se
C. X += 1;
}

The abstraction function is(C) = {(pc, z > 0)|(pc, z, . ..) € C'}. Suppose that the current abstract value is
a = {(pc = A,t)}. If we choose a fabricated state at program paihtvith an even value of, we cannot cover
abstract states withhc = C. If we choose a fabricated state with an odd value ofve cover botlpe = B and
pc = C with an execution from the same fabricated state.

Formally, we define a partial order on fabricated stateseVeryo, o’ € S,,, the stater covers more abstract
states thaw’, denoted by’ < o, when

a U a(Ezecute(f,{c})) C a U a(Ezecute(f,{c'}))
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A finite set of fabricated stateS??* C S, is optimal with respect toa if a U a(Execute(f,SP)) = a U
a(Execute(f,S,)), and for allo, o’ € S, o A o’ ando’ £ 0.

If the abstract domain has a finite height, then there exiitsta setS2"* as above. It is not clear how to find
an optimal set of fabricated states, or how to approximaenttbecause this condition is non-local. Heuristics
for choosing fabricated states are out of scope of this work.

2.3.3 Symbolic Procedure

For all abstractions we are aware of, the functiois efficiently computable given a finite set of concrete State
represented explicitly. Note that applyingn line [ 6] does not require the use of a theorem prover.

Nonetheless, as mentioned before, the procedure inZZgdoes not provide an effective algorithm. In
particular, they operation used in ling 7] is not computable, as(a) may be infinite. We now show how to
implement ling 7] symbolically, using a theorem prover and a model generator.

Symbolic Characterization Concrete program states can be represented as logicaius&sic(e.g., constant
symbols model program variables). Thus, sets of concratesstan be described by logical formulas in some
logic L (e.g., first-order logic). The concretization functipoan be expressed symbolically, i.e., for every A,
there exists a formula ig, denoted byy(a), that exactly represenis for all o € C,

o E7(a) ifand only if o € v(a) (2.6)

In the example from SectioR.2 with abstraction functiomy, 7 can be expressed as a quantifier-free first-
order formula, interpreted over integers. The constant®fsx andy model the values of the corresponding
program variables. The constant symbdisH model each of the program points, and an additional constant
symbolpc models the program countérSimilarly, the value of the expressign: = NULL can be encoded
with a corresponding pair of constant symbols. For instafi¢§(G, f,t)}) is the formula(pc = G) A =(x <
5)A (pxr = NULL).

Meaning of Program Statements The meaning of a program can be expressed as a formula traresfo
SP: Prog x L — L, which defines the strongest postconditi@ij76]: for every programP € Prog and
aformulap € £, a concrete state’ satisfiesSP (P, ¢) if and only if there exists a concrete statesuch thav’
is a successor state ofin P ando satisfiesy. Intuitively, SP describes the result of executing a single basic
statement o on a state that satisfies For exampleSP(x = x + 1,z > 5)is the formulax > 6.

We can also us& P that describes the result of executing an entire loop-fosedragment, instead of a
single basic statement. Note that we do not 8gefor loops, because our method automatically computes loop
invariants.

Symbolically Checking for Invariance Using they andSP operations, we can symbolically express the fact
that abstract value € A is an invariant:
SP(P,5(a)) = 7(a) (2.7)

The formula 2.7) is valid if and only ifa is an invariang

Given a programP and an abstract valug our method can automatically generate the formula2if)(
Moreover, it can check the validity o2(7) automatically using a theorem prover 0r If the validity check fails,
then a model generator can be used to fabricate a state tisfiesg (a) and has a successor that does not satisfy
~(a). Formally, the fabricated state satisfies the negatio2 aj:(

SP(P,7(a)) A —7(a) (2.8)

For example, in SectioR.2.1 if a is {(B, t,t)}, then the formulg(a) is (pc = BAx < 5 A px = NULL).
The strongest postcondition of this formula and the statgine (x < 4) atlabelBis the formulasp = (pc =
CAhNx <4ANpr=NULL)V (pc = DNz =4Apr = NULL). When checking validity okp = 5(a),

2 Not every interpretation of these constants is legal; te niit illegal interpretations gfc, the following axiom can be usegic =
AVpc=BV...Vpc=H.
SAlternatively, a formula based on the weakest (liberalpralition can be usedi(a) = WP(P,7(a)).
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we consider only standard interpretations of integers atedions over integers. Clearlyp = 5(a) is not valid
(even in the standard interpretation). This allows us toifalte a state, say = (D, 4,0, NULL), such that
dE=spAN—=(pc=BANx <5Apr=NULL).

Symbolically Checking Safety Properties In our setting, the safety properties of interest also caexpeessed
by a formulap € L. For example, in Sectiol.2the safety property can be expressed by the forrqalff?éﬂ(pc =
G Apx=NULL).

If « € Ais a sound approximation d?, and the formulay(a) = ¢ is valid, then all reachable concrete
states ofP satisfy the safety properties In Section2.2.2 our method obtains a set of abstract statés which
~(a) = @ is valid. In Section2.2.3 one of the abstract states covered by our methddis, ¢), for which
(pc =GNz <10Apx = NULL) = ~(pc = GApx = NULL)is not valid, and our method reports a potential
error.

In practice, there are automatic tools for checking validihd generating models (even if the lodicis
undecidable), which have certain limitations, as discdigs¢he next section.

2.4 Towards a Realistic Implementation

In this section, we discuss some of the practical issuesattiseé when implementing the symbolic algorithm
described in SectioR.3

2.4.1 Program Analysis Infrastructure

Our method requires an infrastructure that supports: (I)itaong of concrete program states in concrete exe-
cutions to compute abstract state coverage; (2) symbodicigion of loop-free code fragments to compdfe;
(3) state manipulation to create fabricated states.

Explicit-state model checkers such as SAHID3], CMC [MPC*+02], JavaPathFindeMHB T 03], XRT [GTS04,
which perform systematic and exhaustive testing, provigead starting point (though not all support symbolic
execution). A model checker analyzes several executiotifeegirogram at once, and controls the order in which
these concrete executions advance (e.g., DFS, BFS). A ncbéeker usually manipulates a representation of
concrete states, which comes in handy for fabrication aéstaDur implementation uses XRT (see SecH#dn)).

2.4.2 Cutpoints

Section2.3simplifies the discussion by encoding the program countdrarabstract value. This encoding allows
us to keep abstract states for each program point. In pegadtiis not necessary to track all program points. We
can choose a designated set of program points, callgzbints where the abstraction is computed.

The runtime overhead of computing abstract state coveragyedses when there are fewer cutpoints. Further-
more, having fewer cutpoints potentially improves the jgiea of our method, as the abstraction of a composition
of two statements is at least as precise as a compositioriofahstractions.

As in deductive verification, a minimal set of cutpoints issd\which cuts every cycle in a program’s control
flow graph Flo67).

The check that an abstract value is an invariant is adapteordiog to the set of cutpoints: the strongest
postcondition formulas§P in (2.7) describe the result of executing a sequence of statenrentsoine cutpoint to
the next (and not a single statement, as before). Note thi@issare fabricated only at cutpoints.

2.4.3 On-the-fly Abstraction

We previously presented execution and abstraction as &epsteps (lind 5] and line[ 6] of Fig. 2.3). In
practice, abstraction can be computedthe flyduring program execution. The idea is to monitor the execuiti
when a cutpoint is reached, we pause the execution to contipaibstraction of the current state, conjoin the
resulting abstract value with the abstract value collesteéar, and continue the execution. This way, concrete
states encountered during program execution need not telgtinly abstract values need to be stored).
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2.4.4 Interprocedural Analysis

The simplest way to handle procedure calls in program aisalyby inlining the code of the procedure at the call
site. Similarly, we can check invariants of programs witbgadure calls by inlining the code of the procedure and
using strongest postconditions as before. Alternatiwedycan use procedure’s specification to create a formula
whose validity implies that the abstract value obtainedssasfan invariant. This allows us to check invariants in
a modular way, and therefore enables modular program asalth user-provided specifications.

2.4.5 Employing a Theorem Prover

The success of our method depends on having a theorem prbiar @an check validity of formulas fron2(7),

and a model generator which can generate concrete couatepdss to validity of these formulas, as discussed
in Section1.3.4 If a theorem prover or a model generator fails, we cannotaniae that our algorithm produces
the most-precise results with respect to the given abs&radtiowever, we can guarantee that our algorithm, if it
terminates, produces a sound result even when some theooeer palls failed when checking that the abstract
value is an invariant. First, our method attempts to falbeiGastate that satisfie®.8). If model generation
succeeds, the analysis continues as before (without Igsgjsion guarantees). Failure of the model generator
to fabricate a state can be handled as follows:

e Fabricate a state a state outside @f). This guarantees that the coverage increases in eaclteratd the
analysis eventually terminates, but it might fail to proeldice most-precise result (because the fabricated
state may not have a predecessor in any covered state).

e Fabricate some concrete state, say using a random geneatdficing both termination of the analysis
and its precision. However, if the analysis terminategeissilt still is sound.

e Use the hybrid approach which combines concrete executidabstract interpretation, as discussed in Sec-
tion2.4.7

2.4.6 Controlling Concrete Execution

Recall from Sectior2.3that stopping concrete execution at any moment does natt aéfienination or precision

of the analysis. In fact, to guarantee termination, it igisight to have”' : = T inline[ 5] . Normally, concrete
execution is a cheap way to increase coverage, but for ngstagrams, concrete execution might go on for a
long time without covering a new abstract state. The questiovthen the concrete execution should be paused to
check invariance.

Our idea is to monitor how many new abstract states are cowsra concrete execution. If the coverage has
not increased sufficiently for a certain period of time, tbaarete execution can be paused to check invariance.
If the abstract value obtained so far is not invariant, outhroé can increase the coverage by fabricating a new
concrete state and continue concrete execution from ithimway, we can control the amount of time spent
executing the program vs. the amount of time spent callieglieorem prover.

For example, consider the code in F&4, which uses the non-deterministic choice operation A concrete
execution that iterates through the lo&(j) times, always taking the true branch of ihfe statement in ling 3] ,
and then, in th&00 + 1 iteration, takes the false branch, reaches the assertilimeiff 7] . If the false branch
is taken earlierp is reset in ling 8] . The assertion in ling7] fails in rare executions with a long trace to the
error. Such errors are difficult to discover using an expbtate model checker or random testing. Our approach
can skip the execution of many loop iterations that do natase coverage.

We use predicate abstraction with the predicates 0, 0 < n < 500, n = 500, andn > 500 for value of
n online[ 3] . Note that the predicates divide the concrete state sp&xé partitions, as shown in Fig.4(b).
Model checking quickly finds concrete execution that cotleesstates = 0, 0 < n < 500, but then the concrete
execution stays within these abstract states. At this pointalgorithm simply fabricates a state with= 500,
and continues model checking from it, skipping the long exiea trace that leads to it. The model checker can
easily find an execution through the loop body to ljrig , and reports a potential error.

This example shows that switching from concrete executicfalbrication can help us in finding errors and
invariants faster.
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[1] n: =0;
[2] while(*) {

E‘i i}f lg*?:§n+1; ______________
el se —

[ 6] i f (n==500) oy
[7] assert(0); | {5500 e ....v....v,.("n=500\:.
[ 8] n: =0; R ool ~-
[91 }
[10] }

(a) (b)

Figure 2.4: (a) Example program, (b) Abstract state-space.

2.4.7 Hybrid Approach

For certain programs, concrete execution might go on forg ime without covering a new abstract state,
whereas abstract interpretation makes progress in evapylsiit each step can be expensive or can lose precision
if the abstract transformers are not the best. An excitigliegtion of our method is its ability to address limita-
tions of one approach using the other, by interleaving aetecand abstract interpretation. Furthermore, abstract
interpretation can be used when a model generator failbticite a new state that satisfi@sg).

Technically, the hybrid approach can choose to obtain a rsivact value by concrete execution of existing
test inputs or fabricated states, as described in Se2t®ror by applying an abstract transformer to the current
abstract value, as usual in abstract interpretation. Tachviiom abstract interpretation mode to concrete execu-
tion, the hybrid approach symbolically checks if the newtidzs value is an invariant, and attempts to fabricate
states from the new abstract value, as explained in Se2t®®R It is possible that model generation for the
current abstract value fails, but succeeds for the newadistalue, produced using an abstract transformer. The
precision of the hybrid analysis depends on the precisi@bsfract transformers that are used, assuming that all
theorem prover and model generator calls are conclusive.

2.5 Prototype Implementations

To evaluate the feasibility of the technique, we have im@etad it in two prototypes: the first prototype is based
on predicate abstraction and uses XRT model checker asifeiph; the second prototype is based on canonical
abstraction and uses TVLA system as its platform.

2.5.1 Prototype Implementation Based on XRT

We have implemented our method on top of the XRT framew@k$09, an extensible framework for explicit
and symbolic model checking of programs, represented irrddaft's common intermediate language (CIL).
XRT processes .NET managed assemblies, and provides nogamsafyzing, rewriting, and executing programs.
Our implementation takes advantage of all these features.

Our implementation uses predicate abstract®897 (without refinement), and supports user-defined pred-
icates. It can also automatically generate a default setedfipates by a backwards data-flow analysis from the
conditional branches that infers the predicates goverthiese branches.

In our implementation, predicates are defined as C# metlwatled probes Probes return Boolean values,
have no side-effects and contain no loops or method callsh Eatpoint is instrumented to call the probe meth-
ods, which evaluate the appropriate predicates on thertistate. We compute the abstraction of the concrete
execution on-the-fly: the XRT runtime pauses execution idliately after a call to a probe method returns, and
its return value is used to update the abstract state.

When predicates are given as logical formulas, it is easynmgementy for predicate abstraction, but in
our case predicates are given as CIL code. The symbolic 8zacef probe methods by XRT gives a natural
way to construct logical formulas for predicates. The syhabexecution mode of XRT also provides strongest
postconditions that our method uses to check whether theagbsalue is invariant. To check validity, we use
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the Simplify theorem proveiJNS03. To fabricate states, we implemented a naive model gereséthin XRT,
also based on Simplify.

Our implementation places cutpoints: (i) before each looghyt(to cut cycles); (ii) on entry and exit of every
method, (iii) before and after every method call, and (ivgath program point that may potentially violate safety
properties, such as a pointer dereference or an array adcelsandle method calls, we have implemenriiedFL

Unit-Testing with Fabrication

A major application of XRT is in the area of unit testing. Téfare, to evaluate the implementation of our method,
we adapted the method to operate on a separate class usitgaisifor that class (rather than analyzing a closed
application using its test inputs). A similar approach carapplied to analyze an open system or a component.

The idea is to invoke each method of the class on all the ctmstates obtained on exit of any method of this
class. We illustrate the idea on the implementation of a Hedrstack, used previously in the literatugtA02,
XNO3, CS04 PEOS.

Example 2.5.1 Fig. 2.5 shows an abbreviated version of the code that implementsuadeal stack, using a
fixed-size array.

A bounded stack can normally be ‘empty’, ‘partially full’ Gull’. We used predicate abstraction to capture
these states, and distinguish them from illegal states iiclngi ze is out of the bounds afl ens.

The bounded stack supports the usual operations, but it doegrovide any exceptional behavior. Instead,
if an operation is applied in an inappropriate state, it has effect. For example, if the stack is full, thash
operation has no effect. However, thep method incorrectly handles popping an empty stack. Thislpro was
not exhibited by the provided unit tests, becapsp is never called with an empty stack.

We analyzed the class using our implementation based onckieadking for the
I ndexQut OF RangeExcept i on. In the first iteration, our method fabricates a staten exit ofpop, with an
empty stack. Then, it executes the method again on the fabricated state, obtaining a new state’ on the
exit ofpop, with size < 0 (no runtime exception occurs). Then, it executes the mgthsth on o', causing at
labelL1 anl ndexQut OF RangeExcepti on.

After fixing the error inpop, our analysis automatically proves absence of the
I ndexQut OF RangeExcept i on in this example, using four fabricated states, and the defaedicates, as
mentioned in Sectiah 5.1 If the maximal size provided to the constructor is negathterowsOver f | owExcept i on
exception, but this error should not be reported by the asialywhich tracks different exceptions.

This example shows that our analysis can deal with unexgéaitares, e.g., when a concrete execution throws
an exception that is not tracked by the analysis. If suchgti@eis thrown in a concrete execution, our analysis
can fabricate any state in the following program point, amatinue the execution fromit. This fabrication is easy
because it does not place any constraints on the fabrictttd $t provides a sound and (perhaps, surprisingly)
most-precise result, because behavior that is not modglgdated by a sound abstraction as if “anything can
happen” at that program point.

Upon termination of the analysis, the abstract states oarilrg and exit of all methods are the same. This set
of abstract states, in fact, represents the class invariantler certain conditions about the class, stateldig(4.

The analysis can output the inferred class invariants ifidime of logical formulas, by computing of the relevant
abstract states.

Note that, as we are using state-based abstractions, owagbpdoes not learn method-call order. Also,
our method analyzes each class independently of the adieiaiscof this class. The approach may also report
on potential errors, that do not occur in any actual clienthig class. The advantage of this approach is that
it identifies potential errors early in the development psx; even before the client is written. If our method
succeeds, it provides a proof of safety for the class in aigntl This proof can be used to perform assume-
guarantee reasoning.

Also, in the setting of unit-testing, it is easier to clagsifpotential error reported by the analysis, because the
context of all method calls (a client code) is arbitrary.He bounded stack example, real errors were detected by
a fabricated execution.
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public class BoundedStack {
private int[] el ens;
private int size;

private int max;

publ i ¢ BoundedSt ack(int capacity) {
size = 0;
/1 fixme: if (capacity <= 0) capacity = 2;
max = capacity;
el ens=new i nt [ max] ;
}
public void pop() {
[l fixme: if (size >= 0)
si ze--;
}
public void push(int k) {
int index;
bool al readyMenber;
al readyMenber = fal se;
for(index=0; index<size; index++) {
i f(k==el ens[index]) {
al readyMenber = true;

br eak;
}
}
if (alreadyMenber) {
for (int j=index; j<size-1; j++) {
elems[j] = elens[]+1];
}
el ens[si ze-1] = k;
}
el se {
if (size < max) {
L1: el ens[si ze] = k;
Si ze++,;
return;
} else {
return;
}
}

Figure 2.5: Implementation of a bounded stack using fixed-airay (abbreviated). The comments show the code
needed to fix the errors.
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procedure | fabricated | abstract | maximal | description
states states length
search 2 21 5 | searches a list for an element with a specified value
reverse 4 57 6 | reverses a singly-linked list in-situ
insert 3 58 6 | inserts a specified value into an ordered list
getLast 3 36 6 | returns a pointer to the last element of a list
deleteAll 1 14 4 | deallocates all elements in a list
delete 8 110 7 | deletes an element with a specified value from allist

Figure 2.6: Analysis results for methods that manipulatglgilinked lists.

Recall that the purpose of fabrication is to find a proof fast@herent to this approach is the fact that a
fabricated state may be unreachable from any initial stitteeoprogram. However, states that are fabricated on a
method entry can be used in unit-test generation.

2.5.2 Prototype Implementation Based on TVLA with Applicaton to Shape Analysis

Our method is applicable beyond predicate abstraction. &Ve implemented another prototype, based on the
TVLA system [LASOQ]. The TVLA system performs abstract interpretation usiaganical abstractiortgRW03,

and supports reasoning about linked data-structures. Wi ihgplemented a special-purpose model generator.
For concrete execution, we use the TVLA system in a mode wimemory abstraction is disabled. This mode
faithfully simulates concrete state-space exploratiagrpfograms, which manipulate fields and pointers, but not
integer data.

As a proof of concept, we applied the prototype to TVLA benahks that manipulate singly-linked lists.
A concrete state describes a memory that contains linked i8/e used four test inputs, each with one linked
listin memory: an empty list, and lists of length3. The analysis proved the absence of null-dereferences and
absence of memory leaks (i.e., every allocated elemenacheble from some program variable). Rg6 shows
the results: number of fabricated states, abstract stat@stermination, and the maximal length of a list used by
a concrete execution (either initial test input, or a faded state).

In fact, our prototype can find invariants for these methodbaut fabricating any states, provided that the
input tests include a list with at leagtnodes? It means that testing these methods on small lists, follobyed
abstraction, is sufficient to discover all reachable abststates. In particular, every abstract state is weakly-
reachableBal04 (see also SectioB.7).

2.6 Avoiding Unnecessary Abstraction Refinement

We are not the first to demonstrate that concrete executighaiistraction can be used to verify program prop-
erties LY92, PPV05 Bal04. However, previous work in the area required much strorajmstractions than
necessary to verify the safety properties of interest.

One approachis to find an abstract system thiaisisnilar to the underlying concrete system, using automated
refinement of abstraction&Y92, PPV0Y. For deterministic systems, this means that the concsetieisn and
abstract system have identical execution traces. The &alyaof LY92, PPV0Y, compared to our approach, is
that it reports only real errors. However, this techniqueften too strong for proving safety properties. Even
for proving a simple program, bisimulation might requirecenplex abstraction generated via many iterations of
abstraction-refinement, whereas our technique can acpieoés with coarser abstractions.

As an example, we apply our method to the Bakery mutual ekaiyzrotocol for two processes, which also

4The length depends on the number of program variables thataiat into the same list.
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Figure 2.7: Reachable abstract states of two-process Baketocol, using an abstraction functien < .

was analyzed inRPV09. The guarded command representation of the protocol is:

Processl :

pep = A = rp =X pe = B
pcr = B = z1:=x1 + Lpe; = C;
per =CAxy <z +— pc=D;

pcr =D = per = A

Process2 :

peg = A = I 1= x1;per = B
pco = B = To = X9+ 1;pcs = C;
peo=CANxy<x1 +— pco=D;

pca =D = pey = A

A concrete state of the program(igci, peo, 1, x2), Wherepe; is the value of the program counter of procéss
ranging overd — D, andx; is the integer value of the ticket of procas$ori = 1, 2.

The safety property we check is that at most one processdyeanthe critical section-(pc; = D A pca =
D). We use the following abstraction function, based on thdipatex; < xs:

apake(C) = {(pc1, pea, 1 < x2) | (pe1, pee, x1,x2) € C} (2.9)

Fig.2.7shows the reachable abstract states. The abstract etes(€daD, t) and(D, D, f) are notreachable.
An explicit-state model checker easily finds a concrete et@a that covers the states marked with bold-circles,
starting from the concrete state, A,0,0). Then, our method fabricat@sstates:(C, B,1,0) and(C, 4, 0,0).
The first state covers the abstract st@teB, ), and the second state covéefs A, t) and(D, A, t). Atthis point,
our method proves that the abstract states are invariaththahthey satisfy the mutual exclusion property.

The initial abstraction used irPPV0] is the same as our2(9). The method of PPV0] takes4 steps
of abstraction refinement to find an abstract state spacasttaabisimulation of the concrete state space. The
bisimilar abstract state space contaiig@bstract states, using abstraction basetiigredicates. We have shown
that the initial abstraction is sufficient to prove mutuatlesion (without any abstraction refinement), and the
state space has only abstract states.

2.7 Related Work

Automated Construction of Abstract Transformers Theorem provers have been used for the automated con-
struction of abstract transition systenBMMRO01, HIMS03 YRS04 RSY04, especially in parametric abstract
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domains, such as predicate abstractiG®91 and canonical abstractio®RWO03, where the abstraction is de-
fined per-program. In many cases, an exponential numbeeofdim prover calls is needed to compute the effect
of a single program statement on an abstract value in the-prestse way.

Compared to these techniques, our method can reduce theenofitheorem prover calls: it obtains abstract
values via concrete execution, which does not require #reerover calls. A theorem prover is used only to
check that an abstract value is an invaright), If the check fails, then at least one new abstract stateviered
in the next iteration. In the worst case, our method mightiregas many theorem prover calls as other methods.
However, if an execution from a fabricated state coversragveew abstract states, our method terminates with
fewer theorem prover calls.

The cost of a theorem prover call made by our method is corbjgata other methods. However, the cost of
a model generation might be higher than the cost of a valaigck.

Our method is most-closely related to the algorithm preseint [RSY04. Both methods rely on a model
generator to “fabricate” a concrete state that (i) is notrgptesented by the abstract value obtained so far, and
(ii) is reachable in a single step from it. In this work, we bagentified a way to cover more abstract states using
a single fabricated state, by executing the program. Thaadeif [RSY04 can be described by replacidg : =
execute( f,T) withC := Tinline[ 5] of Fig.2.3

Bisimulation and Weak Reachability Concrete execution and abstraction are used¥92, PPV05 Bal04] to

find errors and verify program properties. All errors repdrby LY92, PPV0] are real errors, but the technique
often is too strong for proving safety, as shown in Secfidh Also in [PPV05, concrete exploration stops when
it encounters a concrete state whose abstraction was wlsead before. Our method continues exploration from
such a concrete state, and may discover abstract stategdteanot covered before.

Another way to achieve verification is to find an abstractiod a set of test$ that cover exactly the reachable
abstract state®al04. It requires that every abstract state be testable. Thisvisaker property than bisimulation
but still stronger than our method, because our method dalbicated states may cover abstract states that are
not reachable (but required for a proof).

Combining Dynamic and Static Analyses Daikon uses dynamic analysis to detect likely invariaBSGNOT.

It executes the program on a test set, examining the valube aebncrete states, and detects patterns and relation-
ships among those values. It reports properties that hatd execution of the given test set, but not necessarily
over all program executions. INEOZ, likely invariants produced by Daikon are used with ES@AJRNSO0(
verification condition generator and SimplifplNS03 theorem prover to prove that these are indeed invariants.
Our work is similar in spirit, but uses fabricated states abstraction to achieve proof via a fixed point computa-
tion where the Daikon-ESC/Java two-step process may féihtba proof.

Recent work combines random test generation and concretaigan with symbolic execution and model
generation GKS05 SMAOQ5, CS0§. These methods use symbolic techniques to direct the gtoerof tests
towards unexplored paths in order to find errors faster. Hewe¢hese methods do not employ abstraction, and in
general cannot find proofs in presence of loops, with thegime of [GHK*086].

The method in GHKT06] uses concrete execution to guide abstraction refinemethietgrogram location
both for the purpose of finding errors and the purpose of akitimg false alarms. This process might not termi-
nate. On the other hand, our algorithm always terminatest ban report potential errors, which might be false
alarms. Itis possible to combine our method with an analfgsislassifying potential errors into real errors and
false alarms, and use abstraction refinement to eliminatéatter. Our method uses concrete execution to find
a proof faster, for a given abstract domain, without refirntndg3oth methods use a theorem prover to compute
abstract transformers, buBHK™06] does not use fabricated states to speed up the proof seSictilarly to
our method, GHK™06] can terminate with a proof which is a simulation and not sseeily a bisimulation. Our
algorithm, unlike GHK™06], does not require finite partitioning abstraction.

Adequacy Criterion for Testing We can define aabstraction-based adequacy criteridéor a set of tests as
follows. A set of testd" is adequate under a given abstraction if all reachableadistates are covered &y
Note that if a set of testf is adequate then safety properties can be (conservatstedgked om—the abstract
states covered bY¥. Our method checks a condition of invariance that impliesaccy.
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In contrast to the traditional white-box adequacy critéea., ZHM97]), we choose an abstraction based on
the property of interest, and then define adequacy with ctspethe abstraction. When used with a powerset
abstraction, our adequacy requirement appears to be alfpatizn of partition-based testing with respect to an
abstraction function, where each abstract state repieaquartition.

Recently, an abstraction-based adequacy crifdhiabstract-Statesvas introduced inEre04, in the context
of automatic test generation using a theorem prover, whealbistract states are provided by static analysis. All-
Abstract-States criterion implies the adequacy critesi@defined in Sectio2.1 Our algorithm provides an
effective way to check adequacy of a given test set.

To summarize, our method can be viewed as bridging thetldad Ern03 between testing and verification.
Our method complements existing techniques that combimardic and static analysis in that it is oriented
towards finding a proof rather than detecting real errors.



Chapter 3

Computing Most-Precise Abstract
Operations for Shape Analysis

The material described in this chapter is largely based emthterial originally published inYRS04. In
addition to the material already published ¥HS04, AppendixB contains a formal proof of correctness of the
algorithm.

Shape analysis concerns the problem of determining “shyagiants” for programs that perform destructive
updating on dynamically allocated storage. The motivatibthe work presented in this chapter is to improve
the precision, scalability and automation of shape analygiemploying theorem provers. This chapter presents
a new algorithm that solves several open problems in sheglgsast

e Computing the most-precise abstract value that repreg@n{potentially infinite) set of states specified by
a formula. We call this operatian.

e Computing the operatioassume[y](a), which returns the most-precise abstraction of the setabésthat
are represented hyand satisfy a preconditiop.

e Implementingoest abstract transformefsr atomic program statements and conditioB€['9, as well as
for loop-free code fragments (i.e., blocks of atomic progsaatements and conditions).

e Performing interprocedural shape analysis using pro@shecifications and assume-guarantee reasoning.
e Computing the most-precise overapproximation of the mewt@ abstract values.

In [Yor03, YRSWO07, we show that the concretization of an abstract value fooo&al abstraction can be
expressed using a logical formula. Specificaljpf03 YRSWO07 gives an algorithm that converts an abstract
valuea into a formulay(a) that exactly characterizega)—i.e., the set of concrete states thaepresents.

As mentioned in Sectioh.3.2 havingy and an algorithm for eitheassumer &, we can implement all other
operations mentioned above (see Hi@). To simplify the presentation of examples in this chapier,describe
the direct algorithm fonssume and demonstrate it using a running example throughout thpteh We also give
an algorithm forv, which is a simple variation of the algorithm fassume.

The algorithm employs a theorem prover for the logic use&press properties of data-structures. Candidate
decidable logics for expressing such properties are destin [RRT04a YRS 06]. The algorithm can also be
used with an undecidable logic and a theorem prover; tetinimaan be assured by using standard techniques
(e.g., having the theorem prover return a safe answer if e-tiot threshold is exceeded) at the cost of losing the
ability to guarantee that a most-precise result is obtained

Prototype Implementation

To study the feasibility of our method, we have implementgaiaiotype of theassume algorithm as an exten-
sion of the TVLA systemIl[AS0Q]. Our prototype uses the first-order theorem prover SPASS][ To perform

28
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Relation | Intended Meaning

z(v) Does pointer variablg point to element?
y(v) Does pointer variablg point to element?
n(vy,ve2) | Does then field of v, point tov,?
eq(v1,v2) | Dowv; andv, denote the same element?
1s(v) Is v pointed to by more than one field ?

Figure 3.1: The set of relations for representing the stai@sipulated by programs that use thiest data-type
from Fig.3.2and two pointer variables, y .

reasoning about (absence of) reachability in SPASS, we gande, in some cases, sufficient first-order axioma-
tization of transitive closure, e.gLAIR 05).1 So far, we tried three simple examples: two casessefime, one

of which is the running example of this chapter, and one cébest transformer. On all queries posed by these
examples, the theorem prover terminated. The number &f @aBPASS in the running exampleliss, and the
overall running time was approximately seconds.

The remainder of this chapter is organized as follows. Irti8e8.1, we provide a short overview of canonical
abstraction. The formal description of thesume anda algorithms appears in Secti@2, and the proof of cor-
rectness ofissume algorithm is given in AppendiA. The algorithm that implements best abstract transformers
is given in SectiorB8.3. In Section3.4we discuss related work.

3.1 Overview of Canonical Abstraction

This section provides a short overview of canonical abstracThe formal description of thessume algorithm
appears in SectioB.2

As an example, consider the following precondition, expeesinC' notation as:(x -> n == y) &&
(y '= null) (which will be abbreviated in this section @ wherex andy are program variables of the
linked-list data-type defined in Fig.2 The preconditiorp can be defined by a closed formula in first-order
logic: ¢o = Jui,ve : z(v1) A n(vr,v2) A y(ve). The operatiorussume[p](a) enforces preconditiop on an
abstract value. Typically, a represents a set of concrete states that may arise at theprogint in whichp is
evaluated. The abstract valueised in the running example is depicted by the graph inF=R&fS). This graph is
an abstraction of all concrete states that contain a nortyelinged list pointed to by, as explained below.

3.1.1 3-Valued Structures

In this chapter, abstract values that are used to representate states are sets 3¥alued logical structures
over a vocabularfP of predicate symbols. Each structure has a universé individuals and a mappingfrom
k-tuples of individuals iflU to valuesl, 0, or 1/2 for eachk-ary relation inP. We say that the valuésand1 are
definite valuesand thatl /2 is anindefinite value, meaning “eithef or 1 possible”; a valué, is consistentwith
l> (denoted by, C I5) whenly =l orls = 1/2;| | W denotes the least upper bound of the values in th&set

A 3-valued structure provides a representation of statesziththls are abstractions of heap-allocated objects;
unary relations represent pointer variables that pointhftbe stack into the heap; binary relations represent
pointer-valued fields of data-structures; and additioakdtions inP describe certain properties of the heap. For
example, a unary relatiois (“is heap shared”) captures objects that are pointed to brertian one field. A
special binary relationq has the intended meaning of equality between locations.nilevalue otgis 1/2 on
the pair(u, u) for some node, thenu is called a “summary” node and it may represent more thanioked-list
element. Fig3.1describes the relations required for a program with poivagiables< andy, that manipulates
the linked-list data-type defined in Fi§.2 3-valued structures are depicted as directed graphs, wditiduals
as graph nodes. A relation with valuds represented by a solid arrow; with valug2 by a dotted arrow; and
with value0 by the absence of an arrow.

1In general, there cannot be a complete, first-order axiaatitin of transitive closureyr03, LAIR +05].
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[+ list.h */

typedef struct node {
struct node #n;
i nt data;

}*List;

Figure 3.2: A declaration of a linked-list data-type in C.
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Figure 3.3: (S) The input abstract value= {S} represents all concrete states that contain a non-emgagdin
list pointed to by the program varialste where the program variabjemay point to some elementS{-S;) The
result of computin@ssumfp](a): the abstract valu€ = {5y, ..., S7} represents all concrete states that contain
a linked-list of lengti2 or more that is pointed to by, in which the second element is pointed toyhy

In Fig. 3.3S), the solid arrow from: to the node:; indicates that relatiom has the valué for the individual
uy in the3-valued structureS. This means that any concrete state representetidpntains a linked-list element
pointed to by program variabbe. Moreover, itmust contain additional elements (represented by the summary
nodeus, drawn as a dotted circle), some of whittay be reachable from the head of the linked-list (as indicated
by the dotted arrow frona; to us, which corresponds to the valug2 of relationn(uy,u2)), and some of which
may be linked to others (as indicated by the dotted self-arromgn The dotted arrows frony to v, andus
indicate that program variable may point to any linked-list element. The absence of an arromnftg to u;
means that there iso n-pointer to the head of the list. Also, the unary relatieris 0 on all nodes and thus not
shown in the graph, indicating that every element of a cde@®te represented by this structure may be pointed
to by at most one-field.

We next introduce the subclass of bounded structus&8N99. Towards this end, we defingbstraction
predicatesto be a designated subset of unary relations, denoteddsy In the running example, all unary
relations are defined as abstraction predicateboénded structure is a 3-valued structure in which for every
pair of distinct nodes, us, there exists an abstraction predicaich thay evaluates to distinct definite values
for u; andus. All 3-valued structures used throughout this chapter are baustdectures. Bounded structures
are used in shape analysis to guarantee that the analysisiisdcout w.r.t. a finite set of abstract structures, and
hence will always terminate.
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3.1.2 Embedding Order on3-Valued Structures

3-valued structures are ordered by #rabedding order (C), defined below.S C S’ guarantees that the set of
concrete states representeddis a subset of those representeddy

Let S andS’ be two3-valued structures, and I¢tbe a surjective function that maps nodesSabnto nodes
of S’. We say thaff embedsS in S’ (denoted byS C ; ") if for every relationg € P of arity k£ and allk-tuples
(ui,...,ux) in S, the value ofy over (uy, ..., u) is consistent with, but may be more specific than, the value
of gover(f(uy), ..., f(ur)): t5(q)(ur,...,ur) C 5 (¢)(f(ur),..., f(u)). We say thatS can be embedded
into S’ (denoted byS C ") if there exists a functiorf such thatS T 5".

The result ofussume[p](a), shown in Fig3.3(Sy—S7), consists o8 structures, each of which can be embedded
into the input structure Fi®.3(S). The embedding function maps in each of the output structurég—S~ to the
same node; in the input structure. Each one of the output structiigsSs contains nodes,, andus, both of
which are mapped by the embedding#pin S; for S7, nodeu, is mapped tas; in S. Thus, concrete elements
represented by different nodeg andu, in the output structures are represented by a single sumnoaig.o
in the input structure. We say that nodgis “materialized” from node:,. As we shall see, this is the only new
node required to guarantee the most-precise result,welatithe abstraction.

For each of5, . .., S7, the embedding function described above is consistentthitlvalues of the relations.
The value ofx onwuy is 1in S; and S structures. Indefinite values of relations.$himpose no restriction on
the corresponding values in the output structures. Foamtst, the value of is 1/2 on all nodes inS, which is
consistent with its valué on nodes:; andu, and the valud onw, in each ofSy, ..., S7. The absence of an
n-edge fromuy back tou; in .S implies that there must be no edge framto «; and fromus to u; in the output
structures, i.e., the values of the relatioon these pairs must e

3.1.3 Integrity Rules

A 2-valued structure is a special case &f-walued structure, in which relation values are ohlgnd1. Because
not all 2-valued structures represent valid concrete states, wa designated set @fitegrity rules, to exclude
impossible states. The integrity rules are fixed for eactiqudar analysis and defined by a conjunction of closed
formulas over the vocabular?, that must be satisfied by all concrete states. For the litikedata-type in
Fig. 3.2, the following conditions define the valid concrete sta{@seach program variable can point to at most
one heap node, (ii) the-field of an element can point to at most one element, 4i{p) holds if and only if
there exist two distinct elements withtfields pointing tov. Finally, eq is given the interpretation of equality:
eq(v1,v2) holds if and only ifv; andv, denote the same element.

3.1.4 Canonical Abstraction

The abstraction we use throughout this chapteaisonical abstraction as defined in$RWO03. The surjective
function  takes &-valued structure and returngavalued structure with the following properties:

e (3 maps concrete nodes into abstract nodes accordingrtonical namesof the nodes, constructed from
the values of the abstraction predicates.

e [is atight embedding$RWO03, i.e., the value of the relatiopon an abstract node-tuplelig2 only when
there exist two corresponding concrete node-tuples witirdit values.

A 3-valued structures is an ICA (Image of Canonical Abstraction) if there exist3-galued structures? such
thatS = (5(S%). Note that every ICA is a bounded structure.

For example, all structures in Fi§.3(So—57) produced byassumpp](a) operation are ICAs, whereas the
structure in Fig.3.3(S) is not an ICA. The structure in Fi$.3(S1) is a canonical abstraction of the concrete
structure in Fig3.4(a) and also the one in Fig.4(b).

The abstraction function is defined by extending pointwise, i.e.a(W) = {3(S%) | S* € W} whereW
is a set of2-valued structures. The concretization functiptakes a set o8-valued structuredl’ and returns a
potentially infinite set oR-valued structures (W) whereS? € ~(W) iff S% satisfies the integrity rules and there
existsS € W such that3(S%) C S.
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(a) @;@g@ @ (b) @_&@_@@ @ @

Figure 3.4: Concrete states represented by the strusfufim Fig. 3.3 (a) The concrete nodes andu? are
mapped to the abstract node. (b) The concrete nodes, u3 anduj are mapped to the abstract nade More
concrete structures can be generated in the same mannedibg anore isolated nodes that map to the summary
nodeus.

The requirement ossumfp](a) to produce the most-precise abstract value amoengdducinga(X),
where X is the set of concrete structures that embed ingmd satisfyp. Indeed, the result adissumfp](a) in
Fig. 3.3(5y—S57) satisfies this requirement, becaue-S7 are the canonical abstractions of all structureX’in

For example, structur®, from Fig.3.3is a canonical abstraction of each of the structures inF=#y However,

S; is not a canonical abstraction 6% from Fig. 3.32 because the valug/2 of n for (uy,u2) requires that
a concrete structure abstracted $y have two pairs of nodes with the same canonical namés as.;) and
with distinct values ofn. This requirement does not hold i#h, because it contains only one pdir;, us)
with those canonical names. Withasl, the result would not include the canonical abstractionallofoncrete
structures inX, but it would be semantically equivalent (becasecan be embedded int§;). The version of
the assume[p](a) algorithm that we describe does incluigin the output. It is straightforward to generalize the
algorithm to produce the smallest semantically equivadehbf structures.

It is non-trivial to produce the most-precise result &ssumfp](a). For instance, in each ¢f,—Ss there is
no back-edge from, to u, even though both nodes embed into the nagef the input structure, which has a
self-loop withn evaluating tol /2. It is a consequence of the integrity rules that no back-edgeexist from any
u3 to u, in any concrete structure that satisfiepreconditiorp implies the existence of am-pointer fromu; to
uy, butu, cannot have a second incomingedge (because the value of the relatison v, is 0).

Consequently, to determine relation values in the outputstire, each concrete structure that it represents
must be accounted for. Because the number of such concrettuses is potentially infinite, they cannot be
examined explicitly. The algorithm described here usearém prover to perform this task symbolically.

Towards this end, the algorithm uses a symbolic representat concrete states as a logical formula, called a
characteristic formula. The characteristic formula for an abstract vaiue denoted byy(a); it is satisfied by a
2-valued structures? if and only if S* € v(a). The” formula for shape analysis is defined ¥of03, YRSW07
for bounded structures, and it includes the integrity rules

In addition, a necessary requirement for the outputssfime to be a set of ICAs is imposed by the formula
©q,u1....ur» defined in 8.1) below; this is used to check whether the value of a relagioan bel /2 on a node-
tuple (u1, ..., ux) in a structureS. Intuitively, the formula is satisfiable when there existsomcrete structure
represented by that contains two tuples of nodes, both mapped to the abstrple (uq, ..., ux), such that
q evaluates to distinct values on these tuples. If the fornaulaot satisfiable,S is not a result of canonical
abstraction, because the valuggain (u4, . . ., uy) is not as precise as possible, compared to the valy®nfthe
corresponding concrete nodes.

3.2 Theassume Algorithm

The assume algorithm is shown in Fig3.5. It takes a formulg and a set of bounded structukgsand computes
the set of ICA structures that are represented lyd satisfyy.

The algorithm operates in two phases. Phlaskthe algorithm performs node “materialization”; if a stture
has an indefinite value of an abstraction predigat®@ some abstract node, the node maylfercatedinto two
nodes and; is set to distinct definite values on the new nodes. As a redithis phase, all the abstraction
predicates have definite values. Phasefines the structures produced in phadey lowering relation values

25, is a2-valued structure, and is a canonical abstraction of itself
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from 1/2 to 0 and1. Both phases use a theorem prover to filter out abstracttstescthat do not represent any
2-valued structures that satisfy

Section3.2.1explains the role of the theorem prover and the queries pogedr algorithm. The algorithm
is explained in SectioB.2.2(phasel) and Sectior8.2.3(phase2). Finally, the properties of the algorithm are
discussed in Sectiod.2.4

procedurexssume(p: Formula,a: a set of bounded structures): Set of ICA structures
result :== a

/I Phase 1
result := bif (o, result)
/Il Phase 2
while there existsS € result, q € P of arity k, andug, . .., u, € U® such that
3 (q)(uy, ... ,ux) = 1/2 anddone(S, g, u1, . ..,ur) = false do
done(S,q,u1,...,ux) = true

_____ uy,) thenresult := result \ {S}
So = S[q(u1,...,ug) — 0]
if isSatisfiable§(Sy) A ) thenresult := result U {Sp}
Sl = S[Q(ulv s ,’I,Lk) = 1]
if isSatisfiable§(S1) A ¢) thenresult := result U {S1}
returnresult

Figure 3.5: Theissume procedure takes a formujaover the vocabularfp and a set of bounded structuresnd
computes the set of ICA structuressult. The characteristic formula computed ®yncludes the integrity rules
_____ u, 1S defined in 8.1). The procedure
bif (p,result) is shown in Fig3.6. The flagdone(S, ¢, u1, ..., ur) marks processegtuples; initially, done is
false for all relation tuples.

3.2.1 Employing a Theorem Prover

The formulay, ., ,....«, guarantees that a concrete structure must contain twostopleodes, both mapped to the
abstract tupléuy, . .., u), on whichq evaluates to distinct values. This is captured by the foamul
def k k
‘Pq,uhk.,uk = Ew%, cee awliv w%v cee 7wi : /\i:l nOdéi (wzl) A /\i:l nOdéi (w?) (3_1)
A= Nizy eq(wl,wi) Ag(wi, ... wi) A =g(wi,. .. wf)

Pq.ua,....u, USES thenode formula, originally defined inYor03, which uniquely identifies the mapping of concrete
nodes into abstract nodes. For a bounded struétunede (v) simply asserts that andv agree on all abstraction
predicates.

The functionisSatisfiable()) invokes a theorem prover that retutnsue whenv is satisfiable, i.e., the set
of 2-valued structures that satisfy is non-empty. This function guides the refinement of relatialues. In
particular, the satisfiability of a formula is used to make the following decisions:

def

e Discard a3-valued structures that does not represent any concrete state that satisfistakingy =
F(S) A

o Materialize a new node from nodaw.r.t. the value of; € Abs in S (phasel) by takingy £ F(S)YNPA@ G-

def

e Retain the indefinite value for relatiopnon node-tuple(us, ..., ux) in S (in phase2) by takingy =
/V\(S) /\ 90 /\ <Pq,u1 ..... Uk *

This requires a theorem prover for the logic that expregses, ,, and?, including the integrity rules.
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proceduraif (¢: Formula,W: Set of bounded structures): Set of bounded structures
forall S e W
if not isSatisfiable{(S) A ) thenW := W \ {S}
while there existss € W, ¢ € Abs andu € U® such that® (q)(u)= 1,2
W =W\ {S}
if isSatisfiable§(S) A ¢ A @q..) thenW := W U Su — .0, u.1][g(u.0) — 0, g(u.1) — 1]
So = Slg(u) — 0]
if isSatisfiable§(Sy) A ) thenW := W U {Sy}
S1 = S[g(u) — 1]
if isSatisfiable§(S1) A ) thenW := W U {S;}
returniW

Figure 3.6: The procedure takes a set of structures and aufagmover the vocabular?, and computes the
bifurcation of each structure in the input set, w.r.t. theutformula. Note that at the beginning of the procedure,
it ensures that each structure in the workingletepresents at least one concrete structure that satisfi€ke
formulay, ., is defined in 8.1). The operatiorf[u — u.0, u.1] performs a bifurcation of the nodein S, setting
the values of all relations om.0 andw.1 to the values they had an

3.2.2 Materialization

Phasel of the algorithm performs node “materialization” by invogithe procedurif. The namebif comes
from its main purpose: whenever a structure has an indefiaites of an abstraction predicai®n some abstract
node, supported by distinct values on corresponding ctenales, the node Bfurcatedinto two nodes and is

set to distinct definite values on the new nodes. Bilfiprocedure produces a set®3¥alued structures that have
the same set of canonical names as the concrete statesttbigt @aand embed inta. The bif procedure first
filters out potentially unsatisfiable structures, and ttierates over all structures € W that have an indefinite
value for an abstraction predicajec .Abs on some node:. It replacesS by other structures. As a result of
this phase, all the abstraction predicates have definiteesdbr all nodes in each of the structures. Because the
output structures are bounded structures, the numberfefelift structures that can be produced is finite, which
guarantees thdif procedure terminates.

In the body of the loop ibif , we check if there exists a concrete structure representédibat satisfies in
which ¢ has distinct values on concrete nodes represented(the query is performed using the formulg ,,).
In this case, a new structuf® is added td¥/, created fromS by duplicating the node in S into two instances
and setting the value @fto 0 for one node instance, andtdor another instance. All other relation values on the
new node instances are the same as their values on

In addition, two copies of are created witld) and1, respectively, for the value af(v). To guarantee that
each copy represents a concrete structure that satisfeesappropriate query is posed to the theorem prover.
Omitting this query will produce a sound, but potentiallyedy-conservative result.

Fig. 3.7 shows a computation tree for the algorithm on the runningmpta. A node in the tree is labeled by
a 3-valued structure, sketched by showing its nodes. Its dildre labeled by the result of refining thealued
structure w.r.t. the relation and the node-tuple on thetrigihthe values shown on the outgoing edges.

The order in which relation values are examined affects tmeptexity (in terms of the number of calls to a
theorem prover, the size of the query formulas in each callthe maximal number of explored structures), but
it does not affect the result, provided that all calls terawén The order in Fig3.7was chosen for convenience of
presentation. The root of the tree contains the sketch dhhe structureS from Fig. 3.3(S); u, is the left circle
andus is the right circle. Fig3.7 shows the steps performed bif on the input{.S} in Fig. 3.3. bif examines the
abstraction predicatg, which has indefinite values on the nodgsandu,. The algorithm attempts to replace
S by T, Ty, andTy, shown as the children o in Fig. 3.7. The structure§” andT; are discarded because
all of the concrete structures they represent violate mittegule (i) for x (Section3.1.3 and the preconditiop,
respectively. The remaining structufg is further modified w.r.t. the value @f(u.). However, setting(u2) to 0
results in a structure that does not satigfiand hence it is discarded.
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bif(y,u)

bif(y,u,)

n(uy, uy)

eq(uy, uy)

eq(uy, up)

n(uy, u,)

n(uy, uy)

Figure 3.7: A computation tree fassume[p](a) for a shown in Fig.3.3

3.2.3 Refining Relation Values

The second phase of thesume algorithm refines the structures by lowering relation valirem1/2 to 0 and1,
and throwing away a structurewhen it has a relation with the valuel /2 for some tupley(us, ..., ux), butS
does not represent agyvalued structure with corresponding tuptgs’, ..., u}) = 0 andg(uf, ..., u}) = 1.

For each structurg and an indefinite value of a relatigne P on a tuple of abstract nodes, we eliminate
structures in which the relation has the same values on aksponding tuples in all concrete structures that are
represented by and satisfyp. (This query is performed using the formula B11).) In addition, two copies of
are created with the valu@saand1 for ¢, respectively. To guarantee that each copy representscaaterstructure
that satisfiesp, an appropriate query is posed to a theorem prover.dbhe flag is used to guarantee that each
relation tuple is processed only once.

The bulk of Fig.3.7 (everything below the top two rows) shows the refinement chealation value in the
running example. Phagestarts with two structured;; and Ty, of size2 and3, produced bybif . Consider the
refinement ol w.r.t. n(uy, u,), whereu, is pointed to byx andu, is pointed to by (the same node names as
in Fig. 3.3.

The relation tuplex(u1, u, ) cannot be set td/2, because it requires the existence of a concrete structtire w
two different pairs of nodes mapped (e, , u,); however, integrity rule (i) in Sectio8.1.3implies that there is
exactly one node representeddyand exactly one node representediyy Intuitively, this stems from the fact
that the (one) concrete node represented f{y,) is pointed to byx(y). The relation tuple:(u., v, ) cannot be
set to0, because this violates the preconditigraccording to which the element pointed to yoy(represented
by u,) must also be pointed to by thefield of the element pointed to by (represented by;;). Guided by
the computation tree in Fid.7, the reader can verify that the structures in Bg(Sy—S7) are generated by
assumelp](a). (The final answer is read out at the leaves).

3.2.4 Properties of the Algorithm

We determine the complexity of the algorithm in terms of i size of each structure, i.e., the number of nodes
and definite values, (ii) the number of structures, andtfii§ number of the calls to the theorem prover. The size
of each query formula passed to the theorem prover is limethrai size of the examined structure, becays®)

is linear inS, ¢ is usually small, and the size gf, , is fixed for a giverf°. The complexity in terms of (ii) and
(iii) is linear in the height of the abstract domain of setd@A structures defined ové?. The abstract domain

is doubly-exponential in the size &f, and its height is exponential in the size/f Therefore, our algorithm is
exponentially more efficient than the naeumerate-and-eliminatealgorithm over the abstract domain.
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Let X denote the sefp] N v(a). To prove the correctness of the algorithm, it is sufficienestablish the
following properties (the proofs appear in Appenix

1. Allthe structures explored by the algorithm are boundadtures.

2. result J a(J¢] N~y(a)). This requirement ensures that the resu#tdand, i.e., result contains canonical
abstractions of all concrete structuresin This is a global invariant throughout the algorithm.

3. result C a([¢] Nv(a)). This requirement ensures thatsult does not contain abstract structures that are
not ICAs of any concrete state ii. This holds upon the termination of the algorithm.

3.2.5 Computinga

As mentioned in Sectioh.3.2 we can implement(y) by assume[p](T), whereT denotes the abstract value that
represents all possible concrete states (the largest wethe abstract domain). A direct algorithm fassume is
a slight modification of the algorithm in Fig.5, in which we replace the first line byesult := T.

3.3 Implementing the Best Transformer

We can use thessume operation to implement the best transformer for canonisiraction. More specifically,
we can useaissume to compute the result of the best transformer.

The best-transformer algorithm manipulates the two-stosabularyP U P’, which includes two copies of
each relation — the original unprimed one, as well as a privegsion of the relation. The original version of the
relation contains the values before the transformer isiegphnd the primed version contains the new values.

The best-transformer algorithm takes a set of boundedtstesn over a vocabulary?, and a transformer
formular over the two-store vocabulafy U P’. It returns a set of ICA structures over the two-store votaiyu
that is the canonical abstraction of all pairs of concrmmres(Sﬁ, S§> such thaSE is the result of applying the
transformerr to SE. BT (7, a) is computed byissume(T, extend(a)) that operates over the two-store vocabulary,
whereextend(a) extends each structure # € a into one over a two-store vocabulary by setting the values of
all primed relations td /2. The result of the best transformer can be obtained from timeegl version of the
relations in the output structure.

The two-store vocabulary allows us to maintain the relatiom between the values of the relations before and
after the transformer. Alsa; is an arbitrary formula over the two-store vocabulary; intigalar, it may contain a
precondition that involves unprimed versions of the reladi together with primed relations in the “update” part.

3.4 Related Work

In [RSY04, we have presented a different technique to compute bassformers in a more general setting of
finite-height, but possibly infinite-size lattices. Thehamue presented irRSY04 handles infinite domains by
requiring that a theorem prover produce a concrete cowxi@mple for invalid formulas, which is not required
for the algorithm presented in this chapter.

Compared to RSY04, an advantage of the approach taken in this chapter is thtgrates from above:
it always holds a legitimate value (although not the best)thé logic is undecidable, a timeout can be used
to terminate the computation and return the current valuecaBse the technique described RSY04 starts
from L, an intermediate result cannot be used as a safe approgim@dtihe desired answer. Another potential
advantage of the approach in this chapter is that the sizarwiuias in the algorithm reported here is linear in the
size of structures (countifgand1 values), and does not depend on the height of the domain.

This chapter is also closely related to past work on prediahstraction, which also uses theorem provers to
implement most-precise versions of the basic abstraetpnttation operations. Predicate abstraction is a dpecia
case of canonical abstraction, when only nullary relatarsused. Interestingly, when applied to a vocabulary
with only nullary relations, the algorithm in Fi@.5is similar to the algorithm used in SLAMBRO1]]. It starts
with 1/2 for all of the nullary relations and then repeatedly refimssances of /2 into 0 and1. The more general
u,, 10 identify the appropriate values of

.....
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non-nullary relations. Also, we need the first phase (pracekiif ) to identify what node materializations need
to be carried out.

The algorithm described in this chapter was inspired by theus operation in TVLA, which is similar in
spirit to theassumeoperation. The input of Focus is a set3eValued structures and a formuta Focus returns
a semantically equivalent set 8fvalued structures in whicly evaluates to a definite value, according to the
Kleene semantics fd-valued logic BRWO03. The assume algorithm reported in this chapter has the following
advantages. First, it guarantees that the number of ressitiaictures is finite. The Focus algorithm in TVLA
generates a runtime exception when this cannot be achieMeid. makes Focus a partial function, which was
sometimes criticized by the TVLA user community. Seconeé, tlumber of structures generated dyume is
optimal in the sense that it never returris@alued structure unless it is the canonical abstracti@oofe required
state.

The latter property is achieved using an off-the-shelf teoprover; which makegssume currently slower
than Focus. To enjoy the benefits@fsume while maintaining efficiency, it is possible to develop acspézed
theorem prover, as the one discussed in the next chapterl#d possible to reduce the number of theorem prover
calls made byssume. For example, we can avoid an expensive theorem proverfd¢diténe evaluation of the
formula returns a definite value.

Perhaps the most exciting future applicationaefume is for modular analysis with assume-guarantee rea-
soning. It would permit TVLA to be applied to large progranysusing procedure specifications. The challenge
would be to identify an expressive specification languagetaimplement a fast decision procedure for reasoning
about these specifications.

To summarize, for shape-analysis problems, the methodsilded in this chapter are more automatic and more
precise than the ones used in TVLA, and allow modular amalyith assume-guarantee reasoning, although they
are currently much slower.



Chapter 4

Logic of Reachable Patterns
In Linked Data-Structures

We define a new decidable logic for expressing and checkiragiemts of programs that manipulate dynamically-
allocated objects via pointers and destructive pointeatgsl The main feature of this logic is the ability to limit
the neighborhood of a node that is reachable via a regulaesgion from a designated node. The logic is closed
under boolean operations (entailment, negation) and hasta finodel property. The key technical result is the
proof of decidability.

We show how to express preconditions, postconditions,@oplihvariants for some interesting programs. Itis
also possible to express properties such as disjointnesgaftructures, and low-level heap mutations. Moreover,
our logic can express properties of arbitrary data-strestand of an arbitrary number of pointer fields. The latter
provides a way to naturally specify postconditions thaateskhe fields on the entry of a procedure to the field
on the exit of a procedure. Therefore, it is possible to usddbic to automatically prove partial correctness of
programs performing low-level heap mutations.

The material described in this chapter was originally mh#id in Y RS™06], and an extended version &fRS™06]
was invited for a journal publication and appearedYRE™07]. In addition to the material already published
in [YRST06, YRST07], Section4.3.4shows that_RP can be used to characterize certain shape abstractions,
and Sectiord.7.2contains a proof of the upper bound on the complexity of chmerkatisfiability ofLRPformu-
las.

This chapter is organized as follows: Sectibfidefines the syntax and the semantic£gfand shows that it
has a finite model property; Sectidn2 shows that’ is undecidable; Sectiof.3 defines the fragmend,, and
demonstrates the expressivenes& pfon several examples. Sectid presents the decidability proof fdl,,
with a detailed proof of the main theorem given in Sectof Section4.6 defines an interesting extension of
L1, calledL,, and sketches the proof of decidability 65, which does not immediately follow from that 4f ;
Section4.7 contains the complexity results fdl ; Section4.8discusses the limitations and the extensions of the
new logics; finally, Sectiod.9discusses related work.

4.1 The/L, Logic

In this section, we define the syntax and the semantics ofamic.| For simplicity, we explain the material in
terms of expressing properties of heaps. However, our lcgicactually model properties of arbitrary directed
graphs. Still, the logic is powerful enough to express tlapprty that a graph denotes a heap.

4.1.1 Syntax ofL

Ly is a propositional logic over reachability constraintsafis, an’, formulais a boolean combination of closed
formulas in first-order logic with transitive closure thatisfy certain syntactic restrictions.

38
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Letr = (C, U, F) denote a vocabulary, where

e ('is afinite set of constant symbols usually denoting deseghabjects in the heap, pointed to by program
variables;

e U is a set of unary relation symbols denoting properties, thg.color of a node in a Red-Black tree;
e [is a finite set of binary relation symbols (edges) usuallyatieny pointer fields.

For example, we can describe a doubly-linked list with fadvaointer f and backward pointér, pointed-to by
a program variable, using the vocabulary in whict' = {2}, U = {}, andF = {f,b}. We can describe a tree
pointed-to by the program variabteot, in which each node contains a data value from a finite setlakgad,
using the vocabulary in whicti' = {root}, F' = {r,l}, andU contains a symbol for each value bf

A term t is either a variable or a constant. Atomic formula is an equalityt = ¢/, a monadic formula
u(t) for someu € U, or an edge formula /¢’ for somef € F, and termg,t'. A quantifier-free formula
¥(vo,...,v,) overr and variablesy, ..., v, is an arbitrary boolean combination of atomic formulas. \&f¢ s
that a sub-formula appears positively (negatively) ip, if ) appears under an even (odd) number of negations
in . Let FV (¢) denote the free variables of the formula

Definition 4.1.1 A neighborhood formula N (vo, ..., v,) is a conjunction of edge formulas of the foind, ',
wheref € F andv, v’ € {vy,...,v,}, and monadic formulas of the fora{v) or —u(v), whereu € U.

Definition 4.1.2 Let N (v, . .., v,,) be a neighborhood formula. Tl&aifman graph of N, denoted byB, is an
undirected graph with a vertex for each free variableNdof There is an edge between the vertices corresponding
to v; andwv; in By if and only if (v; fv;) or (v; f v;) appears inN, for somef € F. Thedistance between
logical variablesv; andv; in the formula/V is the minimal edge distance between the correspondinizesiy;
andv; in By.

For example, for the formul&V = (vo f,v1) A (vo f,v2) the distance betweem andwv; in N is 2, and its
underlying graphB looks like this:v; — vy — vs.

Definition 4.1.3 Arouting expression is an extended regular expression, defined as follows:

R == 0 empty set
| e empty path
| 7 fer forward along edge
| L f € F backward along edge
| u uelU test if u holds
| —u uw e U testif udoes not hold
| ¢ ceC test if ¢ holds
|  —c ce C testif c does not hold
|  Ri.R: concatenation
|  Ri|R: union
| R* Kleene star

Intuitively, a routing expression describes a path in thephe

A routing expression can require that a path traverse sorimégpdields backwards. For example, the routing
expression/,”. / * describes a sequence pfedges that may look like this?, f, f / /. We use this routing
expression in Sectiof.3.2to describe disjoint data-structures.

A routing expression has the ability to test properties @fthebjects along the path. For example, a routing
expressior{ /,.—y)* describes a path which does not traverse an object poioteylthe program variablg. We
use this routing expression to describe a path along whistegmoperty holdsintil the path reaches the object
pointed-to byy (see Sectiod.3.9.

Definition 4.1.4 (Syntax ofL) A reachability constraint is a closed formula of the form:

Yo, ..., Un.R(c,v0) = (N(vo,...,vn) = ¥(vo,...,0n)) (4.2)

1We can also allow auxiliary constants and fields includinstratt fields BCC05].
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wherec € C is a constant,R is a routing expression)N is a neighborhood formula, ang is an arbitrary
quantifier-free formula, such thaV (N) C {v,...,v,} and FV () C FV(N) U {vo}. In particular, if the
neighborhood formulaV is true (the empty conjunction), thefis a formula with a single free variable,.

An L, formula is a boolean combination of reachability constraints.

The subformula?(c, vy) defines ark-labelled path froma to vg. The subformulaV (vo, . .., v,) = Y(ve, ..., vp)
defines gpattern, denoted by (vg). Here, the designated variahlg denotes the “central” node of the “neigh-
borhood” reachable from by following an R-path. Intuitively, neighborhood formul& binds the variables
vo, - . . , U, t0 Nodes that form a subgraph, andliefines more constraints on those notles.

For example, the pattewiet ;(vo) defined by the formuléwy f,v1) A (v f,v2) = (v1 = v2) ensures that
has at most one outgoirfgedge. The neighborhood formula, /,v1) A (v f,v2) contains two edges emanating
from the central node,. The restriction on the neighborhood is that the edges daxtrthe same, because they
have the same sourc,, the same target; = v, and the same labgl.

Shorthands

We usec|R]p to denote a reachability constraidt{). Intuitively, the reachability constraint requires tleaery
node that is reachable froaby following an R-path satisfy the pattem
We uséet expressions to specify the scope in which the pattern isadexti

let p1 (vo) d:ele(vo,...,vn) = 11 (vo,...,v,) 0N @

This allows us to write more concise formulas via reuse ofgpatdefinitions. For example, we can say that
program variables andy are pointing to (potentially shared) doubly-linked lists:

let invy y(vo) = (vo L1 = v1 bwo) in x[ L, Jinvsy, Ay[ L, linvg,

We use:; [R]—c, to denotdet p(vg) = (true = —(vo = c2)) in ¢ [R]p. In this simple case, the neighborhood
is only the node assigned tg. Intuitively, ¢;[R]—c2 means that the node labeled by constaris not reachable
along anR-path from the node labeled hy. We usec;(R)cy as a shorthand fon(ci[R]—ez). Intuitively,
c1(R)co means thathere exist&n R-path frome; to co. We user; = c; to denoter; (e)co, ande; # co to denote
ﬁ(cl = 02).

We usec[R](p1 A p2) to denote(c[R]p1) A (c[R]p2), whenp; andp, agree on the central node variable.
When two patterns are often used together, we introduce @ fi@ntheir conjunction (instead of naming each
one separately)et p(vo) = (N = 1) A (Ny = 1) in .

For a quantifier-free formula(vo) with a single free variable,, we write ¢[R]y instead oflet p(vy) =
(true = 1(vo)) in ¢[R]p. In particular, for a unary relation symbal we usec[R]u to denotelet p(vy) =
(true = u(vo)) in ¢[R]p. We useu(c) to denote the formula(e)u (equivalentlycleju). We abuse the notations
slightly by writing N' A ¢1 = 1), instead ofN = (¢; = ).

In routing expressions, we use to denote the routing expression. | /2| ... |f=), the union of all the fields
in F. Similarly, = denotes the routing expressith | fz| ... |f=). For example¢; [ = *|-c, means that; is not

wn

reachable frona; by any path. Finally, we sometimes omit the concatenati@maipr “” in routing expressions.

4.1.2 Semantics oL,

Ly formulas are interpreted over labeled directed graphs. b&léa directed graptr over a vocabulary =
(C,U,F)isatuple(VY EY C% U%) where:

e V% is a set of nodes modelling the heap objects,
e E¢: F — P(VY x V%) are labeled edges,

e O%: C — VY provides interpretation of constants as unique labels emtites of the graph, and

2 In all our examples, a neighborhood formlaused in a pattern is such thBty (the Gaifman graph alV) is connected.
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e UY%: U — P(V¥) maps unary relation symbols to the set of nodes in which tioéy. h

The languagd.(R) of words accepted by a routing expressi®ns defined as usual for regular expression.
The semantics of ; formulas is formally defined as follows.

Definition 4.1.5 Consider a routing expressiaR andw € L(R). We say thathereis a path labeled by w from
anode s; to anode s in G if one of the following conditions holds:

e 51 = sy andw =,

e 51 = s9, w = u for a unary relation symbaok ands; € U%(u),
e 51 = s9, w = —w for a unary relation symbak ands; ¢ U (u),
e 51 = s9, w = c for a constant andC%(c) = s,

e 51 = 89, w = —c for a constant andC%(c) # s,

e w= / foranedgef € F and (s, s2) € E°(f),

e w= f foranedgef € F and(ss,s1) € EC(f),

e w = wi.ws and there exists a nodg such that there is a path labeled by from s; to s3 and there exists
a path labeled byv, from s5 to s .

A node tuple inG satisfies a patterp if it satisfies the quantifier-free formula that defingsccording to the
usual semantics of the first-order logic over graph struesur

The satisfaction relatiof= between a grapli and anLy-formula is defined similarly to the usual semantics
of the first-order logic with transitive closure over graph& graphG satisfies a formula[R]p (and we write
G = ¢[R]p) if and only if for everyw € L(R) and for every node tuple, . .., s, in G, if there is a path labeled
by w from ¢ to sg, then the tuples, . .., s,, satisfiegp with sy used as the central node fpr The meaning of
Boolean connectives is defined in a standard manner.

We say thahodes € G is labeled withs if o € C ands = C%(0) oro € U ands € U%(o). For an edge
(s1,s2) € G andf € F, we say that the edgg, s2) is labeled withf, if (s1,s2) € E(f). In the rest of
this chaptergraphdenotes a directed labeled graph, in which nodes are labglednstant and unary relation
symbols, and edges are labeled by binary relation symbeiefined above.

Remark. The translation fron, to MSO in Sectior.4.1provides an alternative definition for the semantics of
Lo.

4.1.3 Finite Model Property

We are interested in checking validity (and satisfiabil@y)C, formulas only over finite graphs. The graphs are
finite because they represent data-structures allocatedgoggram. (However, the graphs may be unbounded,
due to dynamic allocation of memory.) In general, a finitedigt problem is considered more difficult than a
validity problem. For example, in first-order logic, theidétly problem is recursively enumerable while the finite
validity problem is not. In a logic with the finite model prapg the notions of validity anfinite validity coincide.
Thus, the finite model property is desirable.

Lo with arbitrary patterns has a finite model property. If foteng € £y has an infinite model, each reacha-
bility constraint inp that is satisfied by this model has a finite witness.

Theorem 4.1.6 (Finite model property)Every satisfiableC, formula is satisfiable by a finite graph.

Sketch of ProofWe show that’, can be translated into a fragment of an infinitary logic tres & finite model
property. Observe thafR]p is equivalent to an infinite conjunction of universal firstder sentences. Therefore,
if G is a model of¢[R]p then every subgraph @ is also its model. Dually;¢[R]p is equivalent to an infinite
disjunction of existential first-order sentences. Thamfi G is a model of-¢[R]p, thenG has a finite subgraph
G’ such that every subgraph 6fthat containg?’ is a model of~c[R]p. It follows that every satisfiable boolean
combination of formulas of the form{ R]p has a finite model. Thug, has a finite model property.
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Figure 4.1: A sketch of a grid model for a tiling problem Then-edges are depicted with solid lines, thedges
are depicted with dashed lines. The filled circles denoteadabeled with “red”.

4.2 Undecidability of £,

The satisfiability and the validity problems gf formulas are undecidable. Singg is closed under negation,
it is sufficient to show that its satisfiability problem is wwidable. The proof uses a reduction from the tiling
problem.

Definition 4.2.1 Define atiling problem, 7 = (T, R, D), to consist of a finite list of tile type&; = [to, . .. tx],
together with horizontal and vertical adjacency relatiplis D C 7. Here R(a, b) means that tiles of typlefit
immediately to the right of tiles of type and D(a, b) means that tiles of typkfit one step down from those of
typea. A solutionto a tiling problem is an arrangement of instances of thestitea rectangular grid such that
a t tile occurs in the top left node of the grid, and atile occurs in the bottom right node of the grid, and all
adjacency relationships are respected.

It is well-known that tiling problems of this flavor are undgable. Therefore, if a logic can express tilings,
its satisfiability problem is also undecidable. Given aglproblemZ, we construct a formula+, such thator
is satisfiable if and only if there exists a solutiornZo

The ideais that each node in the graph that satigfiedescribes a tile, with unary relation symb@is . . ., Tj
encoding the tile types, ... t;. There is a-edge between every two nodes that are vertically adjacettte
grid. There is am-edge between every two nodes that are horizontally adjacehe grid, and from the last
node of every row to the first node in the subsequent row. Thetaatc labels the top left node of the grid, the
constant’ labels the top right node of the grid, the constéhlabels the first node of the second row of the grid,
and the constant” labels the bottom right node of the grid (see sketch in &it). The unary relatiomed labels
the nodes of the last column of the grid.

The most interesting part of the formulg- ensures that all graphs that satigfy have a grid-like form. It
states that for every nodethat isn-reachable frone, if there is ab-edge fromw to u, then there is &-edge from
then-successor of to then-successor ofi:

let p(v) « (vbu) A (vno) A(unur) = (v bur)in c[(n)*]p (4.2)

Theorem 4.2.2 (Undecidability)The satisfiability problem of, formulas is undecidable.
Proof: Given a tiling proble¥ = (T, R, D), we construct ai, formulay7 as a conjunction of the following
formulas:

1. There isn-path fromecto ¢’: ¢((»)*)c’
2. There isn-edge from’ to ¢”’: ¢/(n,)c”
3. There isn-path frome” to ¢”’: ¢ ((n)*)c"”
4. There ig-edge fromcto c” @ ¢ b,)c".

5. Non-edge exits: ¢"’[ »] false.



4.3. DECIDABLE AND USEFUL FRAGMENT OF L 43

6. For every node that isn-reachable frons, if there is ab-edge fromw to u, then there is &-edge from the
n-successor of to then-successor af: let p(v) = (vbu)A(vrv)A(urur) = (v bur)in e[(n)*]p.

7. Then-edges and the-edges reachable frosare deterministictet det,, (v) = (v )A(vno") = (v =
v”) in s[(n)*]det,, similarly, forb-edges.

8. The top left node of the grid hasta tile type, and the bottom right node of the grid has,dile type:
To(c) AN Tr(").

9. Each node in the grid has exactly one tile type:

0<i<j<k 0<i<k

10. Every node in the last column of the grid is labeled witli: ¢’[( ?,)*|red.

11. To express that only nodes in the last column of the gadadreled with-ed, we say that the first row is not
labeled withred, except its last node, and if a node is labeled witli, then itsb-predecessor is labeled:

def

c[(n. ) -red Nletp(v) = (w bw) Ared(v) = red(w) in c[()*]p

12. Two horizontally adjacent tiles are compatible acangdo R:

let p(v) & (vnw) A —red(v) = ( \/ (Ti(v) A Tj(w))> inc[(n)"]p

R(ti,ty)
13. Two vertically adjacent tiles are compatible accordm:

letp(o) & (v tw) = \/ (Ti(e) ATy(w)) in el(2)']p
D(ti,t;)

Remark. The reduction uses only two binary relation symbols andedfixumber of unary relation symbols. It
can be modified to show that the logic with three binary refaiymbols (and no unary relations) is undecidable.

4.3 Decidable and Useful Fragment oL,

In this section, we define a fragment 6§, called £, by syntactically restricting the patterns. We show that
L1 naturally describes some commonly-used data-structargsess verification conditions, and characterizes
certain shape abstractions. In the next section, we shavwfthia decidable.

4.3.1 TheL; Fragment

The £, fragment is defined by syntactically restricting the paitsawhich can be used. The fragméhtpermits
arbitrary boolean combinations in patterns, but it retribe distance between variables and forbids the use of
constants in positive occurrences of equality and edgetftasn

Definition 4.3.1 (The syntax of£,) In every reachability constraint[R]p that appears in arnC; formula, the
patternp(vo) e N(vg,...,v,) = (v, ...,v,) satisfies the following restrictions aft

e (equality restriction) If ¢» contains a positive occurrence of an equality between esv; = v;, then the
distance between; andv; in IV is at mos® (distance is defined in Definitich1.2).
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Pattern Name | Pattern Definition Meaning

det s (vo) (vo L,v1) A (vo L) = (v1 = v2) | at most one outgoing-edge fromu,

uns ¢ (vo) (v1 L,v9) A (v2 f,v0) = (v1 =v2) | vo has at most one incomingredge
vo 1S not heap-shared by-edge

unsy,q(vo) (v1 L,v0) A (v2. 9,00) = false andg-edge

. every f-edge fromy, to v; has a

. / b . . . .
invyp(vo) (vo Loy = v1 2,v0) b-edge in the opposite direction.
/ g i
same . 4(vo) X EZO7U1 = v07vl) edgesf andg emanating fromy are
09,01 = v f,v1) parallel

Figure 4.2: Useful pattern definitiong,(, g € F' are edge labels).

e (edge restriction) If ¢ contains a positive occurrence of an edge formula of the foymhv;, then the
distance between; andv; in NV is at mostl.

e (constant restriction) Positive occurrences of formulas of the fornd. ¢, ¢ /v, andv = ¢ in ¢ are not
allowed.

Remark. Note that formula4.2), which is used in the proof of undecidability in Theordn2.2 is not in £,
because contains a positive; b «; with distance3 betweenv; andw,, while £, allows edge patterns with
distance at most.

4.3.2 Describing Linked Data-Structures inz,

In this section, we show that; can express properties of data-structures. &iglists some useful patterns and
their meanings. For example, the first pattéen; means that there is at most one outgojirgdge from a node.
Another important patterans; means that a node has at most one inconfiregige. We use the subscrifito
emphasize that this definition is parametricfin

Well-formed heapsWe assume that’ (the set of constant symbols) contains a constant for eattigoo
variable in the program (denoted by y in our examples). Also(' contains a designated constant/! that
representsiul | values. Throughout the rest of the chapter we assume thtteatiraphs denote well-formed
heaps, i.e., the fields of all objects reachable from cotstame deterministic, and dereferencing NULL yields
null. In £ this is expressed by the formula:

(N N el=rIdety) A (N null(S)null) (4.3)

ceC feF fer

Using the patternsin Figh.2, Fig.4.3defines some interesting properties of data-structuregusi. The for-
mulareach, ., means that the object pointed-to by the program varigide@eachable from the object pointed-to
by the program variable by following an access path gffield pointers. We can also use it withu![ in the place
of y. For example, the formuleeach,, ¢ ... describes a (possibly empty) linked-list pointed-tosdbyNote that
reachy, ¢ nuu iMmplies that the list is acyclic, becausell is always a “sink” node in a well-formed heap. We can
also express that there are no incomjirgdges into the list pointed to by, by conjoining the previous formula
with unshared, ;. We can specify the fact thatis located on a cycle of-edges:cyclic, ;. Disjointness can
be expressed by the formulasjoint, r ., , that uses both forward and backward traversal of edges imtltig
expression. Disjointness of data-structures is impoftarparallelization (e.g., seédHN92]). For example, we
can express that the linked list pointed to:bys disjoint from the linked-list pointed to by, using the formula
disjoint, ¢, ¢. This formula guarantees that every nadiat is reachable from the node pointed-toibysing
an f-path mushot be reachable from using anf-path. Howevery may be reachable fromusing other edges,
or v maybe a part of another data-structure which shares eleméthty.

The last three examples in Fig.3 specify data-structures with multiple fields. The formitaerse, ¢,
describes a doubly-linked list with variablesndy pointing to the head and the tail of the list, respectivelyst-
it guarantees the existence of gpath. Next, it uses the patteinv,;, to express that if there is afredge from
one node to another, then there i8-adge in the opposite direction. This pattern is appliedito@des on the
f-path that starts from and that does not visit, expressed using the testy” in the routing expression.
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Name Formula
reachy, (1) )y
the heap object pointed-to lyyis reachable from the heap object pointed-
to by z.

cyclicy f (L))

cyclicity: the heap object pointed-to hyis located on a cycle.
unshared, y | x[( 1) lunsy

every heap object reachable franby an f-path has at most one incom
ing f-edge.

disjointe fy.g | =(x((L)"(2)")y)

disjointness: there is no heap object that is reachable frbynan f-path
and also reachable frogby ag-path.

sameg. f.q z[( L] 9,)*]sames 4

the f-path and theg-path fromz are parallel, and traverse the same ob-
jects.

inversey guy | reachy g, A x[( 1. o) linvyp

doubly-linked lists between two variablesndy with f andb as forward
and backward edges.

treeroot,rl root[(_L] )" [(uns, Auns; Auns,) A ﬂ(root<(_l)|i>)+>r00t)
tree rooted atoot.

treeroot,r b treeroot,r,l N\ Toot[(_l).|l))*]im)lyb A invrp _
tree rooted atoot with parent pointer$ from every tree node to its

parent.

Figure 4.3: Properties of data-structures expresséd in

The formulatree, ot - describes a binary tree. The first part requires that theswebehable from the root
(by following any path of andr fields) not be heap-shared. The second part prevents eadgepainting back
to the root of the tree by forbidding the root to participate@icycle. The formuléree, oot 1., describes a binary
tree rooted atoot with parent pointersé from every tree node to its parent.

The ability to express properties likeee,..:,»,; iS NoN-trivial, because we are operating on general graphs,
and not just trees. Operating on general graphs allows wsrify that the data-structure invariant is reestablished
after a sequence of low-level mutations that temporarityate the data-structure invariant.

Unary relations symbols can be used to describe data valuess limited domain, and their interaction with
the structural properties of the heap. For example, forewtieecan specify that both children of every white node
are green:

let wg(vo) & (white(vo) A (vo_tv1) = green(vi)) A (white(vo) A (vo r,v1) = green(vi))

in root[(_l>|L>)*]wg

Moreover, unary information can be used to describe stdteljects, and sets of objects.

4.3.3 Expressing Verification Conditions inZ,
The Reverse Procedure

Ther ever se procedure shown in Figt.4 performs in-place reversal of a singly-linked list. Thi:pedure is
interesting because it destructively updates the list andtaral specification of its partial correctness requires
reasoning about two fields. Moreover, it manipulates linkgtg in which each list node can be pointed-to from
the outside. We show that the verification conditions forpghecedure ever se can be expressed ify;. If the
verification conditions are valid, then the program is éisticorrect with respect to the specification. The validity
of the verification conditions can be checked automatidaiyause the logi€; is decidable, as shown in the next
section. We can show how to automatically generate veiidicatonditions inL, for arbitrary procedures that
are annotated with preconditions, postconditions, ang ipeariants in’; .
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Node reverse(Node x){
[0] Node y = null;
[1] while (x !'= null){
[2] Node t = X.n;
[ 3] X.n =y,

[ 4] y =X
[ 5] X =t;
[6] }

[7] return vy;

Figure 4.4: The ever se procedure performs in-place reversal of a singly-linketl li

1 1 6
z0 y zh,y 28
’n.O ’n.O TLO ’n.O TLO
O O O O O O
716 716 n6 n6

Figure 4.5: An example graph that satisfies ¥h€;,,,, formula forr ever se.

Notice that in this section we assume that all graphs deralie states, i.e., satisfy4(3). The precondition
requires thatr point to an acyclic list, on entry to the procedure. We usesgmabolsz® andn® to record the
values of the variable and then-field on entry to the procedure.

Preveverse = x0((n%)*)null

The postcondition ensures that the result is an acyclipbstted-to byy. Most importantly, it ensures that each
edge of the original list is reversed in the returned listioliis expressed in a similar way to a doubly-linked list,
usinginverse formula. We use the relation symbal$ andn” to refer to the values on exit.

def 7 7\ % .
POStreverse = Y ((70)*)null A inverseyo 0 7 47

The loop invarianty shown below relates the heap on entry to the procedure toeiue &t the beginning of each
loop iteration (ling 1] ).First, we require that the part of the list reachable frobe the same as it was on entry
torever se. Second, the list reachable frogs reversed from its initial state. Finally, the only origlredge
outgoing ofy is to z.

0

n 1
—

o= 54MeL1 10 1 A TNVETSE 0 1o 1 1 A yH(n)x
Note that the postcondition uses two binary relatiasfsandn”, and also the loop invariant uses two binary
relations,n® andn'. This illustrates that reasoning about singly-linkedslistay involve more than one binary
relation.

The verification condition of ever se consists of two partd/ Cj,, andV Ce.i:, €xplained below.

The formulaV Cj,,, expresses the fact thatis indeed a loop invariant. To express it in our logic, we use
several copies of the vocabulary, one for each program p@ifferent copies of the relation symbalin the
graph model values of the field at different program points. Similarly, for constants. Eaample, Fig4.5
shows a graph that satisfies the formil&’,., below. It models a heap at the end of some loop iteration of
rever se. The superscripts of the symbol names denote the corresgppicbgram points.

To show that the loop invariant is maintained after executing the loop body, we assume ligalbbp con-
dition and the loop invariant hold at the beginning of thedt®n, and show that the loop body was executed
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Node append(Node x, Node y) {
[0] Node t = x;
[1] if (t == null)
[2] return vy;
[3] while (t.n !=null) {
[ 4] t =1t.n;
[5] }
[6] t.n =y;
[7] return x;

Figure 4.6: Theappend procedure concatenates two singly-linked lists.

without performing a null-dereference, and the loop irsmarholds at the end of the loop body:

VCioop 2 (2" # null) loop is entered
A loop invariant holds on loop head
Ayt =2zt Azt (nh)zb Azt (n®)y! loop body
ASaMey1 p1 p6 N SAMEL6 1 16 rest of the heap remains unchanged
= (2" # null) no null-derefernce in the body
NS loop invariant after executing loop body

Here,°® denotes the loop-invariant formulaafter executing the loop body (lirfe5] ), i.e., replacing all occur-
rences ofr!, y! andn' in ¢ by 2°, y¢ andn®, respectively. The formul® Cy,,, defines a relation between three
states: on entry to the procedure, at the beginning of a leoation and at the end of a loop iteration.

The formulaV C.,;; expresses the fact that if the precondition holds and theugian reaches the exit of the
procedure (i.e., the loop is not entered because the loagittmmdoes not hold), the postcondition holds on exit:

Vit Zpre A (2° = ') A (2! = null) = post.

The Append Procedure

Theappend procedure given in Figl.6 concatenates two singly-linked lists.

To describe the effect of a procedure on the heap, we sonmetisgauxiliary relations and constants, whose
interpretation is constrained in the precondition, andlusghe postconditions. It allows us to relate the values
after a call to a procedure returns to the values before #iatMote that the auxiliary constant does not have an
index, because it is not part of the program. In this exampéeuse the auxiliary constafitst to label the last
node of the first list.

The precondition for append requires thandy point to acyclic and disjoint lists, and defines the meaning
of the new constanitst:

Preappend = x0<(n_°>)*>null A y0<(n_°>)*>null N disjoint o po yo no/A
29((n0 . —null)*)last A last(n]ynull

The postcondition for append usesto denote the return value, which points to an acyclic lisises the constant
last to identify the object whoseext field was modified by the procedure.

POStappend = ar7<n_7>*>null AT =20 Alast(n? )y A
2V[(n].—last)*]sameno 7 A yo["_(i*]sameno,M

4.3.4 Characterizing Shape Abstractions inC;

Recall thaty operation maps every abstract valu®f a given abstract domain to a logical formula, called a
characteristic formulawhose meaning is exactly the sgt:). Specifically, [for03, YRSWO07, gives an algorithm
for 7 that characterizes canonical abstracti®RW03 using first-order logic with transitive closure. The preful
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is that automatic reasoning in first-order logic with traimsi closure is difficult, as discussed in Sectibi3.4
Instead, we can use a decidable logicto characterize certain shape abstractions sucMaRE05 LAIS06].
In particular, we show in this section how to characterizeshape abstraction describedih{RS05.
The abstraction offIYRS05 is designed for programs operating on singly-linked liStke idea is to sum-
marize list elements on unshared list segments not poiategi-local variables. An object is anterruptionif it
is pointed-to by a variable (or null) or heap-shared (i.as two or more predecessors). Aminterrupted listis a
path delimited by two interruptions that does not contatarnruptions other than the delimiters.
The abstraction of a concrete state is performed in thr@gs:ste
(a) remove all garbage objects (i.e., objects not reactiedateany program variable),
(b) partition the heap into uninterrupted lists, where dasthis delimited by a pair of interruption objects,
(c) abstract the path length of the uninterrupted lists‘iafid (exactly one edge) and*1" (more than one edge).
It is easy to describe an uninterrupted list4n. The main difficulty in specifyingy in £, is that not all
interruption objects have unique names. That is, an indion object can be a heap-shared object that is not
pointed-to by a program variable. Fortunately, the reitricto singly-linked lists allows us to uniquely identify
each of these objects by its distance (defined by the numbeninferrupted lists) from objects pointed-to by
program variables. For every program variabl@e count the interruption objects on the (unique) path extiag
from z, and mark the-th interruption with an auxiliary variable;. We need at most? auxiliary variables to
mark all interruptions, because every simple path in a gggieee heap, consisting of only singly-linked lists
with n program variables, contains at masinterruptions.

Logical representation of concrete states Given a set of program variabl¥ar, wheren = |Var|, we define the
vocabularyr = {C,U, F} whereC = {z; | x € Var,0 < i < n} UVarU {null}, U is empty, andF’ = {f}. A
graphG overr represents a valid concrete state wlkigrepresents a well-formed heap (i.e., satisfies the formula
WF given in @.3)), and for everyr € Var, and for everyi = 0, ...,n, the constant symbal; is interpreted

as thei-th interruption on the unique path from the object pointedy a variable:. In particular,z andx, are
interpreted by the same nodedh If there are less than interruptions reachable from, then the remaining
auxiliary variables are interpreted by the same nodeuds

Characterization of abstraction An abstract value is a set of shape graphs. A shape gfa@s defined
in [MBC*07], is a quadruple{Node§, Edges, Env”, Len®), whereNodesis the set of nodes, which represent
the interruption objects and the designated! node,Edges C Node$S x Nodes is a set of edges, each of
which represents an uninterrupted ligtpv® : Var U {null} — Node§ maps program variables (and null) to
nodes, and.en®: Edges® — {=1,>1} maps edges to their (abstracted) lengths. We omit the sti@rs
when no confusion is likely.

The# operation returns afd; formula overr, computed as described below.

For every shape grapiVodes, Edges, Env, Len), we compute the mapping: C' — Nodesas follows:

m(null) := Env(null)

For every x € Var
m(z) == Env(x)
m(xo) := Env(x)

For every z e Var, For every i=1,...,.n—1
I'f m(x;) =m(null) then m(xz;11) := m(null)
el se m(z;11) :=v" where (m(z;),v") € Edges

The mappingn extendsEnwv with auxiliary variables. Foi = 1,...,n, we define the formulg[z;] which
characterizes uninterrupted lists between auxiliaryaldeisz; _; andz;, where the length of a list is given by
Len of the corresponding edge:

s [ Tic1(L)w; if Len(m(z;—1),m(x;))is=1
o] = { $171<_f>_f,+>171 ANai1[( S, mai)Tlunsy Anpt  if Len(m(zi—1), m(x;)) is >1

To enforce that the intermediate nodes on the path frpm to z; are unshared, we use the patterrs ¢, defined
as in Fig.4.2 unss(v) = (v1 Lv) A (v2f,v9) = (v1 = v2). To enforce that the intermediate nodes are not
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pointed-to by any program or auxiliary variable, we use taggsnnpt defined by:

npt(u0) = A\ ¢ # 1

ceC

For every pair of variables;, co € C, we usef.,[c1, c2] to denote the formula; = ¢, if m(c1) = m(c2), and
the formulac; # ¢, otherwise.
Now we can define a formula that characterizes a shape graph:

G EWFA N Ll A N\ €]
c1,c2 € C x € Var
c1 #c1 i=0,..., n

Note that in every grapli: that satisfies(.S), everyz; is interpreted as théth interruption from an object
pointed-to by a variable. That is, two graphs that satisffS) cannot differ only by their interpretation of the
auxiliary variables.

For every abstract valug 7(a) is a disjunction of characteristic formulas for the shapbs that constitute
a: A(a) £ Vge, £(S).

The# operation defined above exactly characterizes the abisinaaftfMYRSO05. That is, for every abstract
valuea, and every grapli’ overr, G = 7(a) if and only if the abstraction of the concrete state reprieskby G
is a shape graph ia.

To simplify the exposition, we use a straightforward enogdif they. Itis possible to optimize this encoding,
in particular, by taking into account the context in whick thformulas are used.

4.4 Decidability of £,

In this section, we show thdt; is decidable for validity and satisfiability. Singg is closed under negation, it is
sufficient to show that it is decidable for satisfiability.e'proof proceeds as follows:

1. Translate aif, formulainto an equivalent formula in weak monadic secoraep(MSO) logic (Lemmd.4.2).

2. Define a class of simple grapls,, for which the Gaifman graph (Definitioh4.4 is a tree with at most
additional edges (Definitios.4.5.

3. Show that the satisfiability of MSO logic ovel;, is decidable, by reduction to MSO logic on tre€ap69
(Lemma4.4.9. We could have also shown decidability using the fact thattee width of all graphs i,
is bounded by, and that MSO logic over graphs with bounded tree width isdidide [Cou89 ALS91,
See9?

4. Every formulay € £, can be effectively translated into an equi-satisfiable raiorm formula that is
a disjunction of formulas itCL£; (Definition 4.4.9and Theoren®.4.13. It is sufficient to show that the
satisfiability of CL; is decidable.

5. Show that if formulay € CL£; has a modelp has a model i, wherek is proportional to the size of the
formulay (Theorem.4.14. This is the main part of the proof, given in detail in Sentb5.

In Section4.6, we extend this proof to show decidability 65.

4.4.1 Translation from £, to MSO

Every regular expressioR can be effectively translated into an MSO formula(z, y), that describes the paths
from x to y labeled withw, for every wordw in R. To encode the Kleene star expression, we use a least fixed
point operation, expressible in MSO logic.

Lemma 4.4.1 Every routing expressioR can be translated into an MSO formula( R)(vy, v2) with two (first-
order) free variables); andwv, such that for every grap and nodes:, b € S, there is anR-path froma to b if
andonly ifS,a,b |= tr(R)(v1, v2).
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Sketch of ProofFor atomic regular expressions and concatenation, we defifi (vy, v2) as follows:

f(’l)l,vg) if R IS_f>
f(l)g,’t)l) if R |S(i
tr(R)(v1,v2) Ll S(c=v)A (v =vy) if Ris—e
u(v1) A (v1 = v2) if Risu
—u(vy) A (v1 = v2) if Ris—u
tr(Ry.Ro)(v1,v2) = Jug.tr(Ry)(v1,vs) A tr(Ra)(vs, v2)

The formulatr(R*)(v1,v2) holds when the minimal sét that containg; and is closed undeR, containsvs.
Formally, we define

tr(R*)(v1,v2) £ Y (v € Y)AQ(v1,Y)AVY .Q(v1,Y') = Y C Y’

whereQ (v, Z) is (v1 € Z) AV, vh.(v] € Z) A pr(vy,vh) = (vh € Z).

def

For example, the routing expressidn= (n.—y)* is translated into the MSO formuta(R)(z,v) = 3Y.(v €
YIAQ(z, Y)AVY'.Q(x,Y') =Y C Y/, whereQ(z, Z) is (z € Z)AVvi, vh.(v] € Z)ATvs.(f(v], v5) A—(x =
vh) A (vh = vh)) = (v} € Z).

Using the translation of regular expressions as definedeghbis easy to translate a genetal formula to
anequivalentMSO formula. Forp € L, overr, T Ra(p) is an MSO formula over the same vocabularyThe
translationl’ R is defined inductively:

TRz (c[R]p) & Yo, V1, -+, Un-pr(C,00) = p(vo, ..., Un)
TRa(p1 Apa) = TRa(1) ATRa(p2)
T Ra(—¢1) £ ~TRs(p1)

For example, th&, formulay £ 2(n *)y A z[(_n,.~y)*]inv, ., which is part of a loop invariant of the reverse
procedure (Sectioa.3.3, is translated into the MSO formula

TRy(p) = tr( ") (z,y) A Vg, vi.tr((~.—y)*)(z,v0) = (n(ve,v1) = n’(vi,v0))
wheretr( »*) andtr((_».—y)*) are defined as above.

Lemma 4.4.2 Forall ¢ € £y and all graphsS, S |= ¢ iff S |= T Ra(¢p).

4.4.2 Decidability of MSO on Ayah Graphs
We define a sef'* of undirected graphs, each of which is a fregth at mostk extra edges.

Definition 4.4.3 An undirectedgraph B is in T* if removing self loops and at moktadditional edges fronB
results in an acyclic (undirected) graph.

For a directed graph we define the corresponding undirectgahg

Definition 4.4.4 LetG(.S) denote the&Gaifman graph of the graphS, i.e., an undirected graph obtained frash
by removing node labels, edge labels, and edge directiams garallel edges).

We define a notion of simple tree-like (directed) graphdedalyahgraphs.

Definition 4.4.5 (Ayah Graphs)For k > 0, an Ayah graph of is a graphS whose Gaifman graph is ifi*:
Ar = {S|G(5) € T*}.

Examples of graphs iy, A1, and.A, are shown in Figd.7. Forj = {0, 1, 2}, a structure5; € A; is shown
in the left column, and the corresponding Gaifman grép#;) € 77 is shown in the right column; with dashed
edges. Removing the dashed edges fgiifi; ) yields a tree.

3In this chapter, we use the term “tree” instead of the terme$t’ to refer to an acyclic graph, possibly undirected.
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G(So)

So g(SQ)

Figure 4.7: Examples of graphs ify, A;, andA,. Forj € {0,1,2}, S; € A; (left column) andG(S;) € TV
(right column). Dashed edges denote extra edges removitdhwésults in a tree.

The graphS, describes an acyclic singly-linked list pointed-to by The node labeled withull doesnot
represent an element of the list: it is a “sink” node which eledhenul | value, as explained in Secti@n3.2
In G(So), the self-loop is not dotted because Definitibd.3ignores self-loops. (As we show later, self-loops can
be easily handled, while larger cycles require a more coxtpd@tment.) The grapk, describes a cyclic doubly-
linked list. ING(S1), a single edge represents the parallel edgés @fith different directions and different labels.
The graphS; describes a tree with pointers from every tree node to the tadj(S;), removing a single edge
cannot break both cycles, thus the grajhis in A, but not inAj;.
Remark. For every graply in Ay, the tree widthRS86 Die0( of G(.5) is at mostk + 1, but can it can be strictly
less than that. For example, a graph which consistg aimple disjoint cycles is itd; 7, but its tree width i2.

The satisfiability problem of MSO logic on Ayah graphs can &guced to the satisfiability problem of MSO
logic on trees. The latter is decidable, due to the classezllt by Rabin Rab69. This reduction provides a
constructive way to check satisfiability @f formulas, using an existing decision procedure for MSO ersr
MONA [HJJ"95].

The reduction consists of two satisfiability-preserviranslations: The first is a translatidhR; from MSO
on Ayah graphs to MSO oi-labeled trees, defined below. The second is a transl&tiBn from MSO on
Y-labeled trees to MSO on (infinite) binary trees.

Lemma 4.4.6 There are translation§’R; and T'R, between MSO-formulas such that for every MSO-formula
¢, there exists a graplt’ € A, that satisfiesy if and only if there exists a binary tre€” such thatS’ |
(TRg (o} TR4)(Q0)

We describe here only the translatidiizs, and omit the (standard) translatidniy.

Encoding A, Graphs asX-Labeled Trees

Given the vocabulary = (C, U, F') and a numbek we define a new vocabulary = (C',U’,{E}), whereE
is the only binary relation;” = C U {c!,...,c*yu{d',...,d*}, andU’ = {Fy, By, Ly, F{', B} |f € F,i =
1,...,k}).
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LetX = P(C" UU’) be the set of all possible node labels frafm A -labeled treas a graphS overr’ that
satisfies the following:

1. TheE-edges form a directed forest: each node&ihas at most one incoming edge. AnE-edge from
nodeu; to nodeu, means that:, is a child ofu; in the tree.

2. If a node has no incoming-edge, then it must not be labeled By, B¢, forany f € F.

We us€Ts to denote the set of all-labeled trees.
Every graph in4,, can be represented byalabeled tree. For example, consider the cyclic doublidahlist
S from Fig. 4.7, defined over the vocabularywith C = {z}, U = {}, andF = {f,b}. The new vocabulary

7' consists ofC’' = {z,c!,d'}, U = {F,«,Fb,Ff,Fl;il,Bf,Bgl}, andF’ = {F}. The graphS; can be
represented by the following-labeled tree (actually, it is a list in this example):

B;?.I,Flfl1 Fy, By Fy, By Fy, By
E E E
O - - -0

x,ct d!

The graphS represented by B-labeled tree has the same set of nodes as the tree. Thed#lsetse defined as
follows. A graph node is labeled with the constants and unglgtion symbols that hold for the corresponding
node in the tree. An edge in the tree from nad® v’ represents edges between the corresponding noded
v’ in the graph. Additional labels on tree nodes representitieettbn and the labels of the graph edges adjacent
to the corresponding nodes in the graph, as follows.

For each binary relation symbgle F, we introduce two unary relation symbdiy and B¢, denoting forward
and backward-edge. If there is an edge fromto v’ in the tree, and’ is labeled withF; in the tree, then there is
an f-edge fromw to v’ in S. Similarly, if there is an edge front to v in the tree, and is labeled withB/ in the
tree, then there is aftedge fromw to v’ in S. There is a self-loop of on a nodev in S if the nodev in the tree
is labeled withZ/. Also, each of theé: pairs of constants’ andd’ in a tree represents edges between the nodes
corresponding te’ andd’ in the graph. Ifv is labeled withc? andF;f in the tree, then there is giredge fronw

to the node labeled witl# in S. If v is labeled withc? andB‘;l in the tree, then there is gitedge from the node
labeled withd’ to v in S.

For an MSO formulap overr, T R3(p) is an MSO formula over the vocabulary. The translatior?'Rs is
defined inductively orp, where the only interesting part is the translation of a hyimalation formulaf € F:

TR3(f(v1,v2)) = (E(v1,v2) A Fy(v2))
\/(E(UQ,Ul) /\Bj(vl))
V(E(vl,vg)Avl :UQ/\iLf(’Ul)) - . .
Vi (=viAd = AFF (1)) V(¢ =va Ad' =1 ABY (v2)))

Lemma 4.4.7 Let ¢ be an MSO formula. There is a gragh € Aj, such thatS |= ¢ if and only if there is a
Y-labeled treel’ € Ty, such thatl’ = T R3(y).

Proof: Given a grapls' in A, we can encode it as¥@-labeled tre€l” as follows. First, remove all self loops and
at mostk additional edges from the Gaifman graph$fo obtain an acyclic undirected gragh, It is easy to
transform the undirected graphinto a directed forest’, by choosing one node in every connected component of
U as a root, and directing all edges from it downwards. Therncaveset the labels &f uniquely from the labels

of the corresponding nodes i1 To encode that an edge fis labeled withf, we identify the corresponding
edge inT", and label the target of the edge with a unary relation to rebez the labe)f.

GivenT € Ty, we can uniquely reconstruct the graple A, that corresponds to it. Every node’inthat is
labeled withF; has exactly one incoming edge, which defines the correspgredige inS, labeled withf. For
eacthdT', at most one edge can be createdjrbecausd’ R; guarantees that ifi the source is labeled wittt,
and the target is labeled withi, which are constants.

Theorem 4.4.8 The satisfiability problem of MSO formulas is decidabledn
Proof: Follows from Lemmd.4.6and [Rab69.
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4.4.3 Normal Form of £, Formulas

We define a normal-form formula to be a disjunction of confiors of formulas of the forma(R)c¢’ andc[R]p.

Definition 4.4.9 (Normal-form formulas) A formula in CZ, is of the form

N\ —(ci[Ril=c)) A /\ ¢;[Rilp;

%

A normal-form formula is a disjunction of & formulas.
A formulagy is in CL, if and only ifp € CLy andy € L4, i.e., all the patterns that appear ip satisfy the
requirement of Definitiod.3.1

For a formulay € CL,, we usep,, to denote the first part @, namely A\, —c;[R;|—c;, andyp to denote the
second part op, namely/\; ¢;[R;]p;. We us€|yo | to denote the number of conjuncts in the formula

Note that whileL, is closed under negatio@L is not. The following theorem shows that evely-formula
can be effectively translated into an equi-satisfiable raform formula. The main difficulty is to translate a
formula of the form-¢[R]p, wherep is an arbitrary pattern, into a formula in which negationegs only in front
of constraints of the form’[R]—¢”.

Definition 4.4.10 Let 6 be the formula-c[R]p over 7, wherep(vg) = N(vo,...,vn) = ¥(vo,...,v,). We
introduce new constant symbels . . . , ¢, and define”’ = 7 U {co, ..., ¢, }. We definegr(¢) as follows:

e Translate— into an equivalent negated normal form formulg

e Letd' bec(R)co A N(co,...,cn) N (co, ..., cn), Wwhere every edge formula /,v; that appears inV or
¢’ is replaced by ( £ )c;.#

e If =¢(R)c appears ind’, replace it withc[R]—¢/, to obtainb”.
e Transformd” into an equivalent disjunctive normal form formul4..

e Letir(0) bed” .

The formulatr(0) is a normal-form formula by Definitiod.4.9 because it is a disjunction &€ZL,-formulas.
In fact, ¢tr(0) is a very simple formula: all the patterns in it are of the famme = ¢ # vy. Thus, negation
can appear only in front of reachability constraints of thefc[R]-¢’ whereR does not contain the Kleene star
operator.

Lemma 4.4.11 For a graphS overr, if S satisfied), then there exists an expansion%to 7/, that satisfiegr(6).
For a graphS’” over7’, if S’ |= tr() then the restrictiorS of S to 7 satisfiesp.

Theorem 4.4.12There is a computable translatidhR, from £, to a disjunction of formulas in €, that pre-
serves satisfiability.

Sketch of ProoffFor every formulap € £, overr, the formulal’ R, (y) is a disjunction of formulas €L, over
7/ such thaty is satisfiable if and only if" R, () is satisfiable. The vocabulary is an extension of with new
constant symbols. The translati®iR?; (¢) is defined as follows:

1. Translates into an equivalent formula’ in negated normal form using deMorgan rules to push negation
inwards.

2. Replace every sub-formuta[ R]p that appears ip’ with tr(—c[R]p), as in Definitiord.4.10 The resulting
formulay” is satisfiable if and only if’ is satisfiable, by Lemma4.4.11 Note that this translation only
preserves satisfiability (not equivalence).

3. Translatey” into an equivalent disjunctive normal form formytd’. All atomic formulas are of the form
c[R]~c .

The result of 'Ry () is .

“Recall from Sectiort.1.1thatc(R)c’ is a shorthand forc[R]—c’.
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The translation is applicable to the fully logic, in which case the reachability constraintsgdn can contain
arbitrary patterns.

The translatiorii’ R; may introduce only patterns of the fortnue = c¢o # vy beyond those patterns that
appear in the input formula. This observation yields th&feing corollary:

Corollary 4.4.13 For ¢ € L4, the translationT'R; returns a disjunction of formulas in £ (and preserves
satisfiability).

4.4.4 Decidability of £,

The following theorem states th&%C, has an Ayah-model property, i.e., every satisfigbl®y formulay has a
model in A,y wheref(y) is defined by

Flo) E2xnx|C| x |po (4.4)

Here, we assume that for every routing expression that apfrea,, there is an equivalent automaton with at
mostn states.

Theorem 4.4.14 (Ayah model property of,) If ¢ € CL, is satisfiable, therp is satisfiable by a graph in
Ay ey, Wheref is defined in4.4).

A non-trivial proof of this theorem is presented in Sectibi

Theorem 4.4.15The satisfiability problem of, is decidable.
Proof: Follows from combining the results of Theordm.12 Theorend.4.14 Lemma4.4.2 Theoren®.4.8

4.5 Ayah Model Property of £,

In this section we provide a detailed proof of the main tecahtiheorem of this chapter, Theoren#.14 Before
diving into the details, we explain the main proof at a highell.

Given a normal-form formula € CL£; and a graplf such thatS = ¢, we construct a graph’ and show
thatS’ = p andS’ € Ay.

The construction operates as follows. We construct a préet of .S and, which satisfies all constraints
of the formc(R)¢’ in . The idea is to extract frorfi a witness path for each constraint of the farf®)c’ in ¢,
and defineSy to be the union of these witness paths (Secticng.

The pre-modeb, may violate some of the constraints of the faffRR]p in ¢. Consider the case when the pat-
ternp contains a positive occurrence of edge formula or equalityfila. If a graptG violates a constrain{ R]p,
then there is an enabled merge operation or edge-additenatipn, depending on the patterifSectior4.5.3.

For example, ip is of the formN (vg, v1, v2) = v1 = ve, it defines a merge operation. We say that this merge
operation is enabled in a gragh (by ¢[R]p) whenG contains a nodey, reachable by amR-path fromc¢ and
distinctnodesw; andw, forming the neighborhood (wy, w1, ws). Applying this operation means merging the
nodesw; andw,. After mergingw; andw,, other merge operations may still be enablediby c[R]p. If there
are no more enabled operationsinthenG |= ¢[R]p. Similarly, if p is of the formN (v, vi,v2) = v1 L vy, it
defines an edge-addition operation. Applying this openati@ans adding aftedge.

Given a pre-mode$, we apply all enabled operations in any order, producingiaesece of distinct graphs
So, S1, ... until the last graptt’ has no enabled operations. Thigs,satisfies all constraints of the forehR|p
wherep contains a positive occurrence of edge formula or equaditynfila. We show that applying any enabled
operation preserves witness paths for the constrainteedbitm ¢(R)¢’. Thus,S” also satisfies all constraints of
the forme(R)c’. This construction also guarantees tiasatisfies all the constraints of the foufR]p wherep
is a negative formula. To show this formally, we use homorhmps (Sectiort.5.4 which preserves existence
of edges and both existence and absence of labels on nodssrfing absence of labels is non-standard).

Finally, the fact thatS’ is in Ay, is proved by induction. By constructiofy is in A (Lemma4.5.13), and
Ay, is closed under operations enabled®yformulas (Lemmat.5.5. The proof of closure properties of;, is
based on closure properties for a class of undirected grdphd.emma4.5.1).
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The rest of the section describes the building blocks of tto@fpof Theorem4.4.14 closure properties of
T* (Sectiond.5.), closure properties ofl;, (Section4.5.9, the definition of operations enabled By formulas
(Section4.5.3, the definition of homomorphism relation and its properti§ection4.5.4, and the definition
of witness splitting and properties of a pre-model (Secttdny. The proof of Theorerd.4.14concludes the
section.

4.5.1 Trees with Extra Edges

Recall from Definition4.4.3thatT"* is a set of undirected graphs that are trees witixtra edges. In this section
we prove thafl'* is closed under merging of vertices at distance at raost

Thedistancebetween the vertices, andwv, in an undirected grapP is the number of edges on the shortest
path betweem; andw, in B.

Merging two vertices in an undirected graph is defined in thgaliway, by gluing these vertices. Formally,
let the undirected grapB’ denote the result of merging nodes andwv, in B. The set of vertices oB’ is
VB E (VB {vy,v2}) U {v12}, wherev, is a new vertex. Letn: VB — V5’ be defined as follows:

(v) = vip  Ifv=wv;0rv=uy

MU= otherwise

If there is an edge between the verticag andv, in B then there is an edge(e) betweenn(v;) andm(vz) in
B. If there is an edge betweenv| andv), in B’ then there exist verticag andv, in B such thatn(v,) = v},
m(ve) = v}, and there is an edge betwegnandwvs in B.

Lemma 4.5.1 Assume thaB is in T* and verticesy; andv, are at distance at most two iB. The graphB’
obtained fromB by mergingu; andw, in B is also inT*.

Proof: By definition of 7%, there exists a set of edgés C E such thatB \ D, denoted byT", is acyclic and
|D| < k. We show how to transfori into D’ C E’ such thatB’ \ D’, denoted byl", is acyclic andD’| < k.
We consider only the case whenanduvs are at distance of exactly two i, i.e., there is a vertex, distinct form

v1 andwvs, an edges; betweernv; andwvg, and an edge; betweervy andv,. We consider three cases, depicted in
Fig. 4.8

e Ifer,ea ¢ D, letD" = {m(e)|le € D}.

e Assume that; ¢ D andey; € D. If vy is not reachable from; in T, let D’ = {m(e)|e € D}, thus
D' < k.

If v is reachable frony; in 7', there is at most one (simple) path framto v, in T, becausd’ is acyclic.
If the path contains;, we defineD’ as beforeD’ = {m(e)le € D}.

If the path fromw; to v, does not contain,, letes be the first edge on the path framto v- (see the second
case in Fig4.8).°> To obtainD’ from D, we removee; and addes: D' = ({m(e)|le € D} \ {m(e2)}) U
{m(e3)}. The size ofD’ is the same as the size bf, because: € D.

e Assumethaty,es € D. If vy is notreachable from;, we can use the simple constructibh= {m(e)|e €
D}. It follows that|D’| = |D| — 1, because both; andes are mapped to the same edge= m(e;) =
m(ez), and no multiple edges are allowed.

If vo is reachable fromry, let es be the first edge on the path. We define= {m(e)le € D} U {m(es3)}
(see the third case in Fig.8). Same construction applies whenor v, are reachable fromy.

5Note that we cannot use the simfl¥ definition as before, because mergimgandws in T to obtainT” creates a cycle that does not
involve e;. We observe that, in this case, the subgraph reachabledrdhroughe; in 7' remains acyclic after the merge operation, because
it is disjoint from the subtree afy. Thus,e; need not be removed froffi.
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€1,€2 ¢ D

e1 ¢ D,es €D

el,ea €D

Figure 4.8: Merge operation di'-graphs. Dotted lines represent additional edges, i.ge®df al'’*-graph that
do not belong to the tree. The vertex and the edge; in 7" result from merging the verticag andwv., and
the edgeg; andes in T'.
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4.5.2 Ayah Graphs

In this section we prove thad,, is closed under edge-addition operations at distance dtonegLemma.5.2),
and under merge operations at distance at ra@istmmad4.5.3.

Thedistancebetween nodes; andv, in a graphS is the distance between andvs in G(S), i.e., the number
of edges on the shortest path betweemndv, in G(5).

Itis easy to see thad, is closed under edge-addition operations at distance dtoneswhich means adding
an edge in parallel to an existing one (distance one) or gdalself-loop (distance zero).

Lemma 4.5.2 (Adding edges at distance 1 in A;) Assume that the grap$ is obtained fromS by adding an
edge fromw; tows in S. If S'is in A, and nodes; andwv, are at distance at mostin S, thenS’ isin Ay.

Proof: Distance at modtbetweeny; andv, means that there is already an edge betwgeandwv,. Addition of
edges taS in parallel to existing edges does not affect @(&), and self-loops do not affe@t*.

Merging two nodes in a graph is defined in the usual way by glthiese nodes. Formally, 18t be the result
of merging the nodes; andwvs in S. The set of nodes o’ is ys & (VSN {v1,v2}) U {v12}, wherevs is a
new node. We definer: V5 — V5 as follows:

[ v fuo=viorv=1
m(v) = herwi
v otherwise

The interpretation of constant and relation symbol§'is defined as follows:

1. For every constant symbole 7, and for every node € S, v is labeled withc in S if and only if m(v) is
labeled withc in 5.

2. For every unary relation symbelc 7, and for every node € S, if v is labeled witho in S thenm(v) is
labeled witho in 5.

3. For every unary relation symbele 7, and for every node’ € S’, if v is labeled witho in S’ then there
exists a node in S such thatn(v) = v" andw is labeled witho in S.

4. For every binary relation symbele 7, and every pair of nodes;, wy € S, if there is an edge from; to
wy labeled witho then there is an edge from(w; ) to m(wz) in S’ labeled witho.

5. for every binary relation symbel € 7, and every pair of nodes), w) € ', if there is an edge from/|
to w}, labeled witho in S’ then there are nodes, andws in S such thatn(w;) = wi, m(wz) = w), and
there is an edge froms; to ws in S labeled witho.

Later, we guarantee that merge operations are applied ornthose nodes which are labeled by the same unary
relations and constants.

The proofthat4,, is closed under merge operations at distance at most tweésllman the result of Lemn#g5.1
from the previous section.

Lemma 4.5.3 (Merging nodes at distance< 2 in Ax) Assume that the grap$ is obtained fromS by merging

vy andvy in S. If S'is in A, and nodes; andwv, are at distance at mogtin .S, thenS’ is in Ay.

Proof: To show thab’ € Ay, it is sufficient to show tha§(S’) € T*. We use the definitions of a Gaifman graph
and a merging operation. First, merging the node$(éf) that correspond to; andwvs in G(.S), results inG(S’).
Second, the distance betweenandwv, in G(S) is at most2 because the distance between the corresponding
nodes inS is at mos®. Third,G(S) € T*, becaus& € Ay. Thus, using Lemma.5.1 we get thatj (S") € T*.

4.5.3 Graph Operations Enabled by, Formulas

The notion of enabled operations defined in this section &l der defining the construction in the proof of
Theoremd.4.14

Let p(vo) e N(vg,...,vn) = (v, ...,v,) be anl; pattern. LetS be a graph, and, ws nodes inS.

We say thaimerge operation ofv; and w- is enabled(by ¢[R]p) when (a) the equality between variables
(v1 = vo) appears positively i, (b) we can assign nodes), . . ., w, to v, ..., v,, respectively, such that there
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is anR-path frome to wg, N (wo, . . . , wy, ) holds but) (wy, . . ., w, ) does not hold, and (h); andw, aredistinct
nodes. Merging the nodes, andw, disables this merge operation (other merge operations titldyesenabled
after mergingv; andws,).

We say thatedge-addition between; and w; is enabled(by c[R]p) when (a) the edge formula; £, v7)
appears positively iny, (b) we can assign nodes, . .., w, to vy, ..., v,, respectively, such that there is an
R-path frome to wg, N (wy, . . . , wy,) holds but)(wo, . . ., w,) does not hold, and (c) therern® f-edge fromw,
to we. We can add arf-edge fromw; andw, to discharge this assignment.

Lemma 4.5.4 Let N (vy,...,v,) be aneighborhood formula, artibe a graph with an assignmentig, . . . , v,
that satisfiegV. If the variablesy; and v, are at distance at mogtin N, then the nodes assigneddp and v,
are at distance at mogtin S.

Proof: Follows from the definition of neighborhood as a coijion of edges (Definitiod.1.2.

The following lemma is the key observation of the proof.

Lemma 4.5.5 Let p(vp) « N(vg,v1,...,0,) = ¢¥(vo,...,v,) be anl; pattern. LetS be a graph, andvy, ws
nodes inS. Assume that a merge (an edge-addition) operation is edabla graphS between nodes; andws
by a reachability constraint[R]p. If S € Ay, then the result of merging (adding an edge) betweemandws, is

a graphinAy.
Proof: Suppose that a merge operation is enabledi ietween nodes; andws. It is possible to assign nodes
wo, . . ., Wy, to the variablesy, . .., v,, such thatV holds. In particularw, is assigned t@; andws is assigned

to v9, and the equality; = v, appears positively in. According to the equality restriction ofy patternspy,
andwv, are at distance at mos&tin N. By Lemma4.5.4 w; andw, are at distance at mo8tin S. Thus, by
Lemma4.5.3we get that the result of merging; andws- is a graph ind;, because is in A;. The proof for
edge-addition is similar, using Lemmab.2

4.5.4 Homomorphism Preservation

In this section, we give a slightly non-standard definitibh@amomorphism between graphs. It preserves existence
of edges and both existence and absence of labels on nodssrfgng absence of labels is non-standard). The
homomorphism relation is preserved Gf, formulas, and also by merging operations.

Definition 4.5.6 (Homomorphism)Let .S; and Sy be graphs over the same vocabulary A homomorphism
from S, to S, is a mapping:: V51 — V2 such that

1. for every constant symbol and unary relation symbael 7, and for every € S1, v is labeled witho in Sy
if and only if(v) is labeled witho in Ss.

2. for every binary relation symbel € 7, and every pair of nodes,, v € Sy, if there is an edge from, to
vg In Sy labeled witho, then there is an edge frof(v;) to h(vz) in So labeled withe.

Lemma4.5.7 Leth: S; — So be a homomorphism. §; = ¢1(R)cs thenSy = ¢1(R)co. Dually, if Sy =
¢[R]p, andp does not contain positive occurrences of edge formulas oaldg formulas, thers; = ¢[R]p.
Sketch of Prooflf S; | ¢1(R)cs, there exists aiR-path frome; to ¢o. By definition of homomorphism froms;
to Ss, the same path exists #%. Thus,Ss = ¢1(R)co.

For the sake of contradiction, assume that= c[R]p but Sy £ ¢[R]p. Thatis, there exists aR-path frome
to some node in S; andv does not satisfy the pattepn The same path exists 1, due to the homomorphism
from S; to S,. To obtain a contradiction, we show thgt) does not satisfy the patteprin S2. The formulap is
of the form N =- ¢, whereN contains only positive occurrences of edge formulas. Byragsion, we get thap
does not contain positive occurrences of edge formulasualitg formulas. Thus, the formujadoes not contain
positive occurrences of edge formulas and equality forgiuliaS; does not satisfy, there exists a subgraph in
Sy which satisfiesp. This subgraph exists ifi; as well, due to homomorphistnThus, S, satisfies—p, and a
contradiction is obtained.

Lemma 4.5.8 Assume thaf is a homomorphism fror; to S, and.S; is obtained by merging the nodesand
vo In S1. If f(v1) = f(v2) then there is a homomorphism frofp to S.

SNote that—p may contain negative occurrences of unary formulas, bsethee also preserved under the (non-standard) homomurphis
relation we are using.
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Figure 4.9: The graply satisfies the formula ind(5), andS € A;. A pre-model ofS' is Sy. Note thatSy € A,.
The graphS; is the result of applying a merge operationdg Note thatS; satisfies the formula in4(5), and
S1 € Ag. The graphs; is the final result of the construction used in the proof ofdrieen4.4.14

4.5.5 Witness Splitting

A witnessIV for ¢;(R)cs in @ graph.S, is a path inS, labeled with a wordv € L(R), from the node labeled
with ¢; to the node labeled with,. Note that the nodes and edges on a witness patR fazed not be distincts
contains a witness fan (R)c, if and only if S' |= ¢1 (R)ca.

Using a witnessV for ¢; (R)co in S, we construct a grapi’’ that consists of a path, also labeled with
that starts at the node labeled byand ends at the node labeled &y Intuitively, we creatdV’ by duplicating
a node ofS each time the witness paili traverses it, unless the node is labeled with a constant.nddes in
W’ are named, ; wherev is a node inS and/ > 0 is an integer. Fot > 0, a nodet,, ; in W’ corresponds to
the [-th occurrence of on the witness pathl/, if a nodew in S is not labeled with a constant. ifis labeled
with a constant, we create for it a unique nadg in W’ even ifv is traversed several times BY. As a result,
all shared nodes ifi’’ are labeled with constants. Also, every cycle contains & @geled with a constant. By
construction}V’ satisfiesc; (R)cs.

For example, consider the formula

def *

o =a( L)z Ay ( 91 (clu). 1) )z A cle]lunsy (4.5)

wherew is a unary relation symbol andis a constant symbol. Figt.9 shows a graphs’ which satisfies
¢. The shortest witness path far( /. ")z is labeled with the word/,. /.. /.. The shortest witness path for
y(S..(9.7 (clu). 4,)*)z is labeled with the word/,. 9.. 9.. 9, .u. /.. 9..c. /,. Note that this witness traverses each
of the nodes labeled hyand byc twice. To split this witness, the node marked:bis duplicated, while the node
marked byc is not duplicated, becausgés a constant. After splitting the witnesses, we constrymeamodel of
S, denoted bys, by taking the union of both witness paths and merging theeaad the different witness paths
which are labeled with the same constant.

Formally, the witness pati’ is a sequence of nodes frao$h ¢4, ¢o, ..., ., wheret; € S. Let C(t;) denote



60 CHAPTER4. LOGIC OFREACHABLE PATTERNS IN LINKED DATA-STRUCTURES

def

the set of constant symbols that label the nad€'(¢;) =
follows:

{0 € C|C%(0) = t;}. We define a mappind(t;) as

d(t;) & tv,0 if C(t;) # 0 andt, is the nodey
Y e if ¢; is thel-th occurrence of the nodee S on the patiV’

W'is a graph with node$&d(¢1), . .., d(¢,)}. If the witness patii?” goes from; to ¢;41 through an edge labeled
with f; € F, then there is an edge Y’ labeled withf; from d(¢;) to d(¢;+1). Note thatiW’ contains only edges
traversed by the witness path. For every unary relation andtent symbot € C U U and node; € W, d(t;)
is labeled witho in W if and only if ¢; is labeled withs in S.

We say thall”’ is the result ofplitting the witnessV. We say thatV is theshortest witnesor ¢, (R)c, if
any other witness path fef (R)c; is at least as long d&/.

For a formulap € CL£; and a grapt$ such thatS |= ¢, we define gpre-model of 85 and ¢ to be the graph
Sy constructed as follows.

e Let W, denote a shortest witness$hfor everyc;(R)c, in ¢o.
o LetW] be the result of splitting the witnesg;. Lett, ; be the names the nodesiaf.
e Let S| be a disjoint union of all¥;’s.

e Foreveryc € C, if 5, does not contain any node labeled wittadd a new nod€) , to Sj, wherev is the
node inS labeled withe. Forallo € C'U U, 1 , is labeled witho in S if and only if v is labeled witho
in S.

e The graphSj is the result of merging all nodes that are labeled with tieeseonstants, i.e., nodqg0 for
all i are merged and the new node narrggl

Note thatS| cannot be used as a legal interpretationdgformulas overr, because it may contain several nodes
labeled with the same constant, or no interpretation foresoamstants. These problems are addressed by the last
two steps of the construction.

By construction Sy contains a witness for eaeh(R)cs in ¢ .

Lemma4.5.91f S = p andS, is a pre-model of and, thenSy = .

Lemma 4.5.10Let.S, be a pre-model of andy. There is a homomorphishg : Sy — S defined b)ho(ti_’l) = .

Proof: We definey: S{ — S by hj(t! ;) = v. The mapping:, preserves existence of edges and the presence
and absence of node labels betw%rhnds because it is preserved for evdfly’ separately, by definition of
witness splitting, and}) is adisjointunion of WW/s. Thus}y, is a homomorphism.

Because5 is obtained fromS), by merging nodes that are mappediyto the same node iff, the mapping
ho is also a homomorphism, by Lemmab.8

Lemma 4.5.11For ¢ € CLy, if Sy is a pre-model o andy, thenSy € Ay (), wheref is defined in 4.4).
Proof:

Recall that for every routing expression that appeargnthere is an equivalent automaton with at most
n states. If a node is visited more than once in the same stdteeafutomaton, the path can be shortened by
removing the part traversed between the two visits. Thubpaest witness visits a node at mastimes. In the
worst case, each time a shortest witness visits a node gitseand exits the node with a different edge. Because
Sp consists of,| shortest witnesses, there are at nibstn x |¢¢ | edges adjacent to any node.

In fact, by construction of, only nodes labeled by constantsSp can have more than two adjacent edges.
Thus, every (simple) cycle if, must go through a constant. To break all cyclesgn(and, thus, in its Gaifman
graph), it is sufficient to remove all the edges adjacent tiesdabeled with constants, i.e., at mbst 2 x n x
loo| x |C| edges. It follows thab, € A.”

"This bound is not tight.
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4.5.6 Aj,-Model Property of £,

Theorem4.4.14Ayah model property of £,) If ¢ € CL, is satisfiable, thew is satisfiable by a graph inl (),
wheref is defined in4.4).
Proof: Given a grapl$' such thatS = ¢, we construct a grapB’ and show that” € A, andS’ = ¢.

First, we construct a pre-modg} of S andy, and define the mappirig : Sp — S accordingto Lemma4.5.10
Then, we apply all enabled merge operations and all enalige-addition operations in any order, producing a
sequence of distinct grapi¥g, S1, ..., S., until S,. has no enabled operations. The reslil= S..

Formally, for every[R]p € ¢ and ever pair of nodes;, ws € S;,

e If a merge operation is enabled, ahg(w,) = h;(w2) in S; then construck;1 by mergingw; andws,
and defingi;y1: S;41 — Stobehjii(w) = hj(wy) if wis the result of merging); andw,, otherwise

hyan(w) = hy(w).

e If an edge-addition operation is enabled foe F', and there is arf-edge from; (w1 ) to h;j(w2) in S then
constructS;; by adding anf-edge fromw, to w9, and definéy;;1: S;41 — S to be the same ds;.

For example, the pre-mod8l, shown in Fig.4.9 does not satisfy the constraitft|uns; from (4.5, which
requires that the node labeled withave at most one incominfyedge. The result of applying the corresponding
merge operation is the structusg, also shown in Fig4.9.

An enabled merge operation is not applieddf the corresponding nodes in the original modedre distinct.
Similarly, an enabled edge-addition is not applied, unteescorresponding edge is presentinThis allows us
to deal with disjunctions in patterns. For example,

def

let p(vo) = (vo f,v1) = (vo =v1 V (v 9,v1) V (v99,v1)) In
(L) N7 Ip A (e # )

Suppose thabj looks like this: @_J;@The nodesw; andw, are labeled with the constantsand ¢/,

C cl
respectively. Both merge and edge-addition operations@abled inSy by c[i)*]p. Had we applied the merge
operation, we would have immediately obtained a contramtictith ¢ # ¢’. However, if we consult the original
model, we find out that the corresponding nodes are distibat, there is ay-edge between them. Therefore,
adding ag-edge toS, would not lead to a contradiction.
Remark. Even when we consult witly' whether to apply an enabled operation or not, we do not mege m
than necessary, or add more edges than necessary. In theusrexample, after addingthe formula holds,
i.e., the edge-addition operation gfis not enabled any more. However, a different order of appibo of the
enable operations may produce different graphs at the emdurfately, it does not affect the size 4f;, or the
decidability.

The process described above terminates after a finite nuofilsezps, because in each step either the number
of nodes in the graph is decreased (by merge operationsgaruimber of edges is increased (by edge-addition
operations). For a fixed vocabulary and a fixed number of naleshnumber of edges that can be added to the
graph is bounded, because a pair of nodes in a graph can hexasabnef edge in each direction, for every
ferF.

To show thatS’ € A, we prove a stronger claim that for gl] S; € Aj. In particular, it follows that
S’ € Ax. Recall that all operations applied in the process aboverabled by, patterns. The key observation
of the proofis that4,, is closed under all operations enableddypatterns (Lemma4.5.5. This is the only place
in our proof where we use the distance restrictiof pfpatterns. The proof proceeds by induction on the process
described above. Initiallyy, is in A, by Lemma4.5.11 By inductive hypothesisS; € A;,. BecauseS;; is
obtained fromS; by an operation that is enabled by Ap pattern, we get that;; € Ay, using Lemmat.5.5

To show thatS’ = ¢, we observe that the graphs generated by the process aleonedagied to each other by
different homomorphism relations (Definiti@n5.9, as depicted in Figd.1Q

First, each step of the process can be seen as a transfanmiatiom S;_; to S;, which is defined by an
operation applied at step That is,¢; is either a merge operation or an edge-addition operatios ebsy to see
that both operations are homomorphisms. Therefore, gasra homomorphism, for al.

8The nodesho(w1) andho(w2) in S are distinct, because our construction of pre-mdtietioes not split nodes labeled by constants.



62 CHAPTER4. LOGIC OFREACHABLE PATTERNS IN LINKED DATA-STRUCTURES

Figure 4.10: Construction and homomorphisms in the proofecidability.

Second, we define a mappirfgfrom Sy to S; as a composition; o . .. o ty; the mappingf; is a homomor-
phism, because it is a composition of homomorphisms. Ihiti&y = ¢, according to Lemma4.5.9 For all.S;,
from the existence of a homomorphisfpfrom Sy to S; we get thatS; = ¢, by Lemmad.5.7 In particular,
S = 0.

Third, we show that for alf, »; defined by the process above is a homomorphism. Initiafly,So — S is
a homomorphism, according to Lemm&.10 If ¢; is a merge operation af; andws,, then the process applies
this operation only ifi;(w1) = hj(w2). From the inductive hypothesis thiaf is a homomorphism, we get that
hj+1 is @ homomorphism, by Lemn#a5.8

For everyc[R]p € ¢n, if p does not contain positive occurrences of edge formulaswaligyg formulas, then
by Lemmad.5.7and the existence of a homomorphidmfrom S’ to S, S’ |= ¢[R]p, because |= c[R]p.

For the sake of contradiction, assume that the processitatesi, bus’ K ¢[R]p, wherep(vo) £ N (vo, ..., v,) =
Y(vo,...,v,). Thatis, we can assign nodes, ..., w, to v, ...,v,, respectively, such that there is &path
fromctowy, N(wy,...,w,)holds but)(w,...,w,) does nothold. Consider the assignmigritwy), . . ., b, (wy,)
in S. Because homomorphism preserves existences of paths ges, ¢dere is af-path fromce to h,.(wg), and
N(hy(wp),...,h-(wy,)) holds. Becaus& = c[R]p, we know that)(wo, ..., w,) holds. Therefore, there is an
atomic formula) that appears positively it and evaluates t@alse in S” and totrue in S.

If 6 is an equality formula; = w5, then the merge operation af, andw, in S’ is enabled (becaugkis
falsein 8"), andh(wy) = h(wsz) in S (becausd is true in S), contradiction to the assumption that the process
terminated. Similarly, ifY is an edge formula; / v,, then the edge-addition operationwof andw, in S’ is
enabled (becauggis false in S’), and there is arf-edge fromh(w;) to h(w2) in S (becausd is true in S),
contradiction to the assumption that the process ternindteus,S’ = ¢p.

4.6 The/L, Fragment and its Decidability

In this section, we define another fragmentgf called£,, and show its decidability.

The fragmentC, extends(; (defined in Sectiort.3) by allowing constants to be freely used in patterns,
removing the last restriction of Definitioh3.1 For example, the property that a general graph is a tree ichwh
each node has a pointeback to the root is expressible i, using the pattertrue = b(vg, root), but this
pattern is notinZ,. It can be shown that the property cannot be expresség.in

In the rest of this section, we explain how to modify the probflecidability of£,, to prove the decidability
of £,. We start by explaining why the proof of Theorena.14does not go through fof,. Recall that if a graph
is in A, and an operation that is enabled by&nreachability constraint is applied, then the result istin due
to the distance restrictions ify, patterns (see Lemn¥a5.5. In L5, this nice property no longer holds.

For example, consider th&, constraint

def *

let p(vg) = (UOLUI) = (UI&C) in C[_’i Ip

Givenk, we construct a grapfy, that consists of arf-path ofk + 3 disjoint nodes, but onlg + 1 nodes on the
path have g-edge back te. Fig. 4.11showsG,. The graphGy, is in Ay, but violates the reachability constraint
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Figure 4.11: The grapt's.

above. Thus, it has an edge-addition operation enabledifing ag-edge between the first and the last nodes. It
is easy to see that after adding the edge, we get a gigghat is not inA4y,.°

If the construction of Theorem.4.14is applied to anC, formula, it might generate a graph in which the
number of extra edges is proportional to the number of nodies,to the use of constants in patterns, and not
bounded by the size of the formula. The good news is that ttra edges have one of the endpoints labeled with
a constant, except, possibly a small number of them. The pfatecidability of £, is based on the fact that each
extra edge has one of its endpoints labeled with a constant.

We define a graph operatioam that removes all edges to and from nodes labeled with cotsstaarmally,
the result ofrem(S) is a graphS’ with the same set of nodes &ssuch that there is afredge fromw; to vs in
S’ if and only if there is arf-edge fromw; to v- in S and the nodes; andv, are not labeled by any constants in
S. Are™ is the set of graphs on whiclem yields a graph indy, i.e., A7 £ {S | rem(S) € A}

4.6.1 A;°"-Model Property of L

We define graph operations enabledfyformulas (similarly to Sectiod#.5.3, and prove thaid;“" is closed
under those operations (similarly to Lemah&.5.

Let p(vg) £ N(vo,...,vn) = ¥(vo,...,vs) be anl, pattern. LetS be a graphyw, be a node inS, and
co € C.

We say thatedge-addition betweew; and c; is enabled(by c[R]p) when (a)(vi f,c) (resp. (c2 f,v1))
appears positively iny, (b) we can assign nodes, . .., w, to vy, ..., v,, respectively, such that there is an
R-path frome to wg, N(wo, . .., wy,) holds, buty(wo, ..., w,) does not hold, and (c) therei® f-edge from
w; to the node labeled with, in S (resp. tow; from the node labeled with,).

Lemma 4.6.1 Assume that a graph operation is enabled in a gréphy an £, reachability constraint. IS €
Are™ then the result of applying the operation is a graghe Aj¢™.
Proof: For graph operations that do not involve constahtsyésult follows directly from Lemmé.5.5

Assume thats € A7°". Suppose that an edge-addition operation between awnpd@&dc; is enabled in a
graphS. The graphS’ is the result of adding the edge betwaeenand the constant In this caserem(S) and
remsS’ is the same graph. ThuS; € A;¢™.

Remark. We can show thatl;*™ is closed under merge operations enabled by a patternuvith c. However,
this situation never occurs in the construction used in Tér@at.4.14 because we do not split nodes that are
labeled with constants, when we create a pre-model.

The following theorem shows thdl, has.A;“"-property, i.e., every satisfiable, formula has a model in
Aie™. The proof is similar to the proof of Theoref.14 except the use of Lemn#a6.1to show that the result
S"e A,

Theorem 4.6.2 (A}°™-Model Property) If ¢ € L, is satisfiable, then there exists a graghsuch thatS |= ¢
andS € A7°™", wherek = f(y) and f is defined in4.4).

4.6.2 MSO is decidable on4;“™

In this section, we show a reduction from the satisfiabilitgldem of MSO logic on4;“™ to the satisfiability of
MSO onAyg, which is decidable by Theorem4.8 This reduction completes the proof of decidability®f.

9The tree width oG (Gy,) is k and the tree width off (G}, ) isk + 1.
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Lemma 4.6.3 There is a translatiod’ R; between MSO-formulas such that for every MSO-formuthere exists
agraphS € A7 such thatS |= ¢ if and only if there exists a grap$l’ € A;, such thatS’ = T'R5(y).

Given the vocabulary = (C,U, F) and a numbek we define a new vocabulary = (C,U’, F'), where
U =UU{Ff{,B§|f € F,ce C}.

For an MSO formulap overr, T R5() is an MSO formula over the vocabulary. The translatio’ R; is
defined inductively orp, as usual. For a binary relation formyfae F', we define:

TRs(f(v1,v2)) = (E(vi,v2) A Fp(v2)) V (E(v2,v1) A By(v1))
VceCU{dl,...,dk} (c=v1 A F}:(W)) V(e=wv2 A B}%(vl))

Intuitively, a tree node is labeled withF’; if and only if there is anf-edge fromw to the node labeled byin

the corresponding Ayah graph. A tree nades labeled withB¢ if and only if there is anf-edge tov from the
node labeled by in the corresponding Ayah graph. This allows us to encodk tha direction and the label of
the extra edges.

Remark. We have chosen a simple encoding that is not parsimonidhg inumber of additional unary relations.
For example, if an edge has two constants on its adjacenspdd=n be encoded in more than one way. This
ambiguity can be resolved using ordering between constamtsve ignore it here, to simplify the presentation.

Theorem 4.6.4 The satisfiability problem of MSO formulas is decidableAjji™.
Proof: Follows from Lemmd.6.3and Theoren.4.8

Theorem 4.6.5 The satisfiability problem of; is decidable.
Proof: Follows from combining Theoreth4.12 Theorem4.6.2 Lemma4.4.2 and Theorerd.6.4

4.7 Complexity

In this section, we start with a short discussion of the pratissues related to checking satisfiability ©f
formulas. Then, we provide proofs of upper and lower bounudshe worst-case complexity of satisfiability
problem forZ;.

In Section4.4, we proved decidability by reduction to MSO on trees, whittbves us to check satisfiability
of £, formulas using MONA decision procedurd]J"95]. Alternatively, we can directly construct a tree au-
tomaton from anC, formula, and can then check emptiness of the automatonhwietds a double-exponential
procedure(Sectiofh.7.2.

However, a naive translation gf; formulas to automata does not yield a practical decisiongutare. First,
the size of the automaton is exponential in the input voaagutegardless of the complexity of the input formula.
Second, a naive translation produt@s-way alternatingree automata. To the best of our knowledge, there are
no tools that can check emptiness of such automata. A ttérsfaom two-way alternating tree automata to tree
automata that can be handled by existing tools, such as MGNATR5], Timbuk [GTO1], or H1 [NNS03, is at
least exponential.

We are investigating tableaux-based techniques to implemdecision procedure for validity, satisfiability,
and model generation fat;. A tableaux-based decision procedure can be adaptive tifisfermulas, and the
formulas that come up in practice are quite simple.

The lower bound on the complexity of the satisfiability pexblof £, is NEXPTIME (Sectiord.7.7), but it
remains elementary (in contrast to MSO on trees, which iselementary ley75). The complexity depends
on the bound: of .4;, models, according to Theore.14 Finding tighter upper and lower bounds #y is an
open problem.

Bounded-Model Property of £; We can show that; has a bounded model property: every satisfiahle
formula has a model whose size is a (elementary) functiomefsize of the formula. The translation 6f
formulas to automata and the finite-model property (Theodetg yield a double-exponential bound on the
size of a model. We believe that it can be improved. Boundedehproperty is important for example for
guaranteeing termination of tableaux-based decisioneuhaes.

Bounded Branching of £; Lemma4.5.11implies that an upper bound on the branching of a nodedh a
labeled tree is = 2 x n X @ x |C|. If a node is not labeled with a constant, we can improve thentdo be
2 X n x ¢¢. The branching does not increase as a result of merging agedagttiitions enabled b§, patterns.
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Thus, for checking satisfiability of, it is sufficient to consider only:-labeled trees with a branching bounded
by r.

The Use of Constants in Routing Expressionl the routing expressions do not contain positive occuresn
of constant symbols, then the bouldor £, does not depend on the routing expressions:

Theorem 4.7.1 Assume thalp € £, is satisfiable, and that the routing expressions that appeap do not
contain positive occurrences of constant symbols. Thesrethxists a graplt € A, wherek = |¢o|, and
SE e

Sketch of ProofTo prove this, we modify the proof of Theorefid.14 The main observation is that we cannot
force a path to visit a node labeled with a constant, exceffteaendpoints of a path. (a) when creating a pre-
model, duplicate nodes with constants, (b) witness spijttesults in a pre-model with at mdst, | extra edges,

(c) use homomorphism which only preserves existence oftantss not their absence, and (d) merge operation
enabled byZ; preserve homomorphism, because they do not require meagilogle with a constant, because a
pattern may not contain a positive occurrence of equalityween a variable and a constant (unl&e).

Constant symbols can be eliminated from routing expresstmut the complexity of this operation is prohibitive.
The £, formulas that come up in practice are well-structured, aadape to achieve a reasonable performance.

4.7.1 Lower Bound: £, is NEXPTIME-hard

In this section, we show that the worst-case complexity efcking satisfiability ofC; formulas is at least NEX-
PTIME. The proof is by reduction from a tiling problem. Thisopf is an adapted version of the NEXPTIME-
hardness proof fromlRR* 043 Theorem 5]. In [RRT04a Theorem 5], universal quantification over nodes is
used in the proof. Since this feature is not availabléjnwe use here reachability constraints and patterns.

Let 7 be a tiling problem as in DefinitioA.2.1, and letn be a natural number. It is an NEXPTIME-complete
problem to test on inputZ, 1) whether there is & -tiling of a square grid of size” by 2" [Pap94.

Theorem 4.7.2 The satisfiability ofZ; formulas is NEXPTIME-hard.

Proof: Let 7 be a tiling problem as in DefinitioA.2.1 and letn be a natural number. We define a formylathat
exactly expresses a solution to the tiling problem. Wherns satisfiable, it has a minimal model of si28(").

We use two constants; denoting the top left node of the grid, ahddenoting the bottom right node of the
grid. The desired model will consist af” tiles:

s= [L1,t] - [L2%1]
[27 17 t/] U [27 2"7 t//]
[2"7 17 t///] U [2”7 2"7 tk] = t

The binary relatiom holds between each pair of consecutive tiles, including,efample,[1,2",¢] and
[2,1,t']. We include the following unary relation symbol&;, ... H,,, indicating the horizontal position as an
n-bit number;Vy, ...V, indicating the vertical position; arifi), . . . 7}, indicating the tile type.

The formulay,, is the conjunction of the following assertions.

There is a path from to ¢:

All E edges reachable fromare deterministic and unshared:
s[n*|det,, A\ unsy, 4.7)

The node labeled with is the first tile, has tile typé,, and the node labeled withis the last tile and has tile
typety:

(~Hi(s) A=Vi(s)) ATk(t) A N\ (Hi(t) AVi(t)) (4.8)
1 1=1

<.

TO(S) A\

3
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We have chosen for simplicity to encode the tile types in yisarwe need to say that tile types are mutually
exclusive and every node has a tile:

sl 1l N\ @A) | Al T (4.9)

0<i<j<k 0<i<k

The arrangement of tiles hondfss horizontal and vertical adjacency requirements:

def

let p(v) = Next,(v,v") = Hor(v,v") in s[»*]p (4.10)

let p(v) = Next, (v,v') = Vert(v,v') in s[n *]p (4.11)

The abbreviation Next Next,, Vert, Horz, and Next denote formulas which contain only unarytiefesym-
bols and variables, and no equality. We rely on the fact thmtighborhood of a pattern need not be connected.

The abbreviation Nex{x, y) means that andy have the same vertical position agd horizontal position
is one more than that of. Next,(z,y) means that: andy have the same horizontal position agid vertical
position is one more than that of

Next,(z,y) = (AL, Vi(@) < Vi(y)) A PlusOne (2, y)
Next,(z,y) = (A, Hi(z) < Hi(y)) A PlusOneg(z, y)

The abbreviations PlusOper, y) and PlusOngx,y) are nearly identical. Thus, we restrict our attention to
PlusOne (x, y), which means that the horizontal positionpfs one greater than the horizontal positionuof
(Our convention is that the bit positions are numberedsd, teith 1 being the high-order bit, andthe low-order
bit.) PlusOng(x, y) can be written as follows:

PlusOng(z,y) = Vi, [Ajsi(Hj(@) AHj(y)) A (0Hi(2) A Hi(y))
AN Njei(Hj(@) < Hj(y))]

The length of the formula PlusOper, y) is O(n?).
The abbreviation Hdr, y) (resp. Vertz,y)) is a disjunction over the tile types asserting that thestire
positionsz andy are horizontally (resp. vertically), compatible. For exden

Hor(z,y) = \/ (Tu(@) A T;(y)) (4.12)
R(ti,ty)

The abbreviation Next, y) means Nexi(z, y) or « has horizontal positiof™, y has horizontal position 1,
andy’s vertical position is one more than that.af

Next(z,y) = Next,(x,y)V
(A Hilw)) A (NS =Hi(y) A Ha(y) A PlusOne(z, ) )

Finally, if there is an edge from to y, then thereVext(x, y) holds:

f

let p(v) = (vn v’ = Next(v,v')) in s[n*]p (4.13)

Remark. The length of the formula,, described above i©(n?). The only difficulty in keepingp,, to total size
O(n) is in writing the formulas PlusOnéx, y) and PlusOng(z,y). We can decrease the size by keeping track
of the position: using2n addition unary relation symbols, similarly to the proof tRR*04a Lemma 14].
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4.7.2 Upper Bound: £, isin 2EXPTIME

In this section, we show that the worst case complexity ofckimg satisfiability of£; formulas is at most
double-exponential in the size of the formula. The proofyigéduction to non-emptiness of tree automata. The
technique used in this proof is based on ideas for provingp@ebound on the satisfiability problem of two-way
u~-calculus Var9dg.

A X-labeled tree is a paifT, V') whereT is a tree (i.e., a connected directed acyclic graph), End a
mapping that assigns for each nodé/téd label in3:.

Definition 4.7.3 (TATA) Two-way alternating tree automaton (TATA) on finitdabeled trees with branching
bounded by is A = (3, Q, J, o) whereX is the input alphabet) is a finite set of stateg, € @ is an initial
state, andi: @ x X — BT ({—1,0,...r} x Q) is the transition function. Here3" (X)) is the set of all positive
propositional formulas over the propositional variablesthe setX.

Arun of A on a labeled tre€T’, V) is a labeled tregT), p) in which every node is labeled by an element of
T x Q. Intuitively, a node labeled b, ¢) describes a copy of the automaton that is in stgéed reads the node
x of T. Formally, (T}, p) satisfies:

e If y is the root of7, thenp(y) = (z, go) wherez is the root ofT".

e For everyy € T, if p(y) = (z,q), andd(q,V(x)) = 6, then there is a (possibly empty) sgt=
{(c1,q1)s -, (cn,qn)} € {—1,0,...7} x @, suchthatS = 0, and foralli = 1,...,n, the nodey - i is
thei-th successor of the nodein T, andp(y - i) = (x - ¢;, ¢;), Here,z - ¢; denote the;-th successor af
in 7' (wheni > 0), the noder itself (whenc; = 0), or the predecessor aof (whenc; = —1 andx is not the
root of T').

An automaton accepts a treéf there exists a (finite) run on We denote by (A) the set of allX-labeled trees
that.4 accepts.

We start by showing an upper bound for checking satisfighfihormal-form formulas (Sectiof.4.3.

Lemma 4.7.4 For every formulap € CL,, there exists a TATAL,,, such thatC(A,) = 0 if and only ify is
unsatisfiable.

Sketch of ProofGiveny € CL; over the vocabulary = (C, U, F'), we construct a TATAA,, over X-labeled
trees, defined in Sectioh4.2 Recall from Sectiod.4.2thaty = P(C’ U U’) whereC’ = C U {c!,...,cF} U
'{dl’(.4.4.1)’ d*}, U = {Fy,By, Ly, F{' B} |f € F,i = 1,...,k}), andk is the bound computed from us-
ing (4.4).

The automatond,, is defined as the intersection of two automata describedibeltie first automato,
checks that the labeling of the input tree is legal: eveey C’ appears exactly once in the tree, and that the root
of the tree is not labeled biy, By, for any f € F. The second automato#, checks thatp is satisfied by the
input tree.

We defined; = (%, Q1, 01, qo) whereQ; = {qo} U {qc, g-c | ¢ € C’}. In the initial stateyy, the automaton
first checks that the root of the input tree is not labeled byddF;, B, then it threads into checking each of the
constants irC”. Intuitively, when the automaton is in stajeon nodex of the input tree, the subtree rootecat
must contain exactly one node labeled wittWhen the automaton is in state. on noder, the subtree rooted at
2 must not contain any node labeled withThe transition function is defined as follows:

01(20,9) = Ncec (0, ¢) if o N{Fy,By|[feF}=10
61(ge,0) = Vizl,...,r(iv gc) N /\j:l,...,r,j;éi(j’ g-c) ifc¢o
01(¢e,0) = Njoq (05 4-c) ifceo
01(q-c;0) = Nj1,..., (J: 4-c) fcgo

Before definingA2, we need to introduce some notations. Eoe CL4, cl(¢) denotes the set of all sub-
formulas of the formc(R)¢’ andc[R]p that appear irp. For a formula € cl(yp), let R(y)) denote the routing
expression that appearsydn We usePatterns(p) to denote the set of patterns that occupin

Routing expressions that appeardp formulas overr accept finite words over the input vocabular§y =
{a,—a | a € CUU}U{J, J|f € F}. For every routing expressioR, there is a nondeterministic finite
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automaton on finite words that accepts the same Ianguagea feurting expressio®, an automatomy, is a
tuple (71, Q% ¢f, 0%, Qf> whereQ" is a finite set of stateg)’ € Q™ is the initial stateQ ' C Q is the set of
final states, and®: Q x 7% x @ is the transition relation. The construction is analogmlshe construction of
an automaton for regular expressions. The size of the adtombnear ink.

First, we defined, for the case that = 0. The idea is that we can “program” the automatbnto search for
a path in the input tree that satisfies a certain routing esgiwa, using the automaton for that routing expression.

Formally,A; = (X, Q, J, q0), where

Q = {q}Ucl(p) U Patterns() U{By, Fy,~Fy, =By | f € F}
U {0, 9l € cl(p),q € Q(Ar))}

The transition function is defined as follows.

(go,0) = /\qpecl(@) (0,)

0(z(R)y,0) = Vo (J,z(R)y) fzdgo
d(z(R)y,0) = (0,(x(R)y.qi'))  ifzeo
0(z[Rlp,0) =V;_y  ,U,z[Rlp) ifzdo
5(2[Rip, o) = (0. («Rly. qf1)) ifzeco

Forf € F, 6(Fy,0) = trueif Fy € o andé(—Fy,0) = true if Fy ¢ o. Similarly, for By. For every
patternp that occurs inp, we can definé(p, o) by enumerating all possible neighborhoods of the node. iEhis
exponential in the size of pattepn but the patterns are usually quite small.

If y € o0 andg € QF, 5((z(R)y, q), 0) = true, otherwise

S((x(R)y,q),0) =

V a€o (Oa (I<R>y7 q/)) \ V a¢o (07 (.CC<R>1], q/))
ac CUU acCUU
§%(q,a) = ¢ §%(q,—a) = ¢

v\/fGF vlgR(q,._f)):q/(O’Bf)/\ (_1’(‘T<R>y7q1)) \/ijl r(j7 Ff)/\ (.77 (‘T<R>y7ql))

.....

v \/feF \/5R(‘1-,(i):q’ (0, Ff) A (=1 (2(R)y.q) Vv Vj:l,...,r(jv Bf) A (4, (z(R)y, q'))

If ¢ € QF, thend((z[R]p,q),0) = (0,p) A A, otherwise((z[R]p, q),0) = A, where

A=A sco (0, (z[R]p,q")) AN a¢o (0, (z[R]p,q))
a€c CUU ac CUU
(g, a) = ¢ % (q,—a) = ¢’

A /\j’€F75R(q7i>):ql (0, _'Bf) V (=1, (z[R]p,q')) A /\j 1,.. ,r(jv _‘Ff) Vv (4, (z[R]p, q'))
M seranin g o @ FOV (1 GBI ) A Aos, 0. ~Bo) Y G (elBlp. )

.....

We can extend the above definition for the casé of 0. Intuitively, if a node is marked witl’ andF;li,
and we want to traverse ghedge emanating from that node, the target of such an eddeecachild or a parent
of the current node (covered by the definitionsodibove), or a node marked with. To handle the latter case,
the automatomd, transitions into a special state, in which it searches ferrthde marked witkl’ in the tree.
When the node marked witli is reached, the automatety continues with its previous task. Towards this end,
we extend the above definition gf, with the stateg(d’, (¢,q)) | i = 1,....k, ¥ € cl(¢).q € Q(Ary))}. A
state(d’, (¢, ¢q)) records the task that should be performed when the dbé@efound. Formally, the traversal is
performed by the following transitions:

3((d’, (,q)),0) = (0, (¢, q)) _ ifdi €o
S((d, (¢,9)), 0) = (=1,(d", (b, D)) V V.., (G, (d", (¥,q))) otherwise

Also, §-transitions of the fornd((v, q), o) are extended to includ@, (d*, (1, ¢’))) as one of the options, when
(g, f)=1¢ andE}“ € o. Similarly, we can handle backwards traversals of edges.
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Lemma 4.7.5 For a fixedr, and a formulay € CL,, let A, be defined as in Lemn#7.4 The size of4, is
exponential in the size of.

There is a translation fromi-labeled trees to infinite trees which preserves satisiigbilhe emptiness of TATA
on infinite trees is DEXPTIME-complet&&r9g. The algorithm for checking emptiness (i) translates fitwro-
way alternating automaton to one-way nondeterministiomaton, which may result in an exponential blowup,
and (ii) checks the emptiness of a one-way nondetermirastiomaton, which is polynomial in the size of the
automaton.

Proposition 4.7.6 The emptiness problem of TATA BHabeled trees is DEXPTIME-complete.

This yields a double-exponential upper bound on the conitylex checking satisfiability of normal-form
formulas, as stated below.

Theorem 4.7.7 The satisfiability problem of C, is in deterministic 2EXPTIME.

It follows that the upper bound on the (asymptotic) compieri the satisfiability problem foZ, is also
double-exponential, as shown below.

Theorem 4.7.8 The satisfiability problem of, is in deterministic 2EXPTIME.
Proof: Given a formulgy € £;, we use the translation to normal-form, described in Sactid.3 to get an
equi-satisfiable formula; V ...V ¢,,, where for every = 1,...,m, the formulayp; is in CL,, the size ofp; is
at most polynomial in the size ¢f, andm is at most exponential in the size @f We can check satisfiability of
¢ by checking satisfiability of every, separately.

Let |¢| denote the size of the formula For everyi = 1,...,m, checking satisfiability ofp; is (9(22‘“"),
according to Theorem.7.7. Therefore, checking satisfiability of is 2/¢/ x (9(22”"), which is aIsoO(22M).
That is, the complexity of checking satisfiability 6f formulas is in deterministic 2EXPTIME.

4.8 Limitations and Further Extensions

Despite the fact thaf, is useful, there are interesting program properties thanagbe expressed directly. For
example, transitivity of a binary relation, that can be ysed., to express partial orders, is naturally expressible
in Ly, but notinL,. There are of course interesting properties that are beygnduch as the property that a
general graph is a tree in which every leaf has a pointer toabieof a tree.

In the future, we plan to generaliz& while maintaining decidability, perhaps beyong (i.e., to capture
properties that are not expressibledp). We are encouraged by the fact that the proof of decidghbiiitSec-
tion 4.4 holds “as is” for many useful extensions. For example, moramex patterns can be used, as long as
they do not violate thel;-model property.

4.8.1 The LogicLs

In the £, logic, reachability constraints describe paths that dtarh nodes labeled by some constant. The
requirement that a path start with a constant is not neceésadecidability. We defineC; that generalize£,
with paths that start from any node that satisfies a quanfigepositiveformulad:

O[R]p & VW, Wi, V0, - - - , Un R(wo, v9) A O(wo, ..., wm) = plug,...,0p)

A simple and very useful fragment gf; is £4 in which @ is fixed to befrue. We use R]p to denoterue|R]p.
For example, we can specify that gHedges in the graph are deterministic, and not only thosehedde from
some constante|det ;.

The fragmentCs provides several ways to express the same property; thibifigxkcan be useful when
writing specifications manually. For example, the formwla y)[R]p in L3 is equivalenttac[R]p VvV y[R]pin Ly,
and to[z + y.R]p in L4. The formula(z A y)[R]p in L3 is equivalenttdx = y) = z[R]p in £, and to[x.y.R]p
in Ly.

We can translate ever, formula to£, using constants in routing expression§R|p € L is translated into
[x.R]p. We can show thaf; has a finite model property. The lodi®RPthat results fromCs by restricting it to
Lo patterns is decidable.
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4.8.2 The LogicUL,

We can extend’; with (a possibly restricted use of) quantifiers, going beaytme proposition logicCy. This
extension provides a more general way to write specification

We extendC; with universal quantification over constants, as followst & vocabulary-, a formula inU£,
over T is a positive boolean combination of formulas of the fovm, ..., c,.¢’, wherey' is in £, over the
vocabularyr’ = 7 U {e1,...,c,}). The semantics of the universal quantifiers is defined ad.uSba problem
of validity of UL, -formulas is decidable by reduction to validity il .

Lemma 4.8.1 Lety € UL, be of the fornVey, . . ., ¢,,.¢". The formulap is valid if and only ify’ is valid.

Note thatU L, is notclosed under negation (where@sis closed under negation).

It is possible to add quantification over sets and relatiaisle preserving decidability, as long as there are
no quantifier alternations. Quantification of binary relas can be useful for writing modular specifications, and
analysis that does not violate abstraction layers. For elanf a procedure’s formal parameteris a pointer
to an abstract data-type, we can specify that the field ofatdbjnat implement the abstract data-type are not
modified by the procedure, without exposing the impleméorat/~.V f, f'.x[ = |samey, ;.

4.9 Related Work

There are several works on logic-based frameworks for r@ag@bout graph/heap structures. We mention here
the ones which are, as far as we know, the closest to ours.

The logic L, can be seen as a fragment of the first-order logic over grapbtstes with transitive closure
(TC logic [Imm87). It is well known that TC is undecidable, and that this facids even when transitive
closure is added to simple fragments of FO such as the ddeiftaigmentZ? of formulas with two variables
[Mor75, GKV97, GME99.

It can be seen that our logic& and£; are both uncomparable with? + TC. Indeed, inl, no alternation
between universal and existential quantification is alldwen the other hand;, allows us to express patterns
(e.g., heap sharing) that require more than two variabtesEgy.4.2, Sectiord.3).

In [BRS99, decidable logicL, (which can also be seen as a fragment of TC) is introduced.lagies L,
and £, generalizeL,, which is in fact the fragment of these logics where only twedi patterns are allowed:
equality to a program variable and heap sharing.

In [IRRT043 BPZ05 LQO06, BCO04 other decidable logics are defined, but their expressivegpds rather
limited w.r.t. £, since they allow at most one binary relation symbol (modgllinked data-structures with 1-
selector). For instance, the logic dRRT044 does not allow us to express the reversal of a list. Conogrni
the class of 1-selector linked data-structur@0p] provides a decision procedure for a logic with reachapilit
constraints and arithmetical constraints on lengths ofneggs in the structure. It is not clear how the proposed
techniques can be generalized to larger classes of grapher @ecidable logicsHIL04, KR04] are restricted in
the sharing patterns and the reachability they can describe

Other works in the literature consider extensions of theé-firder logic with fixed point operators. Such an
extension is again undecidable in general but the intrécluatf the notion of (loosely) guarded quantification
allows one to obtain decidable fragments such.@¥” (or LG F) (Guarded Fragment with least and greater
fixed point operators)W99 Gra03. Similarly to our logics, the logigxGF' (and alsou LG F) has the tree
model property: every satisfiable formula has a model of dedriree width. However, guarded fixed point
logics are incomparable with, and£,. For instance, th&; patterndet; that requires determinism gtfield,
is not a (loosely) guarded formula.

The PALE systemN1S01] uses an extension of the weak monadic second order logiees &s a specification
language. The considered linked data-structures are thasean be defined agaph type§dKS93. Basically,
they are graphs that can be defined as trees augmented byf @dgés defined using routing expressions (regular
expressions) defining paths in the (undirected structutteedtree.L; allows us to reason naturally about arbitrary
graphs without limitation to tree-like structures. By raging the syntax, we guarantee that satisfiability querie
posed over arbitrary graphs can be answered precisely lsjd=ring only tree-like graphs. This approach allows
us to automate the reasoning about limited but interestioggaties ofarbitrary graphs.
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Moreover, as we show in Sectigh3, our logical framework allows us to express postconditiand loop
invariants that relate the input and the output state. Rtairce, even in the case of singly-linked lists, our frame-
work allows us to express properties that cannot be expi@sslee PALE framework: in the list reversal example
of Section4.3 we show that the output list is precisely the reversed itiptitby expressing the relationships
between fields before and after the procedure, whereas IFAhE approach, a postcondition can only express
that the outputis a list that is a permutation of the inptt lis particular, a postcondition that relates fields before
and after the procedure involves two binary relations withiteary interpretation. This can be easily done&lin
which supports an arbitrary number of binary relations sTifinot supported by PALE, which allows two binary
relations with a specific interpretation as tree edges. érPRLE approach, a postcondition can only express that
the output is a list that is a permutation of the input list.

In [IRRT0404], we tried to employ a decision procedure for MSO on treegé&son about reachability. How-
ever, this places a heavy burden on the specifier to provéhtbatata-structures in the program can be simulated
using trees. Our work aims at eliminating this burden by dedirsyntactic restrictions on the formulas and
showing a general reduction theorem.

Other approaches in the literature use undecidable fosmalsuch asHHN92], which provides a natural and
expressive language, but does not allow for automatic ptppbecking.

Separation logic has been introduced recently as a form#&tisreasoning about heap structurBey03. The
general logic is undecidabl€}yO01] but there are few works showing decidable fragme@tg(01, BCO04.

One of the fragments is propositional separation logic wlgrantification is forbiddenYOO01, CGH0§ and
therefore seems to be incomparable with our logic. The feagrdefined in BCOO04 allows one to reason only
about singly-linked lists with explicit sharing. In fache fragment considered iBCO04 can be translated to
L1, and therefore, entailment problems as state®®(04 can be reduced to validity of implications iy .

The logic Ly integrates features of such prominent formalisms as theaidodics, the classical first-order
logic, and the regular expressions. The hybrid loghkB}101] also combine features of modal and classical log-
ics. The most relevant is the hybridcalculus BV01] which extends the:-calculus with the following features:

(i) nominals, that correspond to constantsin (ii) universal program, that corresponds to the fragm&ntand

(iii) the ability to reasoning about the past, that corresgmto the use of backward edges in routing expressions.
The hybridp-calculus is incomparable in its expressive poweL{o on one hand, it supports a more general
reachability via the least and greatest fixed point opesatmr the other hand, the equality is restricted to nomi-
nals. For example, it cannot express that a graph is a trdieUty, the hybridu-calculus does not have a finite
model property. Every satisfiable formula in hybrietalculus has a tree-like model. The complexity of hybrid
pu-calculus is EXPTIME-complete, but currently, there is magtical decision procedure available. Reportedly, a
tableaux-based decision procedure for the alternatieeffiagment of hybrigi-calculus is being developed.

Ly shares some common features with description logte®3, which is traditionally used for knowledge
representation, databases, semantic web, with the naatdéption of GMO05], which shows the description log-
ics can be used for reasoning about data-structures. Ther@ons of Description Logics are concepts, that
correspond to unary relations iy, and roles, that correspond to binary relation€in In addition, expressive
Description Logics support (iii) nominals, that corresgoo constants iy ; quantified role restrictions, that can
encode determinism; and inverse roles, that corresponadioviard edges in routing expressions. The combina-
tion of quantified role restrictions and inverse roles pdeg a way to express sharing. The need for transitivity
and fixed points arises in many contex@®3L99, including, service description logic8fn03. It has been
shown that a description logic which combines with nominialgerse roles, determinism, and least fixed points is
undecidableBP04. In light of the negative results, it is interesting to istigate the usefulness gf; for speci-
fying web services. There are a variety of efficient reaspitiols for description logics, both tableaux-based and
resolution-based, which provide some support for expredsiatures, such as nominals and inverse roles, e.g.,
FaCT, Racer. To the best of our knowledge, none of the egistials supports transitive closure of roles or fixed
points.



Chapter 5

Conclusions and Future Work

This thesis explores several ways in which program anadyxisverification can benefit from employing theorem
provers. While these algorithms are applicable to a widgeastf analysis problems, the main focus of this thesis
is analysis of programs that manipulate linked data-stinest

In Chapter2, we presented a novel algorithm that computes abstraceéseptation of reachable program
states using a novel combination of concrete executiomradi®n, and an automatic theorem prover. Our method
complements existing techniques that combine dynamic tatid analysis in that it is oriented towards finding a
proof rather than finding errors. We leverage existing tesés and fabricated states to speed up the analysis and
to reduce the cost of a theorem prover.

This work suggests several interesting directions of mesgeancluding the use of fabricated states to (i) gen-
erate useful test inputs, (i) classify potential error®@ifalse alarms and real errors, and (iii) guide abstraction
refinement.

In Chapter3, we presented an algorithm that is specialized for canbalestraction, and thus, for reason-
ing about linked data-structures. This algorithm solvees® open problems in shape analysis, including the
problems of (i) computing the most-precise abstractiorefdet of states that are represented layd satisfy a
preconditiony, and (ii) implementing best abstract transformers.

An important issue is the definition of an approprigpecification languagthat is both expressive enough
to describe invariants of linked data-structures and aflernta automated reasoning. These invariants often
involve reachability between objects in memory and shavirmg, aliasing of pointers and object fields deep in
the data-structures. Automated reasoning about the catitainof these properties is usually undecidable and
unpredictable, with.RP being one of the rare exceptions.

The decidability result fot RP, presented in Chaptek, improves the state-of-the-art significantly. In con-
trast to [RR™043 BPZ05 LQO6, BCO04, LRP allows several binary relations. This provides a natura} wa
to (i) specify invariants for data-structures with muléglelds (e.g., trees, doubly-linked lists), (ii) specifyspo
conditions for procedures that mutate pointer fields of -gatactures, by expressing the relationships between
fields before and after the procedure (e.g., list reverdaiwnis beyond the scope of PALS01), (iii) express
verification conditions using a copy of the vocabulary focle@rogram location. Operating on general graphs
allows us to verify that the data-structure invariant isstablished after a sequence of low-level mutations that
temporarily violate the data-structure invariant.

Defining decidable fragments of first-order logic with triine closure over arbitrary graphs is a difficult task
(e.g., IRR*044d). In Chapter4, we demonstrated that this is possible by combining thewétig principles:

e Allow arbitrary boolean combinations of the reachabilinetraints, which are closed formulas without

guantifier alternations.

¢ Define reachability using regular expressions denotingtpoaccess paths (not) reaching a certain pattern.

e Syntactically limit the way patterns are formed. Extensiaf the patterns that allow larger distances

between nodes in the pattern either break our proof of dbiityeor are directly undecidable.

Interestingly, reachability and sharing are importantpgrties in an entirely different context, namely the
semantic webFor example, both reachability and sharing propertiesaggrear in a description of the functional
behavior of e-Services. These properties fall within soeny expressive description logics, which are undecid-
able BP04. To the best of our knowledge, there is no decidable desenigpogic which covers both of these
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properties, and these properties cannot be handled bynexisbls for description logics. It suggests that a deci-
sion procedure fof. RP [YRS™06] can be useful in the context of the semantic web. We planvesitigate this
relationship further.

Perhaps the most exciting future application of the resldizribed in this thesis is modular analysis. The idea
of modular analysis is to exploit the modularity of softwakestems. Complex software systems are necessarily
composed of numerous modules, reusable components, arg lafyabstraction. When the module boundaries
and interactions between modules are specified by the usexése designer or program developer), each module
can be analyzed in isolation using a precise analysis.

In this setting, a user writes specifications that are ladedlby an automatic program analysis tool to reason
about the program. The problem is that user-provided spatidins reason about propertiescohcreteprogram
states directly, whereas program analysis operateshstractrepresentation of sets of concrete program states.
In other words, there is a gap between specifications wiityemumans and specifications consumed by program
analysis tools: they reason at different levels of abstract

This thesis provides a way to bridge the gap by

(a) assisting program analysis tools in reasoning aboutingpnovided specifications, and

(b) developing specification languages that are naturalfiing specification, and can be incorporated in
automatic program analyses.
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Appendix A

Appendix for Chapter 2

A.1 Lattice operations

Let A be a set with partial order. An element € A is alower bound of a setX C Aif, foraz € X, a C x.
The meet operator, denoted by, yields the greatest lower bound with respecita.e., for a setX C A4, NX
is a lower bound ofX, and for every lower bound of X, « C MX. Similarly, an element € A is anupper
bound of a setX C A if, for everyz € X, z C a. Similarly, thejoin operator, denoted by, yields the least
upper bound with respect {o; i.e., for every seX C A, MX is an upper bound ok, and for every upper bound
aof X,NX C a.

A complete lattice is a partially-ordered set in which evesuapset has both least upper bound and greatest
lower bound.

A widening operator otd is defined as a (partial) functiop : A x A — A satisfying: (i) for eachr, y € A,
z C 27y andy C z7y; and (ii) for all increasing chaing C y; C ... the increasing chain defined by £ y,
andz; ;1 = z; <7 yi41 IS Nt strictly increasing.

A.2 Proofs

In this section, we provide (straightforward) proofs of theorems stated in Chapt&r

Let D be a complete lattice with, M, andL operations. A functio: D — D is monotone if and only if for
alld,d, if d C d thenh(d) C h(d'). Afunctionh: D — D is extensive if and only if for alll, d C h(d). We
use LFRA) to denotes the least fixed pointbfi.e., the elemend € D such that:(d) = d and for alld’ € D,
if h(d") = d' thend C d’. Also, fori € D, LFP;(h) denotes the least fixed point bfw.r.t. 7, i.e., the element

d € D suchthati(d) =d,i C d,and foralld’ € D, if h(d") = d' andi C d’, thend C d'.

Theorem A.2.1 (Tarski Theorem, 1955) et D be a complete lattice anfl: D — D be a monotone function.
LFP(f) = nFix(f) = NRed f) € Fix(f)

where

Fix(f) ={a e D] f(a) = a}
Redf) ={ae D] f(a) Ca}

Lemma A.2.2 Let D be a complete lattice and: D — D be a monotone and extensive function. ¥oir € D,
if h(z) C z andi C x then LFPy;(h) C «.

Proof: By definition of extensive function, we get that /(x), and together with the assumption thét) C z,
we get thati(x) = x. Sincei C z, we conclude that LFR;(h) C z.

Lemma A.2.3 Let D be a complete lattice and: D — D be a monotone and extensive function. GivenD,
leth’: D — D be defined by’ (x) = h(z) U4, forall 2 € D. Then, LFPy;(h) = LFP(R').

80



A.2. PROOFS 81

Proof: Letx be LFPy,(h). By definition of LFPy;, h(xz) = x andi C =z, and we get thak(z) Ui = 2z Ui = =,
that is,h’(x) = z. By Tarski, fromh/(z) = = we get that LFPh') C z. Sincex = LFP—;(h) by definition, we
getthat LFRA') C LFP—;(h).

Lety be LFRA'). By definition of LFP,A/(y) = y, and using the definition df’ we get thath(y) Ui = y.
Itimplies thati C y andh(y) C y. Using LemmaA.2.2we get that LFP; (k) C y. Sincey = LFP(h'), we get
that LFP5;(h) T LFP(R).

Lemma A.2.4 Let D be a complete lattice anfl: D — D be a monotone and extensive function. f'et.A — A
be defined by® = a o f o 7. Leta denote LFPy, 1) (ff). If ao(T) T (1), thena(LFPar(f)) C af.

Proof: Because® is a fixed point off?, we get thatf?(a?) = «® and after applyingy we get thaty(f%(a?)) =
v(a®). From the definition off?, we get thaty(f#(a?)) = y(a(f(y(a?)))). By properties of Galois connection,
we get thatf (v(a%)) C y(a(f(v(a%))). Therefore ((a%)) = 7(a?).

Sincea® is LFP5,, (1), We get thatv(I) T a’. Froma(T) C a(I), we get thaty(T') T a°. From monotonicity
of v, we get thaty(a(T')) C ~(a) and from properties of Galois connection we get fRat v(a(T')). Therefore,
T C ~(a).

From f(v(a")) C ~(a?) andT C ~(a%), using LemmaA.2.2, we get that LFRr(f) C v(af). By mono-
tonicity of o and Galois connection, we get thatLFP-1(f)) C a”.

Theorem 2.3.1(Soundness)f a € A is invariant underP andI C ~(a) thena is a sound overapproximation of
P.
Proof: By definition of invariant undeP and the functionf from Section2.3.1, f is monotone and extensive
and the following holdsj(v(a)) C «(a). Using Lemma&A.2.2, we get that LFB;(f) C ~(a), i.e.,a is a sound
approximation ofP.
Theorem2.3.2Let f7: A — A be defined by = a o f o ~. The procedure in Fig2.3computes the least fixed
point of £ w.r.t. a(I).
Proof: Leta® denotes LFga(I)(f“). Recall thatf is monotone and extensive.

Let T; anda; denote the set of concrete stafesand the abstract valug respectively, in iteration of the
algorithm. Initially,ap = L anda(7y) = a(I). Fori > 0,

ait1 & ai Ua(LFPar,(f))
ai+1 3 a; Ua(T;)
Ti+1 = {0'} such thatr f(’y(aHl)) ando ¢ Q41

Assume that the procedure terminates aftéerations. From the termination condition follows thfdt,,) C a,.

First, we prove that upon termination of the procedufe, a,,.! Initially, a(l) C ay because U a(Ty) =
a(Ty) = a(I). Ineach iteratiom; C a;41 by construction in lind 6] , thusa(I) C a,,. Using the termination
condition of the loop we get that(a) C a. By LemmaA.2.2, we get that LFB,, ) (f*) C a,, thatis,a’ C a,,.

Second, we prove that for all> 0, a; C a®. The base case: initiallyy(7p) = () anda(I) C a, by
definition of a®. Using LemmaA.2.4 we get thain(LFP57,(f)) C of. Recall thata; = o(LFPo7,(f)) U L.
Thus,a; C al.

By inductive hypothesisy; C af. To prove thati; ;1 C af, it is sufficient to show that(LFP5r, (f)) C o,
becaus&zecute(f,T;) C LFPar, (f). Recall thatl; C f(v(a;)). By (2.1 we get thatv(T;) C a(f(v(as))) =
f%(a;). From the inductive hypothesis C o and the fact thaf® is monotone, we get thaf (a;) C f%(a?) = a
because’ is the least fixed point of?. Thus,«(T;) C o, and by Lemma\.2.4we get thaty(LFP5r, (f)) C af.

Theorem 2.3.3If the lattice.4 has a finite height, then the procedure in Fig3terminates.

Proof: Consider a concrete statehosen in the-th iteration of the procedure. Recall tHatecut e is guaran-
teed to terminate. From the propertiestofecut e, it follows thato € T'. Using the fact that join distributes
overa, we get thaty(C) = Uccca(c), and we can write ling 6] asa;1 = a; Ua({o}) U e\ (r)a(c)- From
line[ 7] follows thato ¢ ~(a;). Thereforea; Ll a({c}) is strictly higher tham; in the abstract latticel.

11t also implies the soundness of the procedure.



Appendix B

Proofs for Chapter 3

Lemma B.0.5 Consider the content of the setsult at the end ofx procedure. IfS € result then there exists
St such thatS? = o and3(S%) = S.

Proof: For the sake of argument, assume that there eXists-esult such that for all concrete structurg that
satisfyp and embed inte, 3(S?) # S.

Recall that at the end difif procedure, all the abstraction predicates have definiteegaihS. During phase
2, relation values can only be lowered, meaning that the attidn predicates remain definite. Consequently, if
St is embedded int&, theng(S?) is embedded int& using the identity function, because embedding preserves
canonical names3(S?) embeds inteS by an identity function only when the set of canonical nanmes’ and
S is the same. Therefore, the assumptit{i$?) # S implies that there exists a relation whose valueSiis
indefinite, but in3(S%) it is definite.

Formally, for each concrete structure that satisfieand embeds int®, there exists a relation with an
indefinite value on some tuple of nodes, ..., u; in S, such that the value af on all tuples of nodes in the
concrete structur§® that are mapped to,, . . ., u;, by the embedding, is the same.

In phase2 of & procedure, when the value gfon uq,...,u; in S is examined, the first if-condition is
true, because the formufS) A ¢ A @g.u, ..., IS NOt satisfiable, as follows from the assumption. Thersfor
the statement guarded by this if-condition is executed oréng the structures' from result set. Therefore, a
contradiction is obtained.

Lemma B.0.6 For each structureS € result, there exists a concrete structusé that satisfiesp and embeds
into S.

Proof: By induction on the steps af procedure. At the end dfif procedure, this holds due to LemrBz0.7.
Each iteration of the main loop i preserves this, because structfgeor S; can be added teesult only when

the if-condition that guards its statement is true. Theoifidition requires that there exists a concrete structure
that satisfiesp and embeds into the structure to be addecktalt.

Lemma B.0.7 At the end of bif procedure, each structureXhrepresents at least one concrete structure that
satisfiesp.

Proof: After checking the precondition, all structureskirthe claim holds. When a structure is addecktpthere
are three case to consider.

First, if S is added taX. In this case, there exists a concrete structure that satgft) A ¢ A ¢4 ., denote it
by S%. ConsequentlyS® satisfiesp and embedded int§. Using LemmaB.0.8 S? is embedded int&’, proving
the claim.

In the second case is added toX in statementX := X U {Sy}. This statement is executed when the
if-condition that guards it is true, i.e, there exists a gete structure that satisfiégSy) A ¢. In particular, this
concrete structure is represented$yyand satisfies, proving the claim. The third case, in whié¢h is added to
X, is symmetric to this case.

Lemma B.0.8 Consider an iteration of the while-loop #i f procedure. LetS € W, ¢ be an abstract predicate
andu € U handled in that iteration. Le$® be a concrete structure such thét |= ¢ and S* is embedded into
S. S is embedded into one of the structufe, Sy, S }, denote it bys”.
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Proof: By assumption, there exists embedding functfosuch thats® C; S. Show that there exists” ¢
{S’, Sy, S1} such thatS® is embedded int&” by constructing an embedding functigh: S* — S”, based ory.

e If S* =7(S5) A ¢ A ¢, thenS® contains two nodes, denoted by andu,, such that the value af on
ug is 0 and the value off onu, is 1. In this caseS” is embedded int&’ using the following embedding
function:

w0 if f(uf) =uandS (q)(u) =
Ff)y =3 w1 if fuf) = vand (q)(u) =
f(uf)  otherwise

=)

f"is well-formed becausg is and5* (¢)(u) cannot be) and1 simultaneouslyf’ is surjective: its image
includesu.0 andu.1, because’(up) = «.0 and f'(u;) = u.1 as follows for the denotations above; other
elements of5” are images of’, becausg”’ is the same ag andf is surjective, by assumption.

Show thatf’ preserves relation values. The values of all relations biuples in.S’, are the same as if},
except the value of on the new nodes.0 andu.1. f’ preserves these values, becafisies and” is the
same ag for the relevant nodes (these are the concrete nodg$tinat arenot mapped to the new nodes
of ). Letu® € S* such thatf(u?) = u. Without loss of generality, let’” (¢)(u®) = 0. By definition of
f', f'(uf) = u.0. By definition of $’, the value of; onw.0 is 0, that is the same as the valuegobn u?. It

shows thatf’ preserves the values ¢f The case wherg®’ (q)(u®) = 1is symmetric.

e If S% does not satisfyj(S) A ¢ A ¢, then the value of on all nodes inS® that are mapped ta by the
embedding is the same. If this valuelisS is embedded int®,, otherwise — intaS;. These cases are
symmetric, therefore we consider only the former. Note thand S, have the same universe, and differ
only in the value of; onu. Hence, the embedding functigh: S* — S, is the same ag. f’ is well-formed
and surjective becaugéis. For all relation values, except the valug;afn u, f’ preserves the values of the
relations, because these values are the sarfieaimd S’. The value of; onu in Sy is 0, by construction of
Sp. The value of; on all nodes inS® that are mapped to by f’ is 0, by assumption. Therefore, the value
of ¢ is preserved by’.

Lemma B.0.9 If S% |= ¢ then there exist§ € result such thatS® C S.
Proof: Use induction on the value ofsult at each step of the procedure.

The base case:after the initialization phaseesult, = T, therefore it represents all concrete structures, in
particular all structures that satisfy

The induction step: Let S* be a concrete structure such ti$at= . Assume that afterr steps of the procedure,
the hypothesis holds: there exists € result; such thatS® T S;. Show that after step + 1, there exists
Si+1 S Tesulthrl such thatSh C Slqu.

If stepi+ 1 is the call to the procedute f (result), the conclusion is obtained from LemrBz0.8 because all
concrete structures satisfyiggthat are represented by an abstract structure, are alssesyed by a bifurcation
of the abstract structure — there is no loss of “importantiaiures during bifurcation.

Otherwise, step+ 1 is an operation performed during the inner loop of plasguppose that it operates with
a structures, relationg of arity k£ and node tuple:y, ..., ux in S. The only structure that could be removed from
result in this step isS.

Recall thatS; is the structure inesult; that, by assumption, represerfis. If the structureS, that can
be removed fronresult is not S;, the hypothesis holds far+ 1 and S is the structure that represersi$ in
result;+1, i.e.,5;+1 IS S. Otherwise,S andS; is the same structure, thus there exists an embedding dungti
such thats? C, S. We shall prove that i’ is removed fromresult, then one of the structurég or S; represents
S and it is added toesult.

According to the algorithmS$ is removed when all concrete structures representetithat satisfyy have the
same value for all node tuples mapped:o. . . , u;, by the embedding. In particular, this holds f&t. Without
loss of generality, assume that the valué &nd show thas® is embedded iif,. The embedding functiofi such
thatS* C; Sy is g: (i) becauseS and S, have the same universg,is well-defined and surjective; (i) we only
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have to show thaf preserves values gfoveru, . .., ux, because the values of other relations are the sarfie in
andS,. The value ofg over all tuples mapped to,, . . ., u;, is 0 by assumption, and® (¢)(uy, . . ., u) is 0 by
the construction of.

To complete the proof, we have to show titgtis added toresult, that is the if-condition that guards the
statementesult := result U {Sp} is true. We have to show that there exists a concrete steuttat satisfies the
formulay(Sy) A ¢. Indeed,S* satisfies the conditions? satisfiesy(S) because it is embedded inf6 as shown
above; also, by assumptiofi? satisfiesp.

Recall tha# is only defined for bounded structures. The following lemma prerequisite for the use ®fin
the assume algorithm. It shows that iissume is applied to a bounded structure, then all the structurested
by assume are bounded, and therefoyecan be used.

Lemma B.0.10 In every step ofissume algorithm, the result is a bounded structure, given thatitipt is a
bounded structure.

Proof: Assume that the input of each operation considerémhbis a bounded structure. Then, to violate this
“boundedness” property, the operation must change a definlue of some abstraction predicate, according to
the definition of a bounded structure. (franto 0 or 1/2 and from0 tol or 1/2).

The procedurdif either (i) lowers a value of a relation froiy2 to 1 or 0, or (ii) duplicates a node and sets
an abstraction predicatewith indefinite value to definite values on the two copies @f tiode. Both operations
do not violate “boundedness” property. Also, phasaf the algorithm by its definition can only lower relation
values, therefore it cannot violate the “boundedness” @ryp
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