
Tel-Aviv University
Raymond and Beverly Sackler Faculty of Exact Sciences

School of Computer Science

EMPLOYING DECISION PROCEDURES

FOR VERIFICATION OF HEAP-M ANIPULATING PROGRAMS

by

Greta Yorsh

under the supervision of
Prof. Mooly Sagiv and Prof. Alexander Rabinovich

Thesis submitted
for the degree of Doctor of Philosophy

Submitted to the Senate of Tel-Aviv University
December 2007

ii

Dedicated to the memory of my grandmother, Berta Katz.

iii

iv

Abstract

Employing Decision Procedures
for Verification of Heap-Manipulating Programs

Greta Yorsh
Doctor of Philosophy

School of Computer Science
Tel-Aviv University

The goal of software verification is to guarantee the reliability of software via rigorous methods that can

establish its correctness, or to detect subtle design errors. As the size and the complexity of software grows,

verification tasks become more challenging.

The first part of this thesis provides novel algorithms that harness automated reasoning tools (e.g., theorem

provers and decision procedures) to perform program analysis and verification. These algorithms automate the

process of developing program analyses, for instance, by computing the precise effect of program statements.

While these algorithms are applicable to a wide range of analysis problems, the main focus of this thesis is

analysis of programs that manipulate linked data-structures, such as singly-linked lists, doubly-linked lists, trees,

etc. Specifications of these programs often involve properties regarding reachability (via pointer dereference)

between heap-allocated objects, e.g., to establish that a data-structure is acyclic; every element is reachable from

the root of the data-structure; two data-structures are disjoint.

The second part of this thesis provides a way to automatically reason about interesting reachability properties,

using a new decidable logic,LRP . A decision procedure forLRP can be employed in the algorithms developed

in the first part of this thesis.

v

vi

Acknowledgements

I have been very fortunate to have Mooly Sagiv and Alex Rabinovich as my advisors.

I thank Alex for teaching me what it takes to write elegant proofs: to grasp the deep semantic meaning of
problems and to distill their essence.

Mooly’s scientific knowledge, creativity, and devotion to research define the meaning of Scientist. I aspire to it.
At the finish line of this “marathon”, having already registered for the next one, I would like to thank Mooly for
being my coach throughout the course. I cannot thank him enough for his dedicated guidance.

Most of the research presented in this thesis is joint work with others: Mooly Sagiv, Alex Rabinovich, Tom Reps,
Tom Ball, Antoine Meyer, and Ahmed Bouajjani [YRS04, YBS06, YBS07, YRS+06, YRS+07].

I am indebted to Tom Reps for his tremendous influence on me as aresearcher from the very beginning.
I have benefitted greatly from discussions with Tom and his students, during my two short visits to the University
of Wisconsin, Madison.

I thank Tom Ball for introducing me to many cool problems, forproviding wise advice, and for encouraging me
to believe in myself. I work on my juggling skills too.

During my graduate studies, I had the extraordinary opportunity to work with Reinhard Wilhelm, Neil Immer-
man, and Orna Kupferman. I learned so much from every single discussion with each one of them.

I had fruitful internships in industrial research labs, thanks to collaboration with Madan Musuvathi (Microsoft
Research Redmond), Satish Chandra (IBM Research), and Byron Cook (Microsoft Research Cambridge).

Mooly’s research group is unique in its excellence. It has been extremely inspiring to work in this group. I thank
my “academic siblings”, Nurit Dor, Tal Lev-Ami, Roman Manevich, Noam Rinetzky, and Eran Yahav, for their
frequent feedback on my ideas, their valuable comments, insights and for coping with my moods at times.

It has always been a joy discussing ideas with colleagues whoare also friends: Joerg Bauer, Sumit Gulwani,
Mayur Naik, Mike Weber, and Viktor Kuncak. (Scarcity of women in our field strikes again.)

I was only able to complete the writing of my dissertation thanks to the support and inspiration from Josh
Berdine.

I would like to thank the Israeli Academy of Science and the Levi-Eshkol fellowship for their generous financial
support throughout my studies.

I am intensely grateful to all my Iras and other good friends for their moral support.
Special thanks to Rina Talisman, for “kicking my ass” for so many years.

Finally and most importantly, I thank my dear mother, Irina Gregorievna Yorsh, for her constant belief in me. I
am very happy that I keep living up to it.

vii

viii

Contents

1 Introduction 1
1.1 Thesis Contributions. 1
1.2 Thesis Organization. 2
1.3 Overview . 2

1.3.1 Combining Concrete Execution, Abstraction and Theorem Proving 3
1.3.2 Symbolically Computing Most-Precise Abstract Operations for Shape Analysis. 5
1.3.3 Comparison between the Algorithms. 8
1.3.4 The Role of a Theorem Prover. 8
1.3.5 The Logic of Reachable Patterns. 9

2 Combining Concrete Execution, Abstraction, and Theorem Proving 11
2.1 Introduction. 11
2.2 Example. 12

2.2.1 Finding a Bug. 13
2.2.2 Finding a Proof. 13
2.2.3 Finding a False Error. 15

2.3 Formal Description. 15
2.3.1 Abstraction and Concretization. 15
2.3.2 Basic Procedure. 16
2.3.3 Symbolic Procedure. 18

2.4 Towards a Realistic Implementation. 19
2.4.1 Program Analysis Infrastructure. 19
2.4.2 Cutpoints. 19
2.4.3 On-the-fly Abstraction. 19
2.4.4 Interprocedural Analysis. 20
2.4.5 Employing a Theorem Prover. 20
2.4.6 Controlling Concrete Execution. 20
2.4.7 Hybrid Approach. 21

2.5 Prototype Implementations. 21
2.5.1 Based on Predicate Abstraction and XRT. 21
2.5.2 Based on Canonical Abstraction and TVLA. 24

2.6 Avoiding Unnecessary Abstraction Refinement. 24
2.7 Related Work. 25

3 Computing Most-Precise Abstract Operations for Shape Analysis 28
3.1 Overview of Canonical Abstraction. 29

3.1.1 3-Valued Structures. 29
3.1.2 Embedding Order on3-Valued Structures. 31
3.1.3 Integrity Rules . 31
3.1.4 Canonical Abstraction. 31

3.2 Theassume Algorithm . 32
3.2.1 Employing a Theorem Prover. 33

ix

3.2.2 Materialization. 34
3.2.3 Refining Relation Values. 35
3.2.4 Properties of the Algorithm. 35
3.2.5 Computinĝα . 36

3.3 Implementing the Best Transformer. 36
3.4 Related Work. 36

4 Logic of Reachable Patterns in Linked Data-Structures 38
4.1 TheL0 Logic . 38

4.1.1 Syntax ofL0 . 38
4.1.2 Semantics ofL0 . 40
4.1.3 Finite Model Property. 41

4.2 Undecidability ofL0 . 42
4.3 Decidable and Useful Fragment ofL0 . 43

4.3.1 TheL1 Fragment. 43
4.3.2 Describing Linked Data-Structures inL1 . 44
4.3.3 Expressing Verification Conditions inL1 . 45
4.3.4 Characterizing Shape Abstractions inL1 . 47

4.4 Decidability ofL1 . 49
4.4.1 Translation fromL0 to MSO . 49
4.4.2 Decidability of MSO on Ayah Graphs. 50
4.4.3 Normal Form ofL0 Formulas . 53
4.4.4 Decidability ofL1 . 54

4.5 Ayah Model Property ofL1 . 54
4.5.1 Trees with Extra Edges. 55
4.5.2 Ayah Graphs. 57
4.5.3 Graph Operations Enabled byL1 Formulas . 57
4.5.4 Homomorphism Preservation. 58
4.5.5 Witness Splitting. 59
4.5.6 Ak-Model Property ofL1 . 61

4.6 TheL2 Fragment and its Decidability. 62
4.6.1 Aremk -Model Property ofL2 . 63
4.6.2 MSO is decidable onAremk . 63

4.7 Complexity . 64
4.7.1 Lower Bound:L1 is NEXPTIME-hard . 65
4.7.2 Upper Bound:L1 is in 2EXPTIME . 67

4.8 Limitations and Further Extensions. 69
4.8.1 The LogicL3 . 69
4.8.2 The LogicUL1 . 70

4.9 Related Work. 70

5 Conclusions and Future Work 72

Bibliography 74

A Appendix for Chapter 2 80
A.1 Lattice operations. 80
A.2 Proofs . 80

B Proofs for Chapter 3 82

x

List of Figures

1.1 Combining Concrete Execution, Abstraction and TheoremProving 3
1.2 Schematic view of the algorithms.. 5
1.3 Symbolic algorithms for most-precise abstract operations for shape analysis.. 7

2.1 The procedurefoo contains a null pointer dereference error at lineG. 12
2.2 Reachable abstract statesfoo using different abstraction functions.. 14
2.3 The basic procedure.. 16
2.4 Example program and abstract state space.. 21
2.5 Implementation of a bounded stack using fixed-size array. 23
2.6 Analysis results for methods that manipulate singly-linked lists. 24
2.7 Reachable abstract states of two-process Bakery protocol, using an abstraction functionx1 ≤ x2. 25

3.1 Relations forList data-type. 29
3.2 A declaration of a linked-list data-type in C.. 30
3.3 An abstract valuea and the result ofassume[p](a) . 30
3.4 Concrete states represented by the structureS1 from Fig. 3.3. 32
3.5 Theassume algorithm. 33
3.6 Thebif procedure.. 34
3.7 A computation tree forassume[p](a) for a shown in Fig. 3.3.. 35

4.1 A sketch of a grid model for a tiling problem.. 42
4.2 Definitions of some useful patterns forL1 . 44
4.3 Properties of data-structures expressed inL1. 45
4.4 Thereverse procedure performs in-place reversal of a singly-linked list 46
4.5 An example graph that satisfies theV Cloop formula forreverse. 46
4.6 Theappend procedure concatenates two singly-linked lists.. 47
4.7 Examples of graphs inA0,A1, andA2. 51
4.8 Merge operation onT k-graphs.. 56
4.9 Example of the construction used in the proof of Theorem 4.4.14. 59
4.10 Construction and homomorphisms in the proof of decidability. 62
4.11 The graphG4. 63

xi

xii

Chapter 1

Introduction

Software technologies affect a wide range of areas in todaysworld, starting from the way people communicate and
interact with each other, and including safety-critical applications, such as aerospace and medicine technologies.
As our dependance on software grows, the importance of software reliability increases. The goal of software
verification is to guarantee the reliability of software viarigorous methods that can establish its correctness, or to
detect subtle design errors. The verification process must take into account many complex and expressive features
supported by modern programming languages. One of the main challenges is to handle unbounded resources such
as dynamic data-structures with no given (or no reasonable)bound on the their maximal size.

As the size and the complexity of software grows, it becomes more important toautomatethe verification
tasks. Automatic software verification can be carried out bya static program analysis. It usually relies onab-
straction to reason about all possible program executions, without actually executing the program. The choice
of abstraction is guided by the program and the properties ofinterest. There is a trade-off between the precision
of the abstraction and the cost (in terms of time and space) ofthe corresponding program analysis. Substantial
progress has been made to develop scalable analyses that aresufficiently precise for certain classes of programs
and properties. Currently, the focus is shifting to analysis of more complex programs and properties. In this
setting, where significantly more precise and inherently more expensive analyses are required, scaling an analy-
sis is no longer a matter of engineering; it becomes a research challenge that requires developing radically new
approaches.

Theorem provers have been employed successfully to prove interesting properties of hardware and software
systems, e.g., [MLK98, FLL+02]. In this thesis, we enrich the program analysis designer’stoolbox with theorem
provers: the designer of a program analysis defines an abstraction and the concrete meaning of basic statements,
and our techniques harness theorem provers to automatically determine the abstract meaning of basic statements.

For parametric abstractions, our techniques alleviate thepain and suffering of manually computing the abstract
meaning for every instance of the parametric abstraction. This is particularly important for expressive abstrac-
tions such as those used for verifying properties of heap-manipulating programs. Additionally, given a formal
specification of a procedure, our techniques can be used to compute its abstract meaning. This enables modular
reasoning in that the effect of calls to that procedure can beanalyzed without using the code of the procedure. The
abstract meaning computed in this way is guaranteed to be themost precise with respect to the given abstraction,
under certain conditions, detailed later.

1.1 Thesis Contributions

The first part of this thesis (Chapters2 and3) provides two novel algorithms for computing an abstract repre-
sentation of a set of concrete program states described by the specification. These algorithms allow program
analysis tools to reason about human-provided specifications, and thus enable modular program analysis. For
instance, we can use these algorithms to automatically compute the effect of a procedure call in any (abstract)
calling context, using the procedure’s formal specification. Moreover, these algorithms can be used to implement
abstract transformers [CC79] and other abstract operations for parametric abstract domains, such as canonical
abstraction [SRW02] and predicate abstraction [GS97]. Under certain conditions, the most precise result can be
computed. These algorithms rely on automated reasoning tools (e.g., theorem provers and decision procedures).

1

2 CHAPTER 1. INTRODUCTION

While these algorithms are applicable to a wide range of analysis problems, the main focus of this thesis is
analysis of programs that manipulatelinked data-structures, such as singly-linked lists, doubly-linked lists, trees,
etc.

Linked data-structures are important and widely used, in particular because they provide a way to efficiently
handle an unbounded amount of data. However, this also makesit easy to introduce subtle errors, e.g., by violating
global invariants, which cause a program to produce unexpected results and possibly crash. Therefore, it is
important to verify programs that manipulate linked data-structures.

Specifications of these programs often involvereachabilityproperties. For example, to establish that a memory
configuration contains no garbage elements, we can show thatevery element is reachable from some program
variable. Another example is acyclicity of data-structurefragments, i.e., every element reachable from nodeu
cannot reachu.

For programs that manipulate linked data-structures, the success of the algorithms mentioned above depends
on having a tool that supports automated reasoning about reachability. Automated reasoning about reachability
is a difficult task. For instance, many reasoning problems which are decidable become undecidable when (even
limited) support for reachability is added, e.g., [GME99, IRR+04a].

The second part of this thesis (Chapter4) provides a way to automatically reason about interesting reachability
properties, using a newdecidablelogic. This logic, calledLRP, is both decidable and expressive enough to
describe important properties of data-structures with an arbitrary number of pointer fields and of arbitrary shapes.
A decision procedure forLRP can be employed, as a theorem prover, in the algorithms mentioned above. This
allows us, for instance, to compute an abstract representation of the effect of calling a procedure, provided that its
specification is expressed inLRP.

1.2 Thesis Organization

The main results of this thesis are described in (Chapters2, 3, and4), each of which can be read independently
from others. In Section1.3, we provide an informal overview of each of these chapters, and outline the connec-
tions between them. In Chapter2, we present an algorithm that computes abstract representations of reachable
program states using a novel combination of concrete execution, abstraction, and an automatic theorem prover.
In addition, this algorithm explains the results of abstract interpretation in terms of concrete execution and ab-
straction, providing an intuitive introduction to the concepts that we use in the next chapter. Next, in Chapter3,
we present a different algorithm that is specialized for canonical abstraction, and thus, for reasoning about linked
data-structures. When verifying properties of linked data-structures, both algorithms require an automated rea-
soning tool that can handle reachability properties. Motivated by this requirement, we develop a decidable logic
that can express interesting reachability properties, as shown in Chapter4. Finally, in Chapter5, we summarize
the results of this thesis and discuss future research directions.

1.3 Overview

This section provides an informal overview of the content ofthis thesis. The section contains forward references
to chapters that formally discuss the presented material.

A Few Words on Terminology To provide some intuition to the readers who are not very familiar with abstract
interpretation, the informal explanation in this section uses an abstract domain that is a powerset of “abstract
states”. However, our algorithms are not restricted to powerset domains.

We use the term “most-precise abstract interpreter” for an abstract domain (with a finite height) to refer to the
abstract interpreter that uses the best abstract transformers for all (intraprocedural) statements [CC79].

To simplify the presentation, we assume that an abstract value collectively describes states at all program
points, rather than having a separate abstract value for each program point. This can be achieved by encoding the
program counter in the representation of a concrete state.

Finally, we use the term “theorem prover” for an automatic tool for checking validity of formulas in a (decid-
able or undecidable) logic.

1.3. OVERVIEW 3

c’

αprogram P

Execute Abstract
CT

Check
Invariants

AT

Check Safety
Properties

succeeded

potential error

Fabricate
States

test set T

failed

verified

Figure 1.1: Overview of the method.CT denotes the set of concrete states reachable from the statesin T . AT is
the set of abstract states covered byT , i.e.,AT = α(CT).

1.3.1 Combining Concrete Execution, Abstraction and Theorem Proving

It is well known that the problem of proving safety properties is undecidable in general. Fortunately, these
properties often can be proved using abstraction to overapproximate the reachable concrete states of a program.

Abstraction and abstract interpretation [CC77] are key tools for automatically proving properties of systems,
both for hardware [CGL94, Dam96] and software systems [NNH99]. An abstraction functionα maps concrete
program states to the corresponding abstract states. The concretization functionγ maps every abstract state to the
set of concrete states that it represents. A concrete state is reachable if it can arise in some program execution.
A set of abstract states issoundif it represents all reachable concrete states of the program. An abstract state is
reachable if it is the abstraction of some reachable concrete state. Identifying exactly the reachable abstract states
is undecidable in general. Abstract interpretation provides a way to compute asupersetof all reachable abstract
states. Thus, the result of abstract interpretation can be used to check safety properties: if safety properties hold
on (a superset of) all reachable abstract states, then thesesafety properties also hold on all reachable concrete
states.

We propose a new method for computing a superset of all reachable abstract states. In contrast to abstract
interpretation, which “executes” the program on abstract states, our method executes the program on concrete
states, and then performs abstraction. Our method has five steps, shown in Fig.1.1, as follows.

1. ExecuteGiven a programP and a setT of test inputs,1 execute the program and collect the concrete
program statesCT obtained during execution.

2. Abstract Given an abstraction functionα, obtain the set of abstract states:AT = α(CT). We say thatAT
is the set of abstract states covered byT .

3. Check Invariants Check thatAT is invariant under the programP : if a concrete state is represented byAT
then its successor states are also represented byAT . Formally, we check that for all concrete statesc and
c′ such thatα({c}) ⊆ AT andc′ is a successor state ofc in the programP , α({c′}) ⊆ AT . This condition
is expressed as a logical formula using strongest (liberal)postconditions [Dij76] such that if the formula is
valid thenAT is an invariant.2 The validity of the formula is checked using a theorem prover.

4. Fabricate StatesIf AT is not an invariant then there are concrete statesc andc′ such thatα({c}) ⊆ AT
andc′ is a successor state ofc in P , butα({c′}) 6⊆ AT . Our method finds such a statec′ using a model
generator, i.e., a theorem prover that produces a concrete counterexample for invalid formulas. We say that

1Test input are represented as concrete states at the initiallocation of the program.
2Alternatively, a formula based on the weakest (liberal) precondition can be used, see Section2.3.3for details.

4 CHAPTER 1. INTRODUCTION

a statec′, obtained using a model generator as above, is afabricated state. Note that a fabricate state is a
concrete state at some intermediate program point, that is not necessarily reachable from any initial state of
the program.
Then, our method augmentsT with c′ and repeats the process, executing the program from a fabricated
state, and so on, as shown in Fig.1.1. This guarantees that the coverage increases in the next iteration, and
if the process terminates,AT is an invariant.

5. Check Safety PropertiesWe check, using a theorem prover, whether the covered abstract statesAT satisfy
the safety properties. IfAT is an invariant then it contains all reachable abstract states (assuming that the
input test setT covers all initial program states). Thus, ifAT is an invariant, and the safety check succeeds
onAT , we have proven that all reachable concrete states of the program satisfy the safety properties. If
the safety check fails, we report apotential error, which may indicate a real error in the program or afalse
alarm, due to the imprecision of the abstraction.

This algorithm allows us to perform modular program analysis using procedure specifications, as follows.
When analyzing one module, in the “Execute” step, we can stopconcrete execution at call sites of procedures, and
proceed to the following steps of our algorithm (“Abstract”and “Check Invariants”). When checking invariants,
we can use procedure specifications (instead of strongest postconditions), to compute the effect of a procedure
call. This way, we can check invariants in a modular fashion,without using the code of the procedure. If the
invariant check fails, it also provides a fabricate state atthe program point where the procedure call returns to, and
we can continue concrete execution from it.

Fig. 1.2(a) depicts the idea behind the iterative process in this algorithm. It shows the concrete and the abstract
state spaces as the left and the right ovals, respectively. Each point in the right oval represents the value ofAT in
some iteration of the algorithm, and the corresponding setsof concrete states are shown on the left.

LetX denote all reachable concrete states of the program (depicted in Fig.1.2(a) as the dashed region inside
the left oval). The goal of our algorithm is to computeα(X). This operation is not computable directly, because
X can be infinite in general. In contrast, the “Abstract” step of our algorithm in each iteration computesα(CT),
whereCT is a finite set of concrete states. For most abstractions, theoperationα can be easily computed for a
finite set.

Our algorithm works its way up in the right oval, which on the left corresponds to progressively representing
more and more concrete states, until the entire setX is represented. Of course, because of the inherent loss of
information due to abstraction, the result can also represent concrete states outside ofX . Under certain conditions,
detailed later, the result of the algorithm represents the tightest set of concrete states that containsX and is
expressible with the given abstraction.

The algorithm spends a significant amount of time in checkingvalidity and model generation. Moreover,
failure of these tasks (see Section1.3.4) might causes loss of precision. An existing test set and a good choice of
fabricated states allows us to reduce the number of iterations of the algorithm, and thus, the number of calls to a
theorem prover and a model generator. Intuitively, in each iteration, we would like to “jump” further up in the
right oval of Fig.1.2(a), increasing the coverage as much as possible using abstraction of concrete states obtained
from concrete executions, before performing the invariantcheck and the fabrication.

Properties of the Algorithm For finite-height abstract domains, our method is guaranteed to terminate and the
result is the same as the result of the most-precise abstractinterpreter (over the same abstract domain), assuming
that all theorem prover calls were conclusive. In particular, our method produces the same false alarms as abstract
interpretation.

It is noteworthy that we can make these guarantees even if we prematurely halt concrete execution in order to
perform the coverage check. In this way, we can control the amount of time spent executing the program vs. the
amount of time spent calling the theorem prover.

If the algorithm is stopped prematurely, before an invariant is found, then the results might be unsound (i.e.,
might miss errors) or imprecise (i.e., might produce false alarms). As opposed to this algorithm, in the algorithm
described in Section1.3.2, the intermediate results are always sound: they can be usedfor proving safety proper-
ties even if the analysis terminated prematurely (losing the ability to guarantee the precision), but that algorithm
is less general.

As usual, our analysis (and abstract interpretation) does not distinguish between a false error and a real error.
It is possible to combine our method (and abstract interpretation) with an analysis for classifying potential errors

1.3. OVERVIEW 5

z
Concrete Abstract

X
α(X)

(a) The algorithm described in Chapter2: abstract value is increased in each step of the algorithm.

Concrete Abstract

X

º

α(X)

(b) The algorithm described in Chapter3: abstract value is decreased in every step of the algorithm.

Figure 1.2: Schematic view of the algorithms.

into real errors and false alarms. In this thesis, we assume that the abstractionα is given. It is possible to combine
our method with abstraction refinement to find a suitable abstraction.

Applications To evaluate the feasibility of this approach, we have implemented two prototypes: the first pro-
totype uses predicate abstraction [GS97] and the XRT model checker [GTS05] infrastructure as its platform; the
second prototype uses canonical abstraction [SRW02] and the TVLA system [LAS00] as its platform. The latter
was used for checking memory safety properties of small but intricate programs that manipulate linked lists.

This material is described in detail in Chapter2. It was originally published in [YBS06] and an extended
version was invited for a journal publication in [YBS07]. This material is closely related to, and was inspired by,
an earlier work [RSY04], as explained in Section2.7.

1.3.2 Symbolically Computing Most-Precise Abstract Operations for Shape Analysis

The automatic verification of programs with dynamic memory allocation and pointer manipulation is a challenging
problem. In fact, due to dynamic memory allocation and destructive updates of pointer-valued fields, the program

6 CHAPTER 1. INTRODUCTION

memory can be of arbitrary size and structure. This requiresthe ability to reason about a potentially unbounded
number of memory structures, even for programming languages that have good capabilities for data abstraction.
Usually abstract-datatype operations are implemented using loops, procedure calls, and sequences of low-level
pointer manipulations; consequently, it is hard to prove that a data-structure invariant is reestablished once a
sequence of operations is finished [Hoa75].

To tackle the verification problem of programs that manipulate dynamically allocated memory, several ap-
proaches emerged in the last few years with different expressive powers and levels of automation, including
works based on abstract interpretation [LAS00, SRW02, RSW04, DOY06, LYY05], logic-based reasoning [IO01,
Rey02], and automata-based techniques [KS93, MS01, BHPV05].

Shape-analysis algorithms based on canonical abstraction[SRW02] are capable of establishing that certain
invariants hold for (imperative) programs that perform destructive updates on dynamically allocated storage. For
example, they have been used to establish that a program preserves treeness properties, as well as that a program
satisfies certain correctness criteria [LARSW00]. The TVLA system [LAS00] automatically constructs shape-
analysis algorithms from a description of the operational semantics of a given programming language, and the
shape abstraction to be used. The methodology of abstract interpretation has been used to show that the shape-
analysis algorithms generated by TVLA aresound(conservative), but these algorithms do not necessarily compute
the most-precise results with respect to the given abstraction.

To improve the precision of these algorithms, TVLA system uses Focus and Coerce operations. The Focus
operation, also known as “partial concretization”, is a semantic reduction that is guided by user-specified formulas.
Writing useful Focus formulas is not trivial — it may requireunderstanding of the abstract domain and TVLA
system. The Coerce operation uses Kleene evaluation to perform semantic reduction. Kleene evaluation can
only recover very limited properties about the concrete states. The motivation of the work described below is to
improve the precision, the scalability, and the automationof TVLA by employing a theorem prover.

Recall that the abstraction functionα maps a potentially infinite set of concrete states to the (most-precise)
abstract value for it. The concretization functionγ maps an abstract value to the set of concrete states that the
abstract value represents. In [Yor03, YRSW07], we introduce the symbolic operation̂γ which maps every abstract
valuea to a logical formula, called acharacteristic formula, whose meaning is exactly the setγ(a).3 That is, a
concrete state is represented bya if and only if it satisfies the formulâγ(a). Specifically, [Yor03, YRSW07], gives
an algorithm for̂γ that characterizes canonical abstraction using first-order logic with transitive closure. Here, we
use thêγ operation to develop algorithms for the following operations on shape abstractions:

• Computing the most-precise abstract value that representsthe (potentially infinite) set of states defined by
a formula. We call this operation̂α because it is a symbolic version of the algebraic operationα. Formally,
α̂(ϕ) computesα([[ϕ]]) where[[ϕ]] is the set of concrete states that satisfyϕ.

• Computing the most-precise abstract value for the set of states that are represented bya and satisfyϕ. We
call this operationassume[ϕ](a). Intuitively, assume[ϕ](a) refines the abstract valuea according toϕ.
Formally,assume[ϕ](a) computesα([[ϕ]] ∩ γ(a)).

• Computingbest abstract transformersfor atomic program statements and conditions [CC79]. The current
transformers in TVLA are conservative, but are not necessarily the best. Moreover, transformers automat-
ically constructed by TVLA are often not precise enough for proving the properties of interest (require
user-specified Focus formulas). The algorithm we propose eliminates the need for Focus and Coerce oper-
ations, thus improving the automation of TVLA.

Technically, if the concrete semantics of a statement is expressed as the formulaτ over the input and output
states, anda is the input abstract value, then computing the result of thebest abstract transformer amounts
to computingassume[τ](a), and projecting. Similarly, we can compute best transformers for loop-free
code fragments (i.e., blocks of atomic program statements and conditions).

In a similar way, we can compute the effect of a procedure call, given the procedure’s specification, and
therefore perform modular shape analysis. This is perhaps the most exciting application of the method,
because it would permit TVLA to be applied to large programs by using procedure specifications.

• Computing the most-precise overapproximation of the meet of two abstract values. Such an operation pro-
vides a natural way of handling conditional statements. Furthermore, this operation is useful for combining

3As a convention, a name of an abstract operation marked with a“hat” (̂) denotes the corresponding symbolic operation.

1.3. OVERVIEW 7

Operation Meaning Algorithm

α̂(ϕ) α([[ϕ]]) See Section3.2
assume[ϕ](a) α([[ϕ]] ∩ γ(a)) α̂(ϕ ∧ γ̂(a))
Best transformer ofτ anda (α ◦ [[τ]] ◦ γ)(a) see Section3.3
Meet ofa1 anda2 α(γ(a1) ∩ γ(a2)) α̂(γ̂(a1) ∧ γ̂(a2))
Domain change fromA toB αB(γA(a)) α̂B(γ̂A(a))

Figure 1.3: Symbolic algorithms for most-precise abstractoperations for shape analysis.

forward and backward shape analysis to establish temporal properties, and when performing interprocedural
analysis in the Sharir and Pnueli functional style [SP81]. An algorithm for computing an overapproximation
of the meet operation for canonical abstraction is described in [AMSS06].

Technically, the meet operation of abstract valuesa1 anda2 computesα(γ(a1) ∩ γ(a2)).

• Computing the most-precise abstract value in the abstract domainB for the set of concrete states represented
by the abstract valuea from some other abstract domainA. This domain-change operation is useful in
modular analysis when different parts of the program are analyzed using different abstractions.

Technically, the domain change operation computesαB(γA(a)), whereαB andγA denote the abstraction
and the concretization functions for the corresponding domains.

The core algorithm described in Section3.2 implements thêα operation. Fig.1.2(b) depicts the idea behind
the algorithm. We useX to denote[[ϕ]], i.e., the set of concrete states that satisfyϕ. The algorithm works its way
down in the abstract domain, which on the left corresponds toprogressing from the outer oval towards the inner
region, labeledX . The algorithm repeatedly refines the intermediate abstract value by eliminating the ability to
represent concrete states that are not inX . At every point, the intermediate abstract state is sound, because it
always represents all the states ofX . Therefore, even if the algorithm is stopped prematurely, the intermediate
result can be used to check safety properties (unlike the algorithm described in Section1.3.1).

Properties of the Algorithm Under certain conditions, detailed later, the algorithm produces an abstract value
that represents the tightest set of concrete states that containsX and expressible in the abstract domain. Of course,
because not all sets of concrete states are expressible in the abstract domain, the result may also represent states
outside ofX . Theα̂ algorithm requires a theorem prover for the logic that is expressive enough to characterize the
canonical abstraction, as discussed in Section1.3.4. Even if a theorem prover call is not conclusive, our algorithm
will still produce an abstract value that represent a superset ofX , but we will lose the ability to guarantee that it
represents the tightest superset ofX .

Using α̂ andγ̂ operations, we can implementassumeand other operations, as shown in Fig.1.3. The algo-
rithms are obtained from the meaning of the operations by replacing the abstract operators with their symbolic
counterparts. It is straightforward to see the correctnessof these algorithms, assuming the correctness ofγ̂ and
α̂. The implementation of the best abstract transformer is slightly more involved due to the use of both input and
output states, and it is explained in greater detail in Section3.3.

In practice, using a direct algorithm forassume[ϕ](a) is more efficient than implementing it aŝα(ϕ ∧ γ̂(a)),
because the direct algorithm can start the iterative process of refinement from the valuea instead of⊤, thus
avoiding some of the refinement steps. Moreover, if we have a direct algorithm forassume, we can also implement
α̂(ϕ) asassume[ϕ](⊤). Therefore, having an algorithm for eitherassumeor α̂, we can implement all other
operations mentioned above. In Section3.2we give direct algorithms for bothassume andα̂.

This material is described in detail in Chapter3. This chapter is largely based on the material originally
published in [YRS04]. In addition to the material published in [YRS04], AppendixB of this thesis contains a
formal proof of correctness of the algorithm.

8 CHAPTER 1. INTRODUCTION

1.3.3 Comparison between the Algorithms

We summarize the similarities and the differences between the two algorithms described above. The first one is
described in Section1.3.1(details in Chapter2), and the second in Section1.3.2(details in Chapter3).
• Both algorithms use a process of iterative refinement, employing a theorem prover in each step, but they

operate differently. The first algorithm works its way up theabstract domain, increasing the coverage of
X in each iteration. The second algorithm works its way down the abstract domain, eliminating concrete
states that are not inX .
• For both algorithms, if all theorem prover calls are conclusive and the algorithm terminates, its result is the

same as the result of the most-precise abstract interpreterfor the given abstraction.
• If the first algorithm is stopped prematurely, then the results might be unsound (i.e., might miss errors) or

imprecise (i.e., might produce false alarms). For the second algorithm, the intermediate results are always
sound, and thus they can be used for verification even if the algorithm terminated prematurely, but we lose
the precision guarantees.
• For both algorithms, if a theorem prover or a model generatorfails, as discussed in Section1.3.1, we can

use standard techniques to guarantee that the result will besound if the algorithm eventually terminates.
However, for the first algorithm, we lose the ability to guarantee precision or termination (sometime both,
depending on the strategy that we use to recover from the failure of the model generator, see Section2.4.5).
For the second algorithm, we only lose the precision guarantee, but not termination.
• Both algorithms rely on a validity checker for certain formulas. In addition, the first algorithm requires a

model generator, while the second algorithm does not.
In practice, it is not clear whether this difference makes the second algorithm easier to use than the first. On
one hand, it might be difficult to find a model generator, either as part of the theorem prover or as a separate
tool. Moreover, model generation might require a significant amount of time and resources. On the other
hand, model generation enables the use of concrete execution (from fabricated states), which can reduce the
number of iterations of the algorithm and thus, the number theorem prover and model generation calls.
• The first algorithm is applicable to any (possibly infinite) abstract domain with a finite height. The second

algorithm is specialized for canonical abstraction [SRW02].4 However, the canonical abstraction, being
parametric, is applicable to many interesting problems, inparticular, reasoning about linked data-structures,
which is the main application of this thesis.
• Both algorithms can be used for modular analysis, because they provide a way to compute the effect of a

procedure call from a procedure’s specification.

1.3.4 The Role of a Theorem Prover

The success of the algorithms described above depends on having an automatic tool that can check validity of cer-
tain formulas and generate concrete counterexamples for invalid formulas. Technically, there are off-the-shelf au-
tomatic theorem provers that can be used, e.g., SPASS [Wei], Vampire [RV01], Simplify [DNS03], Zap [BLM05],
Darwin [BFT05]. Unfortunately, most such theorem provers do not produce concrete counterexamples for invalid
formulas (with the exception of Darwin [BFT05]). Instead, a separate tool for model generation can be used(e.g.,
Paradox [CS03]).

The following difficulties arise when using theorem proversand model generators:
• The theorem prover might fail to prove validity of a (valid) formula (e.g., Simplify [DNS03] might return

“invalid” for a valid formula with quantifiers).
• The theorem prover might timeout without a conclusive answer, because it exceeds the time or the amount

of resources allocated for it.
• The model generator might fail to produce a counterexample (e.g., because the formula is, in fact, valid, but

the theorem prover failed to prove its validity, or even whenthe formula is invalid).
For certain abstractions, the queries posed by our algorithms can be expressed in a decidable logic, which

guarantees a (terminating) decision procedure. In practice, a decision procedure might also fail to give a conclusive
answer within a reasonable amount of time. Even if the theorem prover or the model generator fail for one of the
reasons above, our algorithm can use standard techniques toguarantee that the result is sound, while losing the
ability to guarantee precision or termination.

4Extending the second algorithm beyond canonical abstraction is a subject of an ongoing work.

1.3. OVERVIEW 9

The algorithms spend a significant amount of time in checkingvalidity and model generation. Moreover,
failure of these tasks for one of the reasons above might causes loss of precision or termination guarantees. The
choice of a theorem prover and the model generator depends onthe queries posed by the algorithms, which can
include the following components:
• user-provided procedure specifications and assertions,
• characterization of abstract domain (viaγ̂ operation),
• strongest postconditions

Therefore, it is crucial to choose a theorem prover and a model generator that match the expressive power of the
abstraction, the properties of interest, and the semanticsof basic program statements. For our main application,
namely shape analysis, it boils down to expressing properties of linked data-structures, that often involve reasoning
about reachability between elements of a data-structure. The problem is that automatic theorem provers usually
do not support reachability.

A natural formalism to specify properties involving reachability is the first-order logic over graph structures
with transitive closure. Unfortunately, even simple decidable fragments of first-order logic become undecidable
when transitive closure is added [GME99, IRR+04a]. While first-order logic is also undecidable, there are many
automatic theorem provers that can be useful for certain problems.

One approach to handling reachability is to harness existing theorem provers for first-order logic. By providing
sufficient axiomatization [LAIR+05], we can, in some cases, automatically prove properties that involve the
(absence) of reachability. However, in general, there cannot be a complete, recursively-enumerableaxiomatization
of transitive closure [Avr03, LAIR+05].

We take an alternative approach, and develop a formalism that (i) can express relevant properties (invariants)
of various kinds of linked data-structures, including temporal violations of data-structure invariants, and (ii) has
the closure and decidability features needed for automatedverification. The aim of the work described in the next
section is to study such a formalism based on logics over arbitrary graph structures, and to find a balance between
expressiveness, decidability and complexity.

1.3.5 The Logic of Reachable Patterns

Reachability is a crucial notion for reasoning about linkeddata-structures. For instance, to establish that a memory
configuration contains no garbage elements, we must show that every element is reachable from at least one
program variable. Other examples of properties that can be naturally modeled using reachability are (1) data-
structure invariants, e.g., the tail of a queue is reachablefrom the head of the queue, (2) the acyclicity of data-
structure fragments, i.e., every element reachable from nodeu cannot reachu, (3) the property that a data-structure
traversal terminates, e.g., there is a path from a node to a sink-node of the data-structure, (4) the property that, for
programs with procedure calls when references are passed asarguments, elements that arenot reachable from an
actual parameter are not modified.

In this work, we propose a logic that can be seen as a fragment of the first-order logic with transitive closure.
Our logic (1) is simple and natural to use, (2) is expressive enough to cover important properties of a wide class of
arbitrary linked data-structures, and (3) allows for algorithmic modular verification using programmer-specified
loop-invariants, preconditions, and postconditions.

Alternatively, our logic can be seen as a propositional logic with atomic propositions (called reachability
constraints) modelling reachability between heap objectspointed-to by program variables and other heap objects
with certain properties. The properties are specified usingpatternsthat limit the neighborhood of an object.

For example, we can specify the property that an objectv is an element of a doubly-linked list using the pattern
invf,b, defined by(v f→w) ⇒ (w b

→v). This pattern says that ifv has an emanating forward pointerf that leads
to an objectw, thenw has a backward pointerb into v. Using the patterninvf,b, we can describe a doubly-linked
list pointed-to by a program variablex by the atomic propositionx[f→

∗
]invf,b in our logic. This reachability

constraint says that any objectv reachable from an object pointed-to byx using a (possibly empty) sequence of
forward pointers satisfies the propertyinvf,b.5

The design of our logic is guided by the following principles. First, reachability constraints are closed formu-
las without quantifier alternations. This guarantees that we are dealing with alternation-free formulas. Second,
reachability is expressed via the Kleene star operator. We believe that regular expressions yield a more user-

5This and other examples are explained in detail in Section4.3.2.

10 CHAPTER 1. INTRODUCTION

friendly notation than the transitive closure operator. Third, decidability is obtained by syntactically restricting
the way patterns are formed. In particular, the use of equality is limited. Semantically, the restriction means that
a pattern cannot relate two nodes that are distant from one another, unless these nodes are “named”. As a result, a
pattern can only describe local properties. Global properties can only be described using reachability along reg-
ular paths that start from “named” nodes. Therefore, complex properties can be enforced only between “named”
nodes. For example, complex sharing patterns can be createdaround objects pointed-to by program variables;
arbitrary sharing is allowed but cannot be enforced deep in the data-structure, because the objects that are deep
are indistinguishable and distant nodes cannot be related by a pattern.

The contributions of this work can be summarized as follows:
• We define the logicL0 where reachability constraints such as those mentioned above can be used. Patterns

in such constraints are defined by (restricted) quantifier-free first-order formulas over graph structures and
sets of access paths are defined by regular expressions.
• We show thatL0 has a finite-model property, i.e., every satisfiable formulahas a finite model. Therefore,

invalid formulas are always falsified by a finite graph structure.
• We prove that the logicL0 is undecidable.
• We define restrictions on the patterns which lead to a fragment of L0 calledL1.
• We prove that the satisfiability and validity problems ofL1-formulas are decidable. The fragmentL1 is the

main technical result of this work and the decidability proof is non-trivial. The main idea is to show that
every satisfiableL1 formula is also satisfied by a tree-like graph. Thus, even thoughL1 expresses properties
of arbitrary data-structures, the syntax of the logic is limited enough to ensure that a formula that is satisfied
on an arbitrary graph is also satisfied on a tree-like graph. Therefore, it is possible to answer satisfiability
(and validity) queries forL1 using a decision procedure for weak monadic second-order (MSO) logic on
trees.
• We show that despite the restriction on patterns we introduce, the logicL1 is still expressive enough for use

in program verification: various important data-structures, and loop invariants concerning their manipula-
tion, are in fact definable inL1.
• We show that the proof of decidability ofL1 holds “as is” for many useful extensions ofL1.
We defineThe Logic of Reachable Patterns(LRP for short) to be one of the decidable extensions ofL1 (see

Section4.8 for details). For instance, in contrast to decidable logicsthat restrict the graphs of interest (such as
weak monadic second-order logic on trees), our logic allowsarbitrary graphs with an arbitrary number of fields.
We show that this is very useful even for verifying programs that manipulate singly-linked lists in order to express
postconditions and loop invariants that relate the input and the output state.

Our logic is expressive enough to encode many interesting data-structure invariants and loop invariants. Note
that loop invariants often describe more complex structures than those satisfying data-structure invariants. The
reason is that loop invariants also capture intermediate states of high-level operations, in which the data-structure
invariant may be violated. The ability to express loop invariant is important to reestablish the data-structure
invariant after a sequence of low-level mutations that temporarily violate the data-structure invariant.

By restricting the syntax, we guarantee that queries posed over arbitrary graphs can be answered by consider-
ing only tree-like graphs. This approach allows us to automate the reasoning about limited but interesting proper-
ties of arbitrary graphs. Moreover, our logic strictly generalizes the decidable logic in [BRS99], which inspired our
work. Therefore, it can be shown that certain heap abstractions including [Hen90, SRW98, MYRS05, LAIS06]
can be expressed usingLRPformulas.

This material is described in detail in Chapter4. The main technical result is the proof of decidability ofL1.
Part of this material was originally published in [YRS+06], and an extended version of [YRS+06] was invited for
a journal publication and appeared in [YRS+07]. In addition to the material already published in [YRS+07], Sec-
tion 4.7.2of this thesis contains a proof of the upper bound on the complexity of the validity problem forLRP.

The methods presented in Chapters2 and3 use abstraction and automatically infer loop invariants. In Chap-
ter 4, we motivate the design of a new logic,LRP, using examples of classical verification with user-provided
loop invariants. In addition, we show (in Section4.3.4) that LRP is expressive enough to characterize, viaγ̂,
certain shape abstractions. Therefore,LRPcan also be used with the algorithms described in Chapters2 and3 for
inferring loop invariants that involve properties of linked data-structures.

Chapter 2

Combining Concrete Execution,
Abstraction, and Theorem Proving

In this chapter, we present a method for static program analysis that leverages tests and concrete program ex-
ecutions. State abstractions generalize the set of programstates obtained from concrete executions. A theorem
prover then checks that the generalized set of concrete states covers all potential executions and satisfies additional
safety properties. Our method finds the same potential errors as the most-precise abstract interpreter1 for a given
abstraction and is potentially more efficient. Our method makes the process of designing new program analyses
easier and more automatic, because we do not require abstract transformers. Additionally, it provides a new way
to tune the performance of the analysis by alternating between concrete execution and theorem proving.

To evaluate the feasibility of our technique, we have implemented two prototypes: the first prototype is based
on the XRT model checker infrastructure as its platform and uses predicate abstraction; the second prototype is
based on the TVLA system as its platform and uses canonical abstraction.

The material described in this chapter, was originally published in [YBS06] and an extended version [YBS06]
was invited for a journal publication in [YBS07]. This material is closely related to, and was inspired by, an earlier
work [RSY04], as explained in Section2.7.

2.1 Introduction

Recently, there has been much interest in combining dynamicand static methods for analyzing programs [NE02,
GKS05, CS05, PPV05, GHK+06]. Dynamic analysis (or testing) is based on concrete program executions and
underapproximatesthe set of program behaviors. That is, ifBP denotes the set of all behaviors of a programP
then dynamic analysis explores a finite subset ofBP . Static analysis is based on an abstract interpretation [CC77]
of program behavior and typicallyoverapproximatesthe set of program behaviors. That is, static analysis has
the effect of analyzing a superset ofBP , which may includeinfeasiblebehaviors that cannot be exhibited by the
program.

The pros and cons of the two techniques are clear. If dynamic analysis detects an error then the error is real.
However, dynamic analysis cannot provide a proof of the absence of errors. On the other hand, if static analysis
does not find an error (of a particular kind) in the superset ofBP thenBP clearly cannot contain an error (of that
same kind). However, if static analysis detects an error, itmay be a false error as the behavior that induces the
error may lie outsideBP .

We show how to perform static analysis using a novel combination of dynamic analysis, abstraction, and an
automated theorem prover. Our technique is oriented towards finding a proof rather than detecting real errors. As
a result, it has the pros and cons of a static analysis, but leverages dynamic analysis as its execution vehicle.

Our method uses state abstractions to generalize the set of program states gathered by monitoring concrete
executions of a programP . An automated theorem prover is used to check that the generalized set of concrete

1We use the term “most-precise abstract interpreter” to refer to the abstract interpreter that uses the best abstract transformers for all
(intraprocedural) statements and does not use widening.

11

12 CHAPTER 2. COMBINING CONCRETEEXECUTION, ABSTRACTION, AND THEOREM PROVING

foo(int x, int y) {
int *px = NULL;

A: x = x + 1;
B: if (x<4)
C: px = &x;
D: if (px==&y)
E: x = x+1;
F: if (x<5)
G: *px = *px+1;
H: return;

}

Figure 2.1: The procedurefoo contains a null pointer dereference error at lineG.

states covers all potential executions ofP (essentially the setBP) and satisfies additional safety properties. If this
check succeeds, we have a proof that all executions of the program satisfy the given properties.

However, if this check fails, our technique creates afabricatedconcrete state from which we continue concrete
program execution. We use a model generator (a theorem prover that can produce concrete counterexamples) to
create fabricated states that increase the coverage. Undersome standard assumptions (detailed later) our method
is guaranteed to converge and obtain the same result as a standard abstract interpretation of the programP . In
particular, our method produces the same amount of false alarms as a standard abstract interpretation (over the
same abstract domain). It is noteworthy that we can make thisguarantee even if we prematurely halt concrete
execution in order to perform the coverage check. In this way, we can control the amount of time spent executing
the program vs. the amount of time spent calling the theorem prover.

Additionally, we show in Section2.6 that our method can find safety proofs with much simpler abstractions
than those used by other methods [LY92, PPV05] which combine concrete execution, abstraction and theorem
proving.

Finally, this method explains the result of abstract interpretation in terms of concrete executions and abstrac-
tion. This sheds some light on the trade-offs that arise whencombining dynamic and static analyses.

We implemented our method in two platforms: the XRT system [GTS05] for generating unit tests and the
TVLA system [LAS00] for performing shape analyses. The former prototype, based on predicate abstraction,
employs the Simplify theorem prover [DNS03] and a naı̈ve model generator. The XRT implementation supports
all C# features including pointers and procedures. The latter prototype, based on canonical abstraction, employs
the Paradox model finder [CS03] and a naı̈ve theorem prover (based on “coerce” [SRW02]). The prototypes
demonstrate the feasibility of our approach for two different abstractions, but not yet engineered to perform
modular program analysis.

The remainder of this chapter is organized as follows. Section 2.2 illustrates the method using a simple ex-
ample. Section2.3 formalizes our method using the terminology of abstract interpretation. Section2.4discusses
some of the practical issues that arise when implementing the algorithm. Section2.5describes the two prototype
implementations: one based on the XRT infrastructure, and one based on the TVLA system. Section2.6demon-
strates, using the example of Bakery mutual exclusion protocol, that our method avoids unnecessary refinements,
compared to other methods that combine dynamic and static analysis. Section2.7further compares our approach
to related work. Finally, AppendixA reviews standard definitions, and contains the proofs of alltheorems from
Section2.3.

2.2 Example

We now illustrate our basic method using a simple example, shown in Fig.2.1. The procedurefoo, written in
C syntax, contains a null pointer dereference error at lineG. A concrete state of this procedure is described by a
quadruple(pc, i, j, ptr), wherepc is the value of the program counter ranging over the labelsA–H, i andj are the
integer values of variablesx andy, andptr is the value ofpx of type integer pointer. In the rest of this example,

2.2. EXAMPLE 13

we abuse the notations slightly and usex to refer to the program variable and to its value. Similarly for y.
To simplify the exposition, we assume thatfoo can be called with any integer values for the variablesx and

y, which defines the set of all possible initial states.
Whenfoo is called withx = 3, the value ofpx is NULL on the left-hand side of the assignment statement at

labelG, causing a null pointer dereference atG. Note that the conditional at labelD always evaluates to false, so
the assignment statement at labelE is dead code.

We use the following abstraction function: for every set of concrete statesX ,

α(X) = {(pc, x < 5, px = NULL) | (pc, x, y, px) ∈ X}

Here, a concrete program state is mapped to a triple of valuesfor the following expressions: the program counter
pc (ranging over eight labels), the predicate(x < 5) and the predicate(px = NULL). A predicate evaluates to
true (t) or false (f). For a singleton setC, we abuse the notations slightly by writingα(pc, x, y, px) instead of
α({(pc, x, y, px)}).

The abstract state space is finite, and it consists of8×2×2 = 32 possible triples. The reachable abstract states
are shown in Fig.2.2(a). Our method does not construct these abstract states beforehand. Instead, we execute the
procedure on a set of tests and compute, usingα, the abstraction of the concrete states encountered duringtest
executions.

Now consider executingfoo(2,0),foo(6,0),foo(11,0), that define the test setT = {(A, 2, 0, NULL),
(A, 6, 0, NULL), (A, 11, 0, NULL)}. The test setT does not uncover the null-pointer dereference in the pro-
gram. The abstract states covered by the execution ofT , denoted byAT , are marked in Fig.2.2(a) with bold-
circles. Note that the error abstract state(G, t, t) is not inAT .

2.2.1 Example of Finding a Bug

Next, we check whether the test setT is adequate underα. That is, is the set of covered abstract statesAT an
invariant? This check fails, because there is a concrete state b such thatα({b}) = (B, t, t), a covered abstract
state, from which in one step of the program it is possible to reach a concrete stated such thatα({d}) = (D, t, t),
an uncovered abstract state. Using a model generator, our method fabricates such a pair of concrete states, say
b = (B, 4, 0, NULL) andd = (D, 4, 0, NULL). Execution from stateb leads to a null pointer dereference error
at labelG, as shown in Fig.2.2(a). Thus, our analysis reports a potential error. In this case the program contains a
real error, because the stateb is a reachable concrete state (reachable from the initial state(A, 3, 0, NULL)).

2.2.2 Example of Finding a Proof

Now, let us consider what our technique does on a version of the above procedure obtained by modifying the
conditional at labelB from (x < 4) to (x < 5), which eliminates the null pointer dereference. Let us callthe
new versionfixed foo. The abstract state space offixed foo, obtained using the abstraction functionα as
before, is shown in Fig.2.2(b).

Again, the set of covered abstract states is not an invariant. In particular, there is a concrete stated′ such that
α({d′}) = (D, t, f) from which in one step of the program it is possible to reach a concrete statee′ such that
α({e′}) = (E, t, f), an uncovered abstract state. A pair that satisfies this constraint isd′ = (D, 4, 0,&y) and
e′ = (E, 4, 0,&y). Note that neither of these states is a reachable concrete state, as the address of the variabley
is never assigned to the variablepx in the program, and thus the labelE is not reachable. However, in the abstract
state space, the labelE is reachable whenever the predicate(px = NULL) is false at labelD.

Concrete execution from the stated′ covers the additional abstract states:(E, t, f), (F, f, f), and(H, f, f).
At this point, our method shows that the set of covered abstract states is an invariant. This implies that the abstract
states represent all reachable concrete states offixed foo. Since these abstract states do not contain the error
state(G, t, t), we have found a proof that there cannot be any null pointer dereference at labelG, in any execution
of the procedurefixed foo.

Interestingly,(H, f, f) represents some reachable concrete states, i.e., there exists a test input (not in our
test set) that covers(H, f, f). However, finding such an input is a non-trivial task, because to cover(H, f, f)
fixed foo must be called with preciselyx = 3 as an argument (and any value ofy). Random or symbolic
path-exploration techniques can be used to address the problem, but we avoid this problem using fabrication. The

1
4

C
H

A
P

T
E

R
2

.
C

O
M

B
IN

IN
G

C
O

N
C

R
E

T
E

E
X

E
C

U
T

IO
N

,
A

B
S

T
R

A
C

T
IO

N
,

A
N

D
T

H
E

O
R

E
M

P
R

O
V

IN
G

b

d

A,t,t

C,t,t

D,t,f

F,t,f

G,t,f

H,t,f

F,t,t

E,t,f

G,t,t

F,f,f

H,f,f

A,f,t

B,f,t

D,f,t

F,f,t

H,f,t

foo(2,0) foo(11,0)
foo(3,0)

B,t,t

D,t,t

foo(6,0)

e’

A,t,t

B,t,t

C,t,t

F,t,f

G,t,f

H,t,f

F,f,f

H,f,f

A,f,t

B,f,t

D,f,t

F,f,t

H,f,t

fixed_foo(2,0) fixed_foo(11,0)

d’
D,t,f

E,t,f

fixed_foo(6,0)

A,t,t

B,t,t

C,t,t

D,t,f

F,t,f

G,t,f

H,t,f

E,t,f

F,f,f

H,f,f H,t,t

fixed_foo(2,0)
fixed_foo(6,0)

F,t,t

G,t,t

f’

D,t,t

g’

A,f,t

B,f,t

D,f,t

F,f,t

H,f,t

fixed_foo(11,0)

(a) (b) (c)

Figure 2.2: Reachable abstract states for (a) finding a null pointer dereference infoo usingα(pc, x, y, px) = (pc, x < 5, px = NULL); (b) finding a proof for
fixed foo usingα(pc, x, y, px) = (pc, x < 5, px = NULL); (c) finding a false error infixed foo usingα′(pc, x, y, px) = (pc, x < 10, px = NULL).
Abstract states covered by the set of testsT = {(A, 2, 0, NULL), (A, 6, 0, NULL), (A, 11, 0, NULL)} are marked with bold-circles.

2.3. FORMAL DESCRIPTION 15

abstract state(H, f, f) is covered by a test execution that starts from the fabricated stated′. It shows that we can
benefit from fabricated states to discover abstract states that are reachable via rare executions.

Moreover, execution ofd′ covers the abstract state(F, f, f), which does not represent any reachable concrete
state (although the statement at labelF is reachable). Fortunately, all executions from this abstract state are safe.
That is, the current abstraction shows the absence of errorsin all feasible executions as well as in some infeasible
executions. This shows the strength of our method: we obtaina proof using a much coarser abstraction than
the existing methods [PPV05, Bal04] that are based only on feasible executions. In this example, these methods
would unnecessarily refine the abstraction, even though thecurrent abstraction is sufficient to prove the absence
of null pointer dereferences (and our method obtains a proof).

2.2.3 Example of Finding a False Error

Now, let us show an abstraction function that is not precise enough to prove the correctness of the (corrected)
programfixed foo above. Suppose our abstraction function is:

α′(C) = {(pc, x < 10, px = NULL) | (pc, x, y, px) ∈ C}

In this case, the abstraction function cannot precisely track the relationship between the value ofx and the pred-
icate (px = NULL) in the program. Fig.2.2(c) shows the reachable abstract states for this new abstraction
function.

Using a theorem prover and a model generator, we find a concrete statef ′ such thatα′({f ′}) = (F, t, t)
from which in one step of the program it is possible to reach a concrete stateg such thatα′({g′}) = (G, t, t), an
uncovered abstract state. A pair that satisfies this constraint is f ′ = (F, 4, 0, NULL) andg′ = (G, 4, 0, NULL).
Note thatf ′ is not a reachable concrete state. Running the program from state f ′ will cause a null pointer
dereference to occur at labelG. At this point, our analysis reports a potential error. Thisfalse error would also be
reported by an abstract interpreter using the abstraction functionα′.

Our analysis does not distinguish between a false error suchas this one, and a real error such as the one in
Section2.2.1. Both are reported aspotentialerrors. In particular, our method might not discover the test input
(A, 3, 0, NULL) mentioned in Section2.2.1.

2.3 Formal Description

This section formalizes our method and compares it to the traditional static analysis by abstract interpretation.
Section2.3.1quickly reviews relevant terminology about abstract interpretation. Section2.3.2presents an ide-
alized version of our method and discusses its basic properties. It does not provide an effective algorithm, as it
uses an incomputable operation. Section2.3.3discusses how to realize the method as a symbolic algorithm which
employs a theorem prover and a model generator.

2.3.1 Abstraction and Concretization

Let C be a set of concrete states of programP (not necessarily reachable). LetA be a set of abstract values (not
necessarily reachable).

In abstract interpretation, we usually assume thatA forms a lattice, with partial order⊑, meet⊓ and join⊔
operations (see AppendixA.1). In the previous section, we used a powerset lattice, in which an element (abstract
value) is a set of abstract states, ordered by set inclusion⊆, meet is set-intersection∩, and join is set-union∪.

An abstraction function α : 2C → A yields an abstract value that represents a set of concrete states. A
concretization function γ : A → 2C yields a set of concrete states that an abstract value represents. The partial
order onA satisfies for alla, a′ ∈ A,

a ⊑ a′ ⇒ γ(a) ⊆ γ(a′). (2.1)

The concretization and the abstraction functions form aGalois connectionbetween2C andA, i.e., for all
a ∈ A andX ⊆ C:

α(X) ⊑ a ⇐⇒ X ⊆ γ(a) (2.2)

16 CHAPTER 2. COMBINING CONCRETEEXECUTION, ABSTRACTION, AND THEOREM PROVING

[1]procedure basic(T0)
[2] a := ⊥
[3] T := T0

[4] while(true) begin
[5] C := Execute(f,T)
[6] a := a ⊔ α(C)
[7] if exists σ ∈ f(γ(a)) s.t. σ /∈ γ(a)
[8] then T := {σ}
[9] else return a
[10] end

Figure 2.3: The basic procedure. Here,T0, T, C ⊆ C, anda ∈ A. If α(T0) = α(I), then the result of the
procedure is a sound approximation ofP .

This implies thatX ⊆ γ(α(X)) andα(γ(a)) ⊑ a. That is, abstraction followed by concretization potentially
yields more states, and concretization followed by abstraction potentially yields a more precise abstract value.
Also, it follows from (2.2) thatα uniquely determinesγ.

Given an abstraction functionα, it is easy to define the corresponding concretization function: γ(a) =
{c | α({c}) ⊑ a}. For example, using the abstraction functionα′ from Section2.2.3, γ({(G, f, t)}) =
{(G, x, y,NULL) | x ≥ 10}. Note that the setγ({(G, f, t)}) is infinite and the values ofy are not restricted.

To simplify the presentation, we assume that an abstract value inA collectively describes states at all program
points, rather than having a separate abstract value for each program counter. This can be achieved by encoding
the program counter in the representation of a concrete stateC, as we did in the previous section.

The programP defines a transition relation on concrete states→P : C × C. Forσ, σ′ ∈ C, we say thatσ′ is a
successor ofσ if σ →P σ

′. Intuitively,σ′ is a result of executing a single statement ofP in the stateσ. We define
the functionfP : 2C → 2C as follows:

fP (X) = {σ′ | σ →P σ
′, σ ∈ X} ∪ {X}

Note thatfP is monotone and extensive (i.e.,X ⊆ fP (X)). We drop the subscriptP when it is understood from
the context. The set of concrete states reachable fromX ⊆ C is the least fixed point off w.r.t. X , denoted by
LFP⊒X(f).

Let I ⊆ C be the set of all possible initial states of a programP . The meaning of the programP is the set of
all concrete states reachable from some initial state: LFP⊒I(f).

An abstract valuea ∈ A is asoundoverapproximation ofP if a represents all concrete states reachable from
I (but possibly other states):

LFP⊒I(f) ⊆ γ(a). (2.3)

An abstract valuea ∈ A is invariant under P if

f(γ(a)) ⊆ γ(a) (2.4)

Theorem 2.3.1 (Soundness)If an abstract valueb ∈ A is invariant underP and I ⊆ γ(b) thenb is a sound
overapproximation ofP .

2.3.2 Basic Procedure

Fig. 2.3shows a high-level description of our method. Implementation details are discussed in the next sections.
We assume that the basic procedure is called with a finite setT0 of initial states (T0 ⊆ I), such thatα(T0) = α(I).

Line [5] corresponds to theExecutestep, described in Section1.3.1. Formally,Execute(f, T) returns a
finite subset of the states reachable fromT usingf that contains at least the states inT :

Execute(f, T) ⊆ LFP⊒T (f) andT ⊆ Execute(f, T). (2.5)

Note that it is not necessary (and sometimes impossible) to collect all states reachable fromT . In particular, this
step allows us to handle non-terminating executions or verylong running executions. We require thatExecute
terminates (and can always guarantee it, for example using atimeout).

2.3. FORMAL DESCRIPTION 17

In line [6] the abstraction of the obtained concrete states is computedusingα. This corresponds to the
Abstractstep described in Section1.3.1. The procedure terminates when it is not possible to fabricate a stateσ
that satisfies the condition in line[7], i.e.,a is invariant underP . This implies thata is a sound approximation
of the reachable states ofP (by Theorem2.3.1).

Furthermore, the procedure computes the same abstract value forP as is computed by the most-precise ab-
stract interpreter for the given abstraction, as stated by the following theorem:

Theorem 2.3.2 Letf ♮ : A → A be defined byf ♮ = α ◦ f ◦ γ. The procedure in Fig.2.3computes the least fixed
point off ♮ w.r.t. α(I): LFP⊒α(I)(f

♮).

The particular choice of a fabricated concrete state in line[7] does not affect the final result of the procedure,
but it may affect the number of iterations needed to find the result, as explained below.

LetSa be the set of all possible fabricated states for an abstract valuea, i.e., the set of statesσ that satisfy the
condition in line[7]:

Sa
def
= {σ | σ ∈ f(γ(a)), σ /∈ γ(a)}

In line [8], a single fabricated state is chosen fromSa. It is easy to modify the procedure to work with several
fabricated states together in the same iteration. That is, we can chooseT to be any finite non-empty subset ofSa.
We cannot use the entire setSa because it may be infinite. Using several fabricated states at once may increase
coverage more than with a single state, but it might increasethe cost of concrete execution. More importantly, it
might be costly to fabricate states (see Section2.4.5).

Because fabricated states are not covered by the abstract values collected so far, the coverage strictly increases
in successive iterations.

Theorem 2.3.3 If the latticeA has a finite height, the procedure in Fig.2.3terminates.

Remark. If the latticeA admits infinite ascending chains (e.g., polyhedra [CH78]), it is possible to use standard
wideningtechniques to enforce and accelerate termination of our procedure, sacrificing the precision of its result.
Let▽ : A × A → A denote the widening operator onA (see AppendixA.1). We replace line[6] with a :=
a▽ α(C). The resulta of the procedure satisfies LFP⊒α(I)(f

♮) ⊑ a, but the resulta may be less precise than
LFP⊒α(I)(f

♮).

Choosing Fabricated States

Choosing any state inSa strictly increases the coverage, but some states increase the coverage more than others.
Intuitively, we would like to choose a fabricated state thatcovers as many new abstract states as possible, “jump-
ing” higher in the abstract lattice. A good choice of fabricated states reduces the number of the iterations of the
procedure, and thus, the number of calls to a theorem prover and a model generator.

Example 2.3.4 Consider the following code fragment:

while(x < 1000) {
A: if (x % 2 == 0)
B: x += 2;

else
C: x += 1;

}

The abstraction function isα(C) = {(pc, x > 0)|(pc, x, . . .) ∈ C}. Suppose that the current abstract value is
a = {(pc = A, t)}. If we choose a fabricated state at program pointA with an even value ofx, we cannot cover
abstract states withpc = C. If we choose a fabricated state with an odd value ofx, we cover bothpc = B and
pc = C with an execution from the same fabricated state.

Formally, we define a partial order on fabricated states: foreveryσ, σ′ ∈ Sa, the stateσ covers more abstract
states thanσ′, denoted byσ′ � σ, when

a ⊔ α(Execute(f, {σ})) ⊑ a ⊔ α(Execute(f, {σ′}))

18 CHAPTER 2. COMBINING CONCRETEEXECUTION, ABSTRACTION, AND THEOREM PROVING

A finite set of fabricated statesSopta ⊆ Sa is optimal with respect toa if a ⊔ α(Execute(f, Sopta)) = a ⊔
α(Execute(f, Sa)), and for allσ, σ′ ∈ Sopta , σ 6� σ′ andσ′ 6� σ.

If the abstract domain has a finite height, then there exists afinite setSopta as above. It is not clear how to find
an optimal set of fabricated states, or how to approximate them, because this condition is non-local. Heuristics
for choosing fabricated states are out of scope of this work.

2.3.3 Symbolic Procedure

For all abstractions we are aware of, the functionα is efficiently computable given a finite set of concrete states,
represented explicitly. Note that applyingα in line [6] does not require the use of a theorem prover.

Nonetheless, as mentioned before, the procedure in Fig.2.3 does not provide an effective algorithm. In
particular, theγ operation used in line[7] is not computable, asγ(a) may be infinite. We now show how to
implement line[7] symbolically, using a theorem prover and a model generator.

Symbolic Characterization Concrete program states can be represented as logical structures, (e.g., constant
symbols model program variables). Thus, sets of concrete states can be described by logical formulas in some
logicL (e.g., first-order logic). The concretization functionγ can be expressed symbolically, i.e., for everya ∈ A,
there exists a formula inL, denoted bŷγ(a), that exactly representsa: for all σ ∈ C,

σ |= γ̂(a) if and only if σ ∈ γ(a) (2.6)

In the example from Section2.2, with abstraction functionα, γ̂ can be expressed as a quantifier-free first-
order formula, interpreted over integers. The constant symbolsx andy model the values of the corresponding
program variables. The constant symbolsA–H model each of the program points, and an additional constant
symbolpc models the program counter.2 Similarly, the value of the expressionpx = NULL can be encoded
with a corresponding pair of constant symbols. For instance, γ̂({(G, f, t)}) is the formula(pc = G) ∧ ¬(x <
5) ∧ (px = NULL).

Meaning of Program Statements The meaning of a program can be expressed as a formula transformer,
SP : Prog × L → L, which defines the strongest postcondition [Dij76]: for every programP ∈ Prog and
a formulaϕ ∈ L, a concrete stateσ′ satisfiesSP(P, ϕ) if and only if there exists a concrete stateσ such thatσ′

is a successor state ofσ in P andσ satisfiesϕ. Intuitively, SP describes the result of executing a single basic
statement ofP on a state that satisfiesϕ. For example,SP(x = x + 1, x > 5) is the formulax > 6.

We can also useSP that describes the result of executing an entire loop-free code fragment, instead of a
single basic statement. Note that we do not useSP for loops, because our method automatically computes loop
invariants.

Symbolically Checking for Invariance Using theγ̂ andSP operations, we can symbolically express the fact
that abstract valuea ∈ A is an invariant:

SP(P, γ̂(a))⇒ γ̂(a) (2.7)

The formula (2.7) is valid if and only ifa is an invariant.3

Given a programP and an abstract valuea, our method can automatically generate the formula in (2.7).
Moreover, it can check the validity of (2.7) automatically using a theorem prover forL. If the validity check fails,
then a model generator can be used to fabricate a state that satisfiesγ̂(a) and has a successor that does not satisfy
γ̂(a). Formally, the fabricated state satisfies the negation of (2.7):

SP(P, γ̂(a)) ∧ ¬γ̂(a) (2.8)

For example, in Section2.2.1, if a is {(B, t, t)}, then the formulâγ(a) is (pc = B ∧ x < 5 ∧ px = NULL).
The strongest postcondition of this formula and the statementif (x < 4) at labelB is the formulasp

def
= (pc =

C ∧ x < 4 ∧ px = NULL) ∨ (pc = D ∧ x = 4 ∧ px = NULL). When checking validity ofsp ⇒ γ̂(a),

2 Not every interpretation of these constants is legal; to rule out illegal interpretations ofpc, the following axiom can be used:pc =
A ∨ pc = B ∨ . . . ∨ pc = H.

3Alternatively, a formula based on the weakest (liberal) precondition can be used:̂γ(a) ⇒ WP(P, γ̂(a)).

2.4. TOWARDS A REALISTIC IMPLEMENTATION 19

we consider only standard interpretations of integers and relations over integers. Clearly,sp ⇒ γ̂(a) is not valid
(even in the standard interpretation). This allows us to fabricate a state, sayd = (D, 4, 0, NULL), such that
d |= sp ∧ ¬(pc = B ∧ x < 5 ∧ px = NULL).

Symbolically Checking Safety Properties In our setting, the safety properties of interest also can beexpressed
by a formulaϕ ∈ L. For example, in Section2.2the safety property can be expressed by the formulaϕ

def
= ¬(pc =

G ∧ px = NULL).
If a ∈ A is a sound approximation ofP , and the formulâγ(a) ⇒ ϕ is valid, then all reachable concrete

states ofP satisfy the safety propertiesϕ. In Section2.2.2, our method obtains a set of abstract statesa for which
γ̂(a) ⇒ ϕ is valid. In Section2.2.3, one of the abstract states covered by our method is(G, t, t), for which
(pc = G∧x < 10∧px = NULL)⇒ ¬(pc = G∧px = NULL) is not valid, and our method reports a potential
error.

In practice, there are automatic tools for checking validity and generating models (even if the logicL is
undecidable), which have certain limitations, as discussed in the next section.

2.4 Towards a Realistic Implementation

In this section, we discuss some of the practical issues thatarise when implementing the symbolic algorithm
described in Section2.3.

2.4.1 Program Analysis Infrastructure

Our method requires an infrastructure that supports: (1) monitoring of concrete program states in concrete exe-
cutions to compute abstract state coverage; (2) symbolic execution of loop-free code fragments to computeSP ;
(3) state manipulation to create fabricated states.

Explicit-state model checkers such as SPIN [Hol03], CMC [MPC+02], JavaPathFinder [VHB+03], XRT [GTS05],
which perform systematic and exhaustive testing, provide agood starting point (though not all support symbolic
execution). A model checker analyzes several executions ofthe program at once, and controls the order in which
these concrete executions advance (e.g., DFS, BFS). A modelchecker usually manipulates a representation of
concrete states, which comes in handy for fabrication of states. Our implementation uses XRT (see Section2.5.1).

2.4.2 Cutpoints

Section2.3simplifies the discussion by encoding the program counter inthe abstract value. This encoding allows
us to keep abstract states for each program point. In practice, it is not necessary to track all program points. We
can choose a designated set of program points, calledcutpoints, where the abstraction is computed.

The runtime overhead of computing abstract state coverage decreases when there are fewer cutpoints. Further-
more, having fewer cutpoints potentially improves the precision of our method, as the abstraction of a composition
of two statements is at least as precise as a composition of their abstractions.

As in deductive verification, a minimal set of cutpoints is a set which cuts every cycle in a program’s control
flow graph [Flo67].

The check that an abstract value is an invariant is adapted according to the set of cutpoints: the strongest
postcondition formulasSP in (2.7) describe the result of executing a sequence of statements from one cutpoint to
the next (and not a single statement, as before). Note that states are fabricated only at cutpoints.

2.4.3 On-the-fly Abstraction

We previously presented execution and abstraction as separate steps (line[5] and line[6]of Fig. 2.3). In
practice, abstraction can be computedon the flyduring program execution. The idea is to monitor the execution:
when a cutpoint is reached, we pause the execution to computethe abstraction of the current state, conjoin the
resulting abstract value with the abstract value collectedso far, and continue the execution. This way, concrete
states encountered during program execution need not be stored (only abstract values need to be stored).

20 CHAPTER 2. COMBINING CONCRETEEXECUTION, ABSTRACTION, AND THEOREM PROVING

2.4.4 Interprocedural Analysis

The simplest way to handle procedure calls in program analysis is by inlining the code of the procedure at the call
site. Similarly, we can check invariants of programs with procedure calls by inlining the code of the procedure and
using strongest postconditions as before. Alternatively,we can use procedure’s specification to create a formula
whose validity implies that the abstract value obtained so far is an invariant. This allows us to check invariants in
a modular way, and therefore enables modular program analysis with user-provided specifications.

2.4.5 Employing a Theorem Prover

The success of our method depends on having a theorem prover which can check validity of formulas from (2.7),
and a model generator which can generate concrete counterexamples to validity of these formulas, as discussed
in Section1.3.4. If a theorem prover or a model generator fails, we cannot guarantee that our algorithm produces
the most-precise results with respect to the given abstraction. However, we can guarantee that our algorithm, if it
terminates, produces a sound result even when some theorem prover calls failed when checking that the abstract
value is an invariant. First, our method attempts to fabricate a state that satisfies (2.8). If model generation
succeeds, the analysis continues as before (without losingprecision guarantees). Failure of the model generator
to fabricate a state can be handled as follows:
• Fabricate a state a state outside ofγ(a). This guarantees that the coverage increases in each iteration, and the

analysis eventually terminates, but it might fail to produce the most-precise result (because the fabricated
state may not have a predecessor in any covered state).
• Fabricate some concrete state, say using a random generator, sacrificing both termination of the analysis

and its precision. However, if the analysis terminates, itsresult still is sound.
• Use the hybrid approach which combines concrete execution and abstract interpretation, as discussed in Sec-

tion 2.4.7.

2.4.6 Controlling Concrete Execution

Recall from Section2.3 that stopping concrete execution at any moment does not affect termination or precision
of the analysis. In fact, to guarantee termination, it is sufficient to haveC := T in line[5]. Normally, concrete
execution is a cheap way to increase coverage, but for certain programs, concrete execution might go on for a
long time without covering a new abstract state. The question is when the concrete execution should be paused to
check invariance.

Our idea is to monitor how many new abstract states are covered by a concrete execution. If the coverage has
not increased sufficiently for a certain period of time, the concrete execution can be paused to check invariance.
If the abstract value obtained so far is not invariant, our method can increase the coverage by fabricating a new
concrete state and continue concrete execution from it. In this way, we can control the amount of time spent
executing the program vs. the amount of time spent calling the theorem prover.

For example, consider the code in Fig.2.4, which uses the non-deterministic choice operation (*). A concrete
execution that iterates through the loop500 times, always taking the true branch of theif statement in line[3],
and then, in the500 + 1 iteration, takes the false branch, reaches the assertion inline [7]. If the false branch
is taken earlier,n is reset in line[8]. The assertion in line[7] fails in rare executions with a long trace to the
error. Such errors are difficult to discover using an explicit-state model checker or random testing. Our approach
can skip the execution of many loop iterations that do not increase coverage.

We use predicate abstraction with the predicatesn = 0, 0 < n < 500, n = 500, andn > 500 for value of
n on line[3]. Note that the predicates divide the concrete state space into 4 partitions, as shown in Fig.2.4(b).
Model checking quickly finds concrete execution that coversthe statesn = 0, 0 < n < 500, but then the concrete
execution stays within these abstract states. At this point, our algorithm simply fabricates a state withn = 500,
and continues model checking from it, skipping the long execution trace that leads to it. The model checker can
easily find an execution through the loop body to line[7], and reports a potential error.

This example shows that switching from concrete execution to fabrication can help us in finding errors and
invariants faster.

2.5. PROTOTYPE IMPLEMENTATIONS 21

[1]n:=0;
[2]while(*) {
[3] if (*) {
[4] n := n+1;
[5] } else {
[6] if(n==500)
[7] assert(0);
[8] n:=0;
[9] }
[10]}

(a) (b)

Figure 2.4: (a) Example program, (b) Abstract state-space.

2.4.7 Hybrid Approach

For certain programs, concrete execution might go on for a long time without covering a new abstract state,
whereas abstract interpretation makes progress in every step, but each step can be expensive or can lose precision
if the abstract transformers are not the best. An exciting application of our method is its ability to address limita-
tions of one approach using the other, by interleaving concrete and abstract interpretation. Furthermore, abstract
interpretation can be used when a model generator fails to fabricate a new state that satisfies (2.8).

Technically, the hybrid approach can choose to obtain a new abstract value by concrete execution of existing
test inputs or fabricated states, as described in Section2.3, or by applying an abstract transformer to the current
abstract value, as usual in abstract interpretation. To switch from abstract interpretation mode to concrete execu-
tion, the hybrid approach symbolically checks if the new abstract value is an invariant, and attempts to fabricate
states from the new abstract value, as explained in Section2.3.3. It is possible that model generation for the
current abstract value fails, but succeeds for the new abstract value, produced using an abstract transformer. The
precision of the hybrid analysis depends on the precision ofabstract transformers that are used, assuming that all
theorem prover and model generator calls are conclusive.

2.5 Prototype Implementations

To evaluate the feasibility of the technique, we have implemented it in two prototypes: the first prototype is based
on predicate abstraction and uses XRT model checker as its platform; the second prototype is based on canonical
abstraction and uses TVLA system as its platform.

2.5.1 Prototype Implementation Based on XRT

We have implemented our method on top of the XRT framework [GTS05], an extensible framework for explicit
and symbolic model checking of programs, represented in Microsoft’s common intermediate language (CIL).
XRT processes .NET managed assemblies, and provides means for analyzing, rewriting, and executing programs.
Our implementation takes advantage of all these features.

Our implementation uses predicate abstraction [GS97] (without refinement), and supports user-defined pred-
icates. It can also automatically generate a default set of predicates by a backwards data-flow analysis from the
conditional branches that infers the predicates governingthese branches.

In our implementation, predicates are defined as C# methods,calledprobes. Probes return Boolean values,
have no side-effects and contain no loops or method calls. Each cutpoint is instrumented to call the probe meth-
ods, which evaluate the appropriate predicates on the current state. We compute the abstraction of the concrete
execution on-the-fly: the XRT runtime pauses execution immediately after a call to a probe method returns, and
its return value is used to update the abstract state.

When predicates are given as logical formulas, it is easy to implement̂γ for predicate abstraction, but in
our case predicates are given as CIL code. The symbolic execution of probe methods by XRT gives a natural
way to construct logical formulas for predicates. The symbolic execution mode of XRT also provides strongest
postconditions that our method uses to check whether the abstract value is invariant. To check validity, we use

22 CHAPTER 2. COMBINING CONCRETEEXECUTION, ABSTRACTION, AND THEOREM PROVING

the Simplify theorem prover [DNS03]. To fabricate states, we implemented a naı̈ve model generator within XRT,
also based on Simplify.

Our implementation places cutpoints: (i) before each loop body (to cut cycles); (ii) on entry and exit of every
method, (iii) before and after every method call, and (iv) ateach program point that may potentially violate safety
properties, such as a pointer dereference or an array access. To handle method calls, we have implemented0-CFL
Reachability [NNH99], using the cutpoints of (ii,iii). For simplicity, we do nothandle goto statements.

Unit-Testing with Fabrication

A major application of XRT is in the area of unit testing. Therefore, to evaluate the implementation of our method,
we adapted the method to operate on a separate class using unit-tests for that class (rather than analyzing a closed
application using its test inputs). A similar approach can be applied to analyze an open system or a component.

The idea is to invoke each method of the class on all the concrete states obtained on exit of any method of this
class. We illustrate the idea on the implementation of a bounded stack, used previously in the literature [SLA02,
XN03, CS04, PE05].

Example 2.5.1 Fig. 2.5 shows an abbreviated version of the code that implements a bounded stack, using a
fixed-size array.

A bounded stack can normally be ‘empty’, ‘partially full’ or‘full’. We used predicate abstraction to capture
these states, and distinguish them from illegal states in which size is out of the bounds ofelems.

The bounded stack supports the usual operations, but it doesnot provide any exceptional behavior. Instead,
if an operation is applied in an inappropriate state, it has no effect. For example, if the stack is full, thepush
operation has no effect. However, thepop method incorrectly handles popping an empty stack. This problem was
not exhibited by the provided unit tests, becausepop is never called with an empty stack.

We analyzed the class using our implementation based on XRT,checking for the
IndexOutOfRangeException. In the first iteration, our method fabricates a stateσ on exit ofpop, with an
empty stack. Then, it executes the methodpop again on the fabricated stateσ, obtaining a new stateσ′ on the
exit ofpop, with size < 0 (no runtime exception occurs). Then, it executes the methodpush onσ′, causing at
labelL1 anIndexOutOfRangeException.

After fixing the error inpop, our analysis automatically proves absence of the
IndexOutOfRangeException in this example, using four fabricated states, and the default predicates, as
mentioned in Section2.5.1. If the maximal size provided to the constructor is negative, it throwsOverflowException
exception, but this error should not be reported by the analysis, which tracks different exceptions.

This example shows that our analysis can deal with unexpected failures, e.g., when a concrete execution throws
an exception that is not tracked by the analysis. If such exception is thrown in a concrete execution, our analysis
can fabricate any state in the following program point, and continue the execution from it. This fabrication is easy
because it does not place any constraints on the fabricated state. It provides a sound and (perhaps, surprisingly)
most-precise result, because behavior that is not modeled is treated by a sound abstraction as if “anything can
happen” at that program point.

Upon termination of the analysis, the abstract states on theentry and exit of all methods are the same. This set
of abstract states, in fact, represents the class invariants, under certain conditions about the class, stated in [Log04].
The analysis can output the inferred class invariants in theform of logical formulas, by computinĝγ of the relevant
abstract states.

Note that, as we are using state-based abstractions, our approach does not learn method-call order. Also,
our method analyzes each class independently of the actual clients of this class. The approach may also report
on potential errors, that do not occur in any actual client ofthis class. The advantage of this approach is that
it identifies potential errors early in the development process, even before the client is written. If our method
succeeds, it provides a proof of safety for the class in any client. This proof can be used to perform assume-
guarantee reasoning.

Also, in the setting of unit-testing, it is easier to classify a potential error reported by the analysis, because the
context of all method calls (a client code) is arbitrary. In the bounded stack example, real errors were detected by
a fabricated execution.

2.5. PROTOTYPE IMPLEMENTATIONS 23

public class BoundedStack {
private int[] elems;
private int size;
private int max;
...
public BoundedStack(int capacity) {

size = 0;
// fixme: if (capacity <= 0) capacity = 2;
max = capacity;
elems=new int[max];

}
public void pop() {
// fixme: if (size >= 0)
size--;

}
public void push(int k) {
int index;
bool alreadyMember;
alreadyMember = false;
for(index=0; index<size; index++) {
if(k==elems[index]) {

alreadyMember = true;
break;

}
}
if (alreadyMember) {

for (int j=index; j<size-1; j++) {
elems[j] = elems[j+1];

}
elems[size-1] = k;

}
else {

if (size < max) {
L1: elems[size] = k;

size++;
return;

} else {
return;

}
}

}
}

Figure 2.5: Implementation of a bounded stack using fixed-size array (abbreviated). The comments show the code
needed to fix the errors.

24 CHAPTER 2. COMBINING CONCRETEEXECUTION, ABSTRACTION, AND THEOREM PROVING

procedure fabricated abstract maximal description
states states length

search 2 21 5 searches a list for an element with a specified value
reverse 4 57 6 reverses a singly-linked list in-situ
insert 3 58 6 inserts a specified value into an ordered list
getLast 3 36 6 returns a pointer to the last element of a list
deleteAll 1 14 4 deallocates all elements in a list
delete 8 110 7 deletes an element with a specified value from a list

Figure 2.6: Analysis results for methods that manipulate singly-linked lists.

Recall that the purpose of fabrication is to find a proof faster. Inherent to this approach is the fact that a
fabricated state may be unreachable from any initial state of the program. However, states that are fabricated on a
method entry can be used in unit-test generation.

2.5.2 Prototype Implementation Based on TVLA with Application to Shape Analysis

Our method is applicable beyond predicate abstraction. We have implemented another prototype, based on the
TVLA system [LAS00]. The TVLA system performs abstract interpretation using canonical abstraction [SRW02],
and supports reasoning about linked data-structures. We have implemented a special-purpose model generator.
For concrete execution, we use the TVLA system in a mode wherememory abstraction is disabled. This mode
faithfully simulates concrete state-space exploration for programs, which manipulate fields and pointers, but not
integer data.

As a proof of concept, we applied the prototype to TVLA benchmarks that manipulate singly-linked lists.
A concrete state describes a memory that contains linked lists. We used four test inputs, each with one linked
list in memory: an empty list, and lists of length1–3. The analysis proved the absence of null-dereferences and
absence of memory leaks (i.e., every allocated element is reachable from some program variable). Fig.2.6shows
the results: number of fabricated states, abstract states upon termination, and the maximal length of a list used by
a concrete execution (either initial test input, or a fabricated state).

In fact, our prototype can find invariants for these methods without fabricating any states, provided that the
input tests include a list with at least7 nodes.4 It means that testing these methods on small lists, followedby
abstraction, is sufficient to discover all reachable abstract states. In particular, every abstract state is weakly-
reachable [Bal04] (see also Section2.7).

2.6 Avoiding Unnecessary Abstraction Refinement

We are not the first to demonstrate that concrete execution plus abstraction can be used to verify program prop-
erties [LY92, PPV05, Bal04]. However, previous work in the area required much strongerabstractions than
necessary to verify the safety properties of interest.

One approach is to find an abstract system that isbisimilar to the underlying concrete system, using automated
refinement of abstractions [LY92, PPV05]. For deterministic systems, this means that the concrete system and
abstract system have identical execution traces. The advantage of [LY92, PPV05], compared to our approach, is
that it reports only real errors. However, this technique isoften too strong for proving safety properties. Even
for proving a simple program, bisimulation might require a complex abstraction generated via many iterations of
abstraction-refinement, whereas our technique can achieveproofs with coarser abstractions.

As an example, we apply our method to the Bakery mutual exclusion protocol for two processes, which also

4The length depends on the number of program variables that can point into the same list.

2.7. RELATED WORK 25

Figure 2.7: Reachable abstract states of two-process Bakery protocol, using an abstraction functionx1 ≤ x2.

was analyzed in [PPV05]. The guarded command representation of the protocol is:

Process1 :
pc1 = A 7→ x1 := x2; pc1 = B;
pc1 = B 7→ x1 := x1 + 1; pc1 = C;
pc1 = C ∧ x1 ≤ x2 7→ pc1 = D;
pc1 = D 7→ pc1 = A;
Process2 :
pc2 = A 7→ x2 := x1; pc2 = B;
pc2 = B 7→ x2 := x2 + 1; pc2 = C;
pc2 = C ∧ x2 < x1 7→ pc2 = D;
pc2 = D 7→ pc2 = A;

A concrete state of the program is(pc1, pc2, x1, x2), wherepci is the value of the program counter of processi,
ranging overA−D, andxi is the integer value of the ticket of processi, for i = 1, 2.

The safety property we check is that at most one processor canbe in the critical section:¬(pc1 = D ∧ pc2 =
D). We use the following abstraction function, based on the predicatex1 ≤ x2:

αbake(C) = {(pc1, pc2, x1 ≤ x2) | (pc1, pc2, x1, x2) ∈ C} (2.9)

Fig.2.7shows the reachable abstract states. The abstract error states(D,D, t) and(D,D, f) are not reachable.
An explicit-state model checker easily finds a concrete execution that covers the states marked with bold-circles,
starting from the concrete state(A,A, 0, 0). Then, our method fabricates2 states:(C,B, 1, 0) and(C,A, 0, 0).
The first state covers the abstract state(C,B, f), and the second state covers(C,A, t) and(D,A, t). At this point,
our method proves that the abstract states are invariant, and that they satisfy the mutual exclusion property.

The initial abstraction used in [PPV05] is the same as ours (2.9). The method of [PPV05] takes4 steps
of abstraction refinement to find an abstract state space thatis a bisimulation of the concrete state space. The
bisimilar abstract state space contains36 abstract states, using abstraction based on10 predicates. We have shown
that the initial abstraction is sufficient to prove mutual exclusion (without any abstraction refinement), and the
state space has only17 abstract states.

2.7 Related Work

Automated Construction of Abstract Transformers Theorem provers have been used for the automated con-
struction of abstract transition systems [BMMR01, HJMS03, YRS04, RSY04], especially in parametric abstract

26 CHAPTER 2. COMBINING CONCRETEEXECUTION, ABSTRACTION, AND THEOREM PROVING

domains, such as predicate abstraction [GS97] and canonical abstraction [SRW02], where the abstraction is de-
fined per-program. In many cases, an exponential number of theorem prover calls is needed to compute the effect
of a single program statement on an abstract value in the most-precise way.

Compared to these techniques, our method can reduce the number of theorem prover calls: it obtains abstract
values via concrete execution, which does not require theorem-prover calls. A theorem prover is used only to
check that an abstract value is an invariant (2.7). If the check fails, then at least one new abstract state is covered
in the next iteration. In the worst case, our method might require as many theorem prover calls as other methods.
However, if an execution from a fabricated state covers several new abstract states, our method terminates with
fewer theorem prover calls.

The cost of a theorem prover call made by our method is comparable to other methods. However, the cost of
a model generation might be higher than the cost of a validitycheck.

Our method is most-closely related to the algorithm presented in [RSY04]. Both methods rely on a model
generator to “fabricate” a concrete state that (i) is not yetrepresented by the abstract value obtained so far, and
(ii) is reachable in a single step from it. In this work, we have identified a way to cover more abstract states using
a single fabricated state, by executing the program. The method of [RSY04] can be described by replacingC :=
execute(f,T) with C := T in line [5] of Fig. 2.3.

Bisimulation and Weak Reachability Concrete execution and abstraction are used by [LY92, PPV05, Bal04] to
find errors and verify program properties. All errors reported by [LY92, PPV05] are real errors, but the technique
often is too strong for proving safety, as shown in Section2.6. Also in [PPV05], concrete exploration stops when
it encounters a concrete state whose abstraction was already seen before. Our method continues exploration from
such a concrete state, and may discover abstract states thatwere not covered before.

Another way to achieve verification is to find an abstraction and a set of testsT that cover exactly the reachable
abstract states [Bal04]. It requires that every abstract state be testable. This isa weaker property than bisimulation
but still stronger than our method, because our method usingfabricated states may cover abstract states that are
not reachable (but required for a proof).

Combining Dynamic and Static Analyses Daikon uses dynamic analysis to detect likely invariants [ECGN01].
It executes the program on a test set, examining the values ofthe concrete states, and detects patterns and relation-
ships among those values. It reports properties that hold over execution of the given test set, but not necessarily
over all program executions. In [NE02], likely invariants produced by Daikon are used with ESC/Java [LNS00]
verification condition generator and Simplify [DNS03] theorem prover to prove that these are indeed invariants.
Our work is similar in spirit, but uses fabricated states andabstraction to achieve proof via a fixed point computa-
tion where the Daikon-ESC/Java two-step process may fail tofind a proof.

Recent work combines random test generation and concrete execution with symbolic execution and model
generation [GKS05, SMA05, CS05]. These methods use symbolic techniques to direct the generation of tests
towards unexplored paths in order to find errors faster. However, these methods do not employ abstraction, and in
general cannot find proofs in presence of loops, with the exception of [GHK+06].

The method in [GHK+06] uses concrete execution to guide abstraction refinement tothe program location
both for the purpose of finding errors and the purpose of eliminating false alarms. This process might not termi-
nate. On the other hand, our algorithm always terminates, but it can report potential errors, which might be false
alarms. It is possible to combine our method with an analysisfor classifying potential errors into real errors and
false alarms, and use abstraction refinement to eliminate the latter. Our method uses concrete execution to find
a proof faster, for a given abstract domain, without refiningit. Both methods use a theorem prover to compute
abstract transformers, but [GHK+06] does not use fabricated states to speed up the proof search.Similarly to
our method, [GHK+06] can terminate with a proof which is a simulation and not necessarily a bisimulation. Our
algorithm, unlike [GHK+06], does not require finite partitioning abstraction.

Adequacy Criterion for Testing We can define anabstraction-based adequacy criterionfor a set of tests as
follows. A set of testsT is adequate under a given abstraction if all reachable abstract states are covered byT .
Note that if a set of testsT is adequate then safety properties can be (conservatively)checked onAT—the abstract
states covered byT . Our method checks a condition of invariance that implies adequacy.

2.7. RELATED WORK 27

In contrast to the traditional white-box adequacy criteria(e.g., [ZHM97]), we choose an abstraction based on
the property of interest, and then define adequacy with respect to the abstraction. When used with a powerset
abstraction, our adequacy requirement appears to be a formalization of partition-based testing with respect to an
abstraction function, where each abstract state represents a partition.

Recently, an abstraction-based adequacy criteriaAll-Abstract-Stateswas introduced in [Ere04], in the context
of automatic test generation using a theorem prover, when the abstract states are provided by static analysis. All-
Abstract-States criterion implies the adequacy criterionwe defined in Section2.1. Our algorithm provides an
effective way to check adequacy of a given test set.

To summarize, our method can be viewed as bridging the gap [Har00, Ern03] between testing and verification.
Our method complements existing techniques that combine dynamic and static analysis in that it is oriented
towards finding a proof rather than detecting real errors.

Chapter 3

Computing Most-Precise Abstract
Operations for Shape Analysis

The material described in this chapter is largely based on the material originally published in [YRS04]. In
addition to the material already published in [YRS04], AppendixB contains a formal proof of correctness of the
algorithm.

Shape analysis concerns the problem of determining “shape invariants” for programs that perform destructive
updating on dynamically allocated storage. The motivationof the work presented in this chapter is to improve
the precision, scalability and automation of shape analysis by employing theorem provers. This chapter presents
a new algorithm that solves several open problems in shape analysis:

• Computing the most-precise abstract value that representsthe (potentially infinite) set of states specified by
a formula. We call this operation̂α.

• Computing the operationassume[ϕ](a), which returns the most-precise abstraction of the set of states that
are represented bya and satisfy a preconditionϕ.

• Implementingbest abstract transformersfor atomic program statements and conditions [CC79], as well as
for loop-free code fragments (i.e., blocks of atomic program statements and conditions).

• Performing interprocedural shape analysis using procedure specifications and assume-guarantee reasoning.

• Computing the most-precise overapproximation of the meet of two abstract values.

In [Yor03, YRSW07], we show that the concretization of an abstract value for canonical abstraction can be
expressed using a logical formula. Specifically, [Yor03, YRSW07] gives an algorithm that converts an abstract
valuea into a formulâγ(a) that exactly characterizesγ(a)—i.e., the set of concrete states thata represents.

As mentioned in Section1.3.2, havingγ̂ and an algorithm for eitherassumeor α̂, we can implement all other
operations mentioned above (see Fig.1.3). To simplify the presentation of examples in this chapter,we describe
the direct algorithm forassume and demonstrate it using a running example throughout the chapter. We also give
an algorithm for̂α, which is a simple variation of the algorithm forassume.

The algorithm employs a theorem prover for the logic used to express properties of data-structures. Candidate
decidable logics for expressing such properties are described in [IRR+04a, YRS+06]. The algorithm can also be
used with an undecidable logic and a theorem prover; termination can be assured by using standard techniques
(e.g., having the theorem prover return a safe answer if a time-out threshold is exceeded) at the cost of losing the
ability to guarantee that a most-precise result is obtained.

Prototype Implementation

To study the feasibility of our method, we have implemented aprototype of theassume algorithm as an exten-
sion of the TVLA system [LAS00]. Our prototype uses the first-order theorem prover SPASS [Wei]. To perform

28

3.1. OVERVIEW OF CANONICAL ABSTRACTION 29

Relation Intended Meaning
x(v) Does pointer variablex point to elementv?
y(v) Does pointer variabley point to elementv?
n(v1, v2) Does then field of v1 point tov2?
eq(v1, v2) Do v1 andv2 denote the same element?
is(v) Is v pointed to by more than one field ?

Figure 3.1: The set of relations for representing the statesmanipulated by programs that use theList data-type
from Fig.3.2and two pointer variablesx, y.

reasoning about (absence of) reachability in SPASS, we can provide, in some cases, sufficient first-order axioma-
tization of transitive closure, e.g., [LAIR+05].1 So far, we tried three simple examples: two cases ofassume, one
of which is the running example of this chapter, and one case of best transformer. On all queries posed by these
examples, the theorem prover terminated. The number of calls to SPASS in the running example is158, and the
overall running time was approximately27 seconds.

The remainder of this chapter is organized as follows. In Section 3.1, we provide a short overview of canonical
abstraction. The formal description of theassume andα̂ algorithms appears in Section3.2, and the proof of cor-
rectness ofassume algorithm is given in AppendixA. The algorithm that implements best abstract transformers
is given in Section3.3. In Section3.4we discuss related work.

3.1 Overview of Canonical Abstraction

This section provides a short overview of canonical abstraction. The formal description of theassume algorithm
appears in Section3.2.

As an example, consider the following precondition, expressed inC notation as:(x -> n == y) &&
(y != null) (which will be abbreviated in this section asp), wherex andy are program variables of the
linked-list data-type defined in Fig.3.2. The preconditionp can be defined by a closed formula in first-order
logic: ϕ0

def
= ∃v1, v2 : x(v1) ∧ n(v1, v2) ∧ y(v2). The operationassume[p](a) enforces preconditionp on an

abstract valuea. Typically,a represents a set of concrete states that may arise at the program point in whichp is
evaluated. The abstract valuea used in the running example is depicted by the graph in Fig.3.3(S). This graph is
an abstraction of all concrete states that contain a non-empty linked list pointed to byx, as explained below.

3.1.1 3-Valued Structures

In this chapter, abstract values that are used to represent concrete states are sets of3-valued logical structures
over a vocabularyP of predicate symbols. Each structure has a universeU of individuals and a mappingι from
k-tuples of individuals inU to values1, 0, or 1/2 for eachk-ary relation inP . We say that the values0 and1 are
definite valuesand that1/2 is anindefinite value, meaning “either0 or 1 possible”; a valuel1 is consistentwith
l2 (denoted byl1 ⊑ l2) whenl1 = l2 or l2 = 1/2;

⊔
W denotes the least upper bound of the values in the setW .

A 3-valued structure provides a representation of states: individuals are abstractions of heap-allocated objects;
unary relations represent pointer variables that point from the stack into the heap; binary relations represent
pointer-valued fields of data-structures; and additional relations inP describe certain properties of the heap. For
example, a unary relationis (“is heap shared”) captures objects that are pointed to by more than one field. A
special binary relationeq has the intended meaning of equality between locations. When the value ofeq is 1/2 on
the pair〈u, u〉 for some nodeu, thenu is called a “summary” node and it may represent more than one linked-list
element. Fig.3.1describes the relations required for a program with pointervariablesx andy, that manipulates
the linked-list data-type defined in Fig.3.2. 3-valued structures are depicted as directed graphs, with individuals
as graph nodes. A relation with value1 is represented by a solid arrow; with value1/2 by a dotted arrow; and
with value0 by the absence of an arrow.

1In general, there cannot be a complete, first-order axiomatization of transitive closure [Avr03, LAIR+05].

30 CHAPTER 3. COMPUTING MOST-PRECISEABSTRACT OPERATIONS FORSHAPE ANALYSIS

/* list.h */
typedef struct node {
struct node *n;
int data;

} *List;

Figure 3.2: A declaration of a linked-list data-type in C.

GFED@ABCu1
n // ONMLHIJKGFED@ABCu2

n
��

x

OO

y

OO
cc

(S)

GFED@ABCu1
n // GFED@ABCuy

n // ONMLHIJKGFED@ABCu2

n
��

x

OO

y

OO
GFED@ABCu1

n // GFED@ABCuy
n // ONMLHIJKGFED@ABCu2

x

OO

y

OO
GFED@ABCu1

n // GFED@ABCuy
n // GFED@ABCu2

x

OO

y

OO
GFED@ABCu1

n // GFED@ABCuy ONMLHIJKGFED@ABCu2

n
��

x

OO

y

OO

(S0) (S1) (S2) (S3)

GFED@ABCu1
n // GFED@ABCuy ONMLHIJKGFED@ABCu2

x

OO

y

OO
GFED@ABCu1

n // GFED@ABCuy GFED@ABCu2

x

OO

y

OO
GFED@ABCu1

n // GFED@ABCuy GFED@ABCu2

n
��

x

OO

y

OO
GFED@ABCu1

n// GFED@ABCuy

x

OO

y

OO

(S4) (S5) (S6) (S7)

Figure 3.3: (S) The input abstract valuea = {S} represents all concrete states that contain a non-empty linked
list pointed to by the program variablex, where the program variabley may point to some element. (S0–S7) The
result of computingassume[p](a): the abstract valuea′ = {S0, . . . , S7} represents all concrete states that contain
a linked-list of length2 or more that is pointed to byx, in which the second element is pointed to byy.

In Fig. 3.3(S), the solid arrow fromx to the nodeu1 indicates that relationx has the value1 for the individual
u1 in the3-valued structureS. This means that any concrete state represented byS contains a linked-list element
pointed to by program variablex. Moreover, itmust contain additional elements (represented by the summary
nodeu2, drawn as a dotted circle), some of whichmay be reachable from the head of the linked-list (as indicated
by the dotted arrow fromu1 to u2, which corresponds to the value1/2 of relationn(u1, u2)), and some of which
may be linked to others (as indicated by the dotted self-arrow onu2). The dotted arrows fromy to u1 andu2

indicate that program variabley may point to any linked-list element. The absence of an arrow from u2 to u1

means that there isno n-pointer to the head of the list. Also, the unary relationis is 0 on all nodes and thus not
shown in the graph, indicating that every element of a concrete state represented by this structure may be pointed
to by at most onen-field.

We next introduce the subclass of bounded structures [SRW99]. Towards this end, we defineabstraction
predicates to be a designated subset of unary relations, denoted byAbs. In the running example, all unary
relations are defined as abstraction predicates. Abounded structure is a3-valued structure in which for every
pair of distinct nodesu1, u2, there exists an abstraction predicateq such thatq evaluates to distinct definite values
for u1 andu2. All 3-valued structures used throughout this chapter are bounded structures. Bounded structures
are used in shape analysis to guarantee that the analysis is carried out w.r.t. a finite set of abstract structures, and
hence will always terminate.

3.1. OVERVIEW OF CANONICAL ABSTRACTION 31

3.1.2 Embedding Order on3-Valued Structures

3-valued structures are ordered by theembedding order (⊑), defined below.S ⊑ S′ guarantees that the set of
concrete states represented byS is a subset of those represented byS′.

Let S andS′ be two3-valued structures, and letf be a surjective function that maps nodes ofS onto nodes
of S′. We say thatf embedsS in S′ (denoted byS ⊑f S′) if for every relationq ∈ P of arity k and allk-tuples
〈u1, . . . , uk〉 in S, the value ofq over〈u1, . . . , uk〉 is consistent with, but may be more specific than, the value
of q over〈f(u1), . . . , f(uk)〉: ιS(q)(u1, . . . , uk) ⊑ ιS

′

(q)(f(u1), . . . , f(uk)). We say thatS can be embedded
into S′ (denoted byS ⊑ S′) if there exists a functionf such thatS ⊑f S′.

The result ofassume[p](a), shown in Fig.3.3(S0–S7), consists of8 structures, each of which can be embedded
into the input structure Fig.3.3(S). The embedding function mapsu1 in each of the output structuresS0–S7 to the
same nodeu1 in the input structure. Each one of the output structuresS0–S6 contains nodesuy andu2, both of
which are mapped by the embedding tou2 in S; for S7, nodeuy is mapped tou2 in S. Thus, concrete elements
represented by different nodesuy andu2 in the output structures are represented by a single summarynodeu2

in the input structure. We say that nodeuy is “materialized” from nodeu2. As we shall see, this is the only new
node required to guarantee the most-precise result, relative to the abstraction.

For each ofS0, . . . , S7, the embedding function described above is consistent withthe values of the relations.
The value ofx on u1 is 1 in Si andS structures. Indefinite values of relations inS impose no restriction on
the corresponding values in the output structures. For instance, the value ofy is 1/2 on all nodes inS, which is
consistent with its value0 on nodesu1 andu2 and the value1 on uy in each ofS0, . . . , S7. The absence of an
n-edge fromu2 back tou1 in S implies that there must be no edge fromuy to u1 and fromu2 to u1 in the output
structures, i.e., the values of the relationn on these pairs must be0.

3.1.3 Integrity Rules

A 2-valued structure is a special case of a3-valued structure, in which relation values are only0 and1. Because
not all 2-valued structures represent valid concrete states, we usea designated set ofintegrity rules , to exclude
impossible states. The integrity rules are fixed for each particular analysis and defined by a conjunction of closed
formulas over the vocabularyP , that must be satisfied by all concrete states. For the linked-list data-type in
Fig. 3.2, the following conditions define the valid concrete states:(i) each program variable can point to at most
one heap node, (ii) then-field of an element can point to at most one element, (iii)is(v) holds if and only if
there exist two distinct elements withn-fields pointing tov. Finally, eq is given the interpretation of equality:
eq(v1, v2) holds if and only ifv1 andv2 denote the same element.

3.1.4 Canonical Abstraction

The abstraction we use throughout this chapter iscanonical abstraction, as defined in [SRW02]. The surjective
functionβ takes a2-valued structure and returns a3-valued structure with the following properties:

• β maps concrete nodes into abstract nodes according tocanonical namesof the nodes, constructed from
the values of the abstraction predicates.

• β is atight embedding [SRW02], i.e., the value of the relationq on an abstract node-tuple is1/2 only when
there exist two corresponding concrete node-tuples with distinct values.

A 3-valued structureS is an ICA (Image of Canonical Abstraction) if there exists a2-valued structureS♮ such
thatS = β(S♮). Note that every ICA is a bounded structure.

For example, all structures in Fig.3.3(S0–S7) produced byassume[p](a) operation are ICAs, whereas the
structure in Fig.3.3(S) is not an ICA. The structure in Fig.3.3(S1) is a canonical abstraction of the concrete
structure in Fig.3.4(a) and also the one in Fig.3.4(b).

The abstraction functionα is defined by extendingβ pointwise, i.e.,α(W) = {β(S♮) | S♮ ∈ W} whereW
is a set of2-valued structures. The concretization functionγ takes a set of3-valued structuresW and returns a
potentially infinite set of2-valued structuresγ(W) whereS♮ ∈ γ(W) iff S♮ satisfies the integrity rules and there
existsS ∈ W such thatβ(S♮) ⊑ S.

32 CHAPTER 3. COMPUTING MOST-PRECISEABSTRACT OPERATIONS FORSHAPE ANALYSIS

(a) GFED@ABCu1
n // GFED@ABCuy

n // GFED@ABCu1
2

GFED@ABCu2
2

x

OO

y

OO
(b) GFED@ABCu1

n // GFED@ABCuy
n // GFED@ABCu1

2
GFED@ABCu2

2
GFED@ABCu3

2
...

x

OO

y

OO

Figure 3.4: Concrete states represented by the structureS1 from Fig. 3.3. (a) The concrete nodesu1
2 andu2

2 are
mapped to the abstract nodeu2. (b) The concrete nodesu1

2, u2
2 andu3

2 are mapped to the abstract nodeu2. More
concrete structures can be generated in the same manner, by adding more isolated nodes that map to the summary
nodeu2.

The requirement ofassume[p](a) to produce the most-precise abstract value amounts to producingα(X),
whereX is the set of concrete structures that embed intoa and satisfyp. Indeed, the result ofassume[p](a) in
Fig. 3.3(S0–S7) satisfies this requirement, becauseS0–S7 are the canonical abstractions of all structures inX .

For example, structureS1 from Fig.3.3is a canonical abstraction of each of the structures in Fig.3.4. However,
S1 is not a canonical abstraction ofS2 from Fig. 3.3,2 because the value1/2 of n for 〈uy, u2〉 requires that
a concrete structure abstracted byS1 have two pairs of nodes with the same canonical names as〈uy, u2〉 and
with distinct values ofn. This requirement does not hold inS2, because it contains only one pair〈u1, u2〉
with those canonical names. WithoutS2, the result would not include the canonical abstractions ofall concrete
structures inX , but it would be semantically equivalent (becauseS2 can be embedded intoS1). The version of
theassume[p](a) algorithm that we describe does includeS2 in the output. It is straightforward to generalize the
algorithm to produce the smallest semantically equivalentset of structures.

It is non-trivial to produce the most-precise result forassume[p](a). For instance, in each ofS0–S6 there is
no back-edge fromu2 to uy even though both nodes embed into the nodeu2 of the input structure, which has a
self-loop withn evaluating to1/2. It is a consequence of the integrity rules that no back-edgecan exist from any
uj2 to uy in any concrete structure that satisfiesp: preconditionp implies the existence of ann-pointer fromu1 to
uy, butuy cannot have a second incomingn-edge (because the value of the relationis onuy is 0).

Consequently, to determine relation values in the output structure, each concrete structure that it represents
must be accounted for. Because the number of such concrete structures is potentially infinite, they cannot be
examined explicitly. The algorithm described here uses a theorem prover to perform this task symbolically.

Towards this end, the algorithm uses a symbolic representation of concrete states as a logical formula, called a
characteristic formula. The characteristic formula for an abstract valuea is denoted bŷγ(a); it is satisfied by a
2-valued structureS♮ if and only if S♮ ∈ γ(a). Theγ̂ formula for shape analysis is defined in [Yor03, YRSW07]
for bounded structures, and it includes the integrity rules.

In addition, a necessary requirement for the output ofassume to be a set of ICAs is imposed by the formula
ϕq,u1,...,uk

, defined in (3.1) below; this is used to check whether the value of a relationq can be1/2 on a node-
tuple 〈u1, . . . , uk〉 in a structureS. Intuitively, the formula is satisfiable when there exists aconcrete structure
represented byS that contains two tuples of nodes, both mapped to the abstract tuple 〈u1, . . . , uk〉, such that
q evaluates to distinct values on these tuples. If the formulais not satisfiable,S is not a result of canonical
abstraction, because the value ofq on 〈u1, . . . , uk〉 is not as precise as possible, compared to the value ofq on the
corresponding concrete nodes.

3.2 Theassume Algorithm

Theassume algorithm is shown in Fig.3.5. It takes a formulaϕ and a set of bounded structuresa, and computes
the set of ICA structures that are represented bya and satisfyϕ.

The algorithm operates in two phases. Phase1 of the algorithm performs node “materialization”: if a structure
has an indefinite value of an abstraction predicateq on some abstract node, the node may bebifurcatedinto two
nodes andq is set to distinct definite values on the new nodes. As a resultof this phase, all the abstraction
predicates have definite values. Phase2 refines the structures produced in phase1 by lowering relation values

2S2 is a2-valued structure, and is a canonical abstraction of itself.

3.2. THE assume ALGORITHM 33

from 1/2 to 0 and1. Both phases use a theorem prover to filter out abstract structures that do not represent any
2-valued structures that satisfyϕ.

Section3.2.1explains the role of the theorem prover and the queries posedby our algorithm. The algorithm
is explained in Section3.2.2(phase1) and Section3.2.3(phase2). Finally, the properties of the algorithm are
discussed in Section3.2.4.

procedureassume(ϕ: Formula,a: a set of bounded structures): Set of ICA structures
result := a
// Phase 1
result := bif (ϕ, result)
// Phase 2
while there existsS ∈ result, q ∈ P of arity k, andu1, . . . , uk ∈ U

S such that
ιS(q)(u1, . . . , uk) = 1/2 anddone(S, q, u1, . . . , uk) = false do

done(S, q, u1, . . . , uk) := true
if not isSatisfiable(̂γ(S) ∧ ϕ ∧ ϕq,u1,...,uk

) thenresult := result \ {S}
S0 := S[q(u1, . . . , uk) 7→ 0]
if isSatisfiable(̂γ(S0) ∧ ϕ) thenresult := result ∪ {S0}
S1 := S[q(u1, . . . , uk) 7→ 1]
if isSatisfiable(̂γ(S1) ∧ ϕ) thenresult := result ∪ {S1}

returnresult

Figure 3.5: Theassume procedure takes a formulaϕ over the vocabularyP and a set of bounded structuresa, and
computes the set of ICA structuresresult. The characteristic formula computed byγ̂ includes the integrity rules
in order to eliminate infeasible concrete structures. The formulaϕq,u1,...,uk

is defined in (3.1). The procedure
bif (ϕ,result) is shown in Fig.3.6. The flagdone(S, q, u1, . . . , uk) marks processedq-tuples; initially,done is
false for all relation tuples.

3.2.1 Employing a Theorem Prover

The formulaϕq,u1,...,uk
guarantees that a concrete structure must contain two tuples of nodes, both mapped to the

abstract tuple〈u1, . . . , uk〉, on whichq evaluates to distinct values. This is captured by the formula

ϕq,u1,...,uk

def
= ∃w1

1 , . . . , w
1
k, w

2
1 , . . . , w

2
k :

∧k
i=1 nodeSui

(w1
i) ∧

∧k
i=1 nodeSui

(w2
i)

∧¬
∧k
i=1 eq(w

1
i , w

2
i) ∧ q(w

1
1 , . . . , w

1
k) ∧ ¬q(w

2
1 , . . . , w

2
k)

(3.1)

ϕq,u1,...,uk
uses thenode formula, originally defined in [Yor03], which uniquely identifies the mapping of concrete

nodes into abstract nodes. For a bounded structureS, nodeSu(v) simply asserts thatu andv agree on all abstraction
predicates.

The functionisSatisfiable(ψ) invokes a theorem prover that returnstrue whenψ is satisfiable, i.e., the set
of 2-valued structures that satisfyψ is non-empty. This function guides the refinement of relation values. In
particular, the satisfiability of a formulaψ is used to make the following decisions:

• Discard a3-valued structureS that does not represent any concrete state that satisfiesϕ by takingψ
def
=

γ̂(S) ∧ ϕ.

• Materialize a new node from nodeuw.r.t. the value ofq ∈ Abs in S (phase1) by takingψ
def
= γ̂(S)∧ϕ∧ϕq,u.

• Retain the indefinite value for relationq on node-tuple〈u1, . . . , uk〉 in S (in phase2) by takingψ
def
=

γ̂(S) ∧ ϕ ∧ ϕq,u1,...,uk
.

This requires a theorem prover for the logic that expressesϕ, ϕq,u andγ̂, including the integrity rules.

34 CHAPTER 3. COMPUTING MOST-PRECISEABSTRACT OPERATIONS FORSHAPE ANALYSIS

procedurebif (ϕ: Formula,W : Set of bounded structures): Set of bounded structures
for all S ∈W

if not isSatisfiable(̂γ(S) ∧ ϕ) thenW := W \ {S}
while there existsS ∈ W, q ∈ Abs andu ∈ US such thatιS(q)(u)= 1/2
W := W \ {S}
if isSatisfiable(̂γ(S) ∧ ϕ ∧ ϕq,u) thenW := W ∪ S[u 7→ u.0, u.1][q(u.0) 7→ 0, q(u.1) 7→ 1]
S0 := S[q(u) 7→ 0]
if isSatisfiable(̂γ(S0) ∧ ϕ) thenW := W ∪ {S0}
S1 := S[q(u) 7→ 1]
if isSatisfiable(̂γ(S1) ∧ ϕ) thenW := W ∪ {S1}

returnW

Figure 3.6: The procedure takes a set of structures and a formula ϕ over the vocabularyP , and computes the
bifurcation of each structure in the input set, w.r.t. the input formula. Note that at the beginning of the procedure,
it ensures that each structure in the working setW represents at least one concrete structure that satisfiesϕ. The
formulaϕq,u is defined in (3.1). The operationS[u 7→ u.0, u.1] performs a bifurcation of the nodeu in S, setting
the values of all relations onu.0 andu.1 to the values they had onu.

3.2.2 Materialization

Phase1 of the algorithm performs node “materialization” by invoking the procedurebif. The namebif comes
from its main purpose: whenever a structure has an indefinitevalue of an abstraction predicateq on some abstract
node, supported by distinct values on corresponding concrete nodes, the node isbifurcatedinto two nodes andq is
set to distinct definite values on the new nodes. Thebif procedure produces a set of3-valued structures that have
the same set of canonical names as the concrete states that satisfy ϕ and embed intoa. Thebif procedure first
filters out potentially unsatisfiable structures, and then iterates over all structuresS ∈ W that have an indefinite
value for an abstraction predicateq ∈ Abs on some nodeu. It replacesS by other structures. As a result of
this phase, all the abstraction predicates have definite values for all nodes in each of the structures. Because the
output structures are bounded structures, the number of different structures that can be produced is finite, which
guarantees thatbif procedure terminates.

In the body of the loop inbif , we check if there exists a concrete structure represented by S that satisfiesϕ in
which q has distinct values on concrete nodes represented byu (the query is performed using the formulaϕq,u).
In this case, a new structureS′ is added toW , created fromS by duplicating the nodeu in S into two instances
and setting the value ofq to 0 for one node instance, and to1 for another instance. All other relation values on the
new node instances are the same as their values onu.

In addition, two copies ofS are created with0 and1, respectively, for the value ofq(u). To guarantee that
each copy represents a concrete structure that satisfiesϕ an appropriate query is posed to the theorem prover.
Omitting this query will produce a sound, but potentially overly-conservative result.

Fig. 3.7shows a computation tree for the algorithm on the running example. A node in the tree is labeled by
a3-valued structure, sketched by showing its nodes. Its children are labeled by the result of refining the3-valued
structure w.r.t. the relation and the node-tuple on the right, by the values shown on the outgoing edges.

The order in which relation values are examined affects the complexity (in terms of the number of calls to a
theorem prover, the size of the query formulas in each call and the maximal number of explored structures), but
it does not affect the result, provided that all calls terminate. The order in Fig.3.7was chosen for convenience of
presentation. The root of the tree contains the sketch of theinput structureS from Fig.3.3(S);u1 is the left circle
andu2 is the right circle. Fig.3.7shows the steps performed bybif on the input{S} in Fig. 3.3. bif examines the
abstraction predicatey, which has indefinite values on the nodesu1 andu2. The algorithm attempts to replace
S by T ′, T1, andT0, shown as the children ofS in Fig. 3.7. The structuresT ′ andT1 are discarded because
all of the concrete structures they represent violate integrity rule (i) for x (Section3.1.3) and the preconditionp,
respectively. The remaining structureT0 is further modified w.r.t. the value ofy(u2). However, settingy(u2) to 0
results in a structure that does not satisfyp, and hence it is discarded.

3.2. THE assume ALGORITHM 35

Figure 3.7: A computation tree forassume[p](a) for a shown in Fig.3.3.

3.2.3 Refining Relation Values

The second phase of theassume algorithm refines the structures by lowering relation values from1/2 to 0 and1,
and throwing away a structureS when it has a relationq with the value1/2 for some tupleq(u1, . . . , uk), butS
does not represent any2-valued structure with corresponding tuplesq(u′1, . . . , u

′
k) = 0 andq(u′′1 , . . . , u

′′
k) = 1.

For each structureS and an indefinite value of a relationq ∈ P on a tuple of abstract nodes, we eliminate
structures in which the relation has the same values on all corresponding tuples in all concrete structures that are
represented byS and satisfyϕ. (This query is performed using the formula in (3.1).) In addition, two copies ofS
are created with the values0 and1 for q, respectively. To guarantee that each copy represents a concrete structure
that satisfiesϕ, an appropriate query is posed to a theorem prover. Thedone flag is used to guarantee that each
relation tuple is processed only once.

The bulk of Fig.3.7 (everything below the top two rows) shows the refinement of each relation value in the
running example. Phase2 starts with two structures,T ′

2 andT ′
3, of size2 and3, produced bybif . Consider the

refinement ofT ′
2 w.r.t. n(u1, uy), whereu1 is pointed to byx anduy is pointed to byy (the same node names as

in Fig. 3.3).
The relation tuplen(u1, uy) cannot be set to1/2, because it requires the existence of a concrete structure with

two different pairs of nodes mapped to〈u1, uy〉; however, integrity rule (i) in Section3.1.3implies that there is
exactly one node represented byu1 and exactly one node represented byuy. Intuitively, this stems from the fact
that the (one) concrete node represented byu1(uy) is pointed to byx(y). The relation tuplen(u1, uy) cannot be
set to0, because this violates the preconditionp, according to which the element pointed to byy (represented
by uy) must also be pointed to by then-field of the element pointed to byx (represented byu1). Guided by
the computation tree in Fig.3.7, the reader can verify that the structures in Fig.3.3(S0–S7) are generated by
assume[p](a). (The final answer is read out at the leaves).

3.2.4 Properties of the Algorithm

We determine the complexity of the algorithm in terms of (i) the size of each structure, i.e., the number of nodes
and definite values, (ii) the number of structures, and (iii)the number of the calls to the theorem prover. The size
of each query formula passed to the theorem prover is linear in the size of the examined structure, becauseγ̂(S)
is linear inS, ϕ is usually small, and the size ofϕq,u is fixed for a givenP . The complexity in terms of (ii) and
(iii) is linear in the height of the abstract domain of sets ofICA structures defined overP . The abstract domain
is doubly-exponential in the size ofP , and its height is exponential in the size ofP . Therefore, our algorithm is
exponentially more efficient than the naı̈veenumerate-and-eliminatealgorithm over the abstract domain.

36 CHAPTER 3. COMPUTING MOST-PRECISEABSTRACT OPERATIONS FORSHAPE ANALYSIS

Let X denote the set[[ϕ]] ∩ γ(a). To prove the correctness of the algorithm, it is sufficient to establish the
following properties (the proofs appear in AppendixB):

1. All the structures explored by the algorithm are bounded structures.

2. result ⊒ α([[ϕ]] ∩ γ(a)). This requirement ensures that the result issound, i.e.,result contains canonical
abstractions of all concrete structures inX . This is a global invariant throughout the algorithm.

3. result ⊑ α([[ϕ]] ∩ γ(a)). This requirement ensures thatresult does not contain abstract structures that are
not ICAs of any concrete state inX . This holds upon the termination of the algorithm.

3.2.5 Computingα̂

As mentioned in Section1.3.2, we can implement̂α(ϕ) byassume[ϕ](⊤), where⊤ denotes the abstract value that
represents all possible concrete states (the largest valuein the abstract domain). A direct algorithm forassume is
a slight modification of the algorithm in Fig.3.5, in which we replace the first line byresult := ⊤.

3.3 Implementing the Best Transformer

We can use theassume operation to implement the best transformer for canonical abstraction. More specifically,
we can useassume to compute the result of the best transformer.

The best-transformer algorithm manipulates the two-storevocabularyP ∪ P ′, which includes two copies of
each relation — the original unprimed one, as well as a primedversion of the relation. The original version of the
relation contains the values before the transformer is applied, and the primed version contains the new values.

The best-transformer algorithm takes a set of bounded structuresa over a vocabularyP , and a transformer
formulaτ over the two-store vocabularyP ∪ P ′. It returns a set of ICA structures over the two-store vocabulary
that is the canonical abstraction of all pairs of concrete structures〈S♮1, S

♮
2〉 such thatS♮2 is the result of applying the

transformerτ toS♮1. BT (τ, a) is computed byassume(τ, extend(a)) that operates over the two-store vocabulary,
whereextend(a) extends each structure inS ∈ a into one over a two-store vocabulary by setting the values of
all primed relations to1/2. The result of the best transformer can be obtained from the primed version of the
relations in the output structure.

The two-store vocabulary allows us to maintain the relationship between the values of the relations before and
after the transformer. Also,τ is an arbitrary formula over the two-store vocabulary; in particular, it may contain a
precondition that involves unprimed versions of the relations, together with primed relations in the “update” part.

3.4 Related Work

In [RSY04], we have presented a different technique to compute best transformers in a more general setting of
finite-height, but possibly infinite-size lattices. The technique presented in [RSY04] handles infinite domains by
requiring that a theorem prover produce a concrete counter-example for invalid formulas, which is not required
for the algorithm presented in this chapter.

Compared to [RSY04], an advantage of the approach taken in this chapter is that it iterates from above:
it always holds a legitimate value (although not the best). If the logic is undecidable, a timeout can be used
to terminate the computation and return the current value. Because the technique described in [RSY04] starts
from⊥, an intermediate result cannot be used as a safe approximation of the desired answer. Another potential
advantage of the approach in this chapter is that the size of formulas in the algorithm reported here is linear in the
size of structures (counting0 and1 values), and does not depend on the height of the domain.

This chapter is also closely related to past work on predicate abstraction, which also uses theorem provers to
implement most-precise versions of the basic abstract-interpretation operations. Predicate abstraction is a special
case of canonical abstraction, when only nullary relationsare used. Interestingly, when applied to a vocabulary
with only nullary relations, the algorithm in Fig.3.5 is similar to the algorithm used in SLAM [BR01]. It starts
with 1/2 for all of the nullary relations and then repeatedly refines instances of1/2 into 0 and1. The more general
setting of canonical abstraction requires us to use the formulaϕq,u1,u2,...,uk

to identify the appropriate values of

3.4. RELATED WORK 37

non-nullary relations. Also, we need the first phase (procedurebif) to identify what node materializations need
to be carried out.

The algorithm described in this chapter was inspired by the Focus operation in TVLA, which is similar in
spirit to theassumeoperation. The input of Focus is a set of3-valued structures and a formulaϕ. Focus returns
a semantically equivalent set of3-valued structures in whichϕ evaluates to a definite value, according to the
Kleene semantics for3-valued logic [SRW02]. Theassume algorithm reported in this chapter has the following
advantages. First, it guarantees that the number of resultant structures is finite. The Focus algorithm in TVLA
generates a runtime exception when this cannot be achieved.This makes Focus a partial function, which was
sometimes criticized by the TVLA user community. Second, the number of structures generated byassume is
optimal in the sense that it never returns a3-valued structure unless it is the canonical abstraction ofsome required
state.

The latter property is achieved using an off-the-shelf theorem prover; which makesassume currently slower
than Focus. To enjoy the benefits ofassume while maintaining efficiency, it is possible to develop a specialized
theorem prover, as the one discussed in the next chapter. It is also possible to reduce the number of theorem prover
calls made byassume. For example, we can avoid an expensive theorem prover call if Kleene evaluation of the
formula returns a definite value.

Perhaps the most exciting future application ofassume is for modular analysis with assume-guarantee rea-
soning. It would permit TVLA to be applied to large programs by using procedure specifications. The challenge
would be to identify an expressive specification language and to implement a fast decision procedure for reasoning
about these specifications.

To summarize, for shape-analysis problems, the methods described in this chapter are more automatic and more
precise than the ones used in TVLA, and allow modular analysis with assume-guarantee reasoning, although they
are currently much slower.

Chapter 4

Logic of Reachable Patterns
in Linked Data-Structures

We define a new decidable logic for expressing and checking invariants of programs that manipulate dynamically-
allocated objects via pointers and destructive pointer updates. The main feature of this logic is the ability to limit
the neighborhood of a node that is reachable via a regular expression from a designated node. The logic is closed
under boolean operations (entailment, negation) and has a finite model property. The key technical result is the
proof of decidability.

We show how to express preconditions, postconditions, and loop invariants for some interesting programs. It is
also possible to express properties such as disjointness ofdata-structures, and low-level heap mutations. Moreover,
our logic can express properties of arbitrary data-structures and of an arbitrary number of pointer fields. The latter
provides a way to naturally specify postconditions that relate the fields on the entry of a procedure to the field
on the exit of a procedure. Therefore, it is possible to use the logic to automatically prove partial correctness of
programs performing low-level heap mutations.

The material described in this chapter was originally published in [YRS+06], and an extended version of [YRS+06]
was invited for a journal publication and appeared in [YRS+07]. In addition to the material already published
in [YRS+06, YRS+07], Section4.3.4shows thatLRP can be used to characterize certain shape abstractions,
and Section4.7.2contains a proof of the upper bound on the complexity of checking satisfiability ofLRPformu-
las.

This chapter is organized as follows: Section4.1defines the syntax and the semantics ofL0, and shows that it
has a finite model property; Section4.2 shows thatL0 is undecidable; Section4.3 defines the fragmentL1, and
demonstrates the expressiveness ofL1 on several examples. Section4.4 presents the decidability proof forL1,
with a detailed proof of the main theorem given in Section4.5; Section4.6 defines an interesting extension of
L1, calledL2, and sketches the proof of decidability ofL2, which does not immediately follow from that ofL1;
Section4.7contains the complexity results forL1; Section4.8discusses the limitations and the extensions of the
new logics; finally, Section4.9discusses related work.

4.1 TheL0 Logic

In this section, we define the syntax and the semantics of our logic. For simplicity, we explain the material in
terms of expressing properties of heaps. However, our logiccan actually model properties of arbitrary directed
graphs. Still, the logic is powerful enough to express the property that a graph denotes a heap.

4.1.1 Syntax ofL0

L0 is a propositional logic over reachability constraints. That is, anL0 formula is a boolean combination of closed
formulas in first-order logic with transitive closure that satisfy certain syntactic restrictions.

38

4.1. THE L0 LOGIC 39

Let τ = 〈C,U, F 〉 denote a vocabulary, where

• C is a finite set of constant symbols usually denoting designated objects in the heap, pointed to by program
variables;

• U is a set of unary relation symbols denoting properties, e.g., the color of a node in a Red-Black tree;

• F is a finite set of binary relation symbols (edges) usually denoting pointer fields.1

For example, we can describe a doubly-linked list with forward pointerf and backward pointerb, pointed-to by
a program variablex, using the vocabulary in whichC = {x}, U = {}, andF = {f, b}. We can describe a tree
pointed-to by the program variableroot, in which each node contains a data value from a finite set of valuesD,
using the vocabulary in whichC = {root}, F = {r, l}, andU contains a symbol for each value ofD.

A term t is either a variable or a constant. Anatomic formula is an equalityt = t′, a monadic formula
u(t) for someu ∈ U , or an edge formulat f→t

′ for somef ∈ F , and termst, t′. A quantifier-free formula
ψ(v0, . . . , vn) overτ and variablesv0, . . . , vn is an arbitrary boolean combination of atomic formulas. We say
that a sub-formulaψ appears positively (negatively) inϕ, if ψ appears under an even (odd) number of negations
in ϕ. LetFV (ψ) denote the free variables of the formulaψ.

Definition 4.1.1 A neighborhood formula N(v0, . . . , vn) is a conjunction of edge formulas of the formv f→v
′,

wheref ∈ F andv, v′ ∈ {v0, . . . , vn}, and monadic formulas of the formu(v) or ¬u(v), whereu ∈ U .

Definition 4.1.2 LetN(v0, . . . , vn) be a neighborhood formula. TheGaifman graph ofN , denoted byBN , is an
undirected graph with a vertex for each free variable ofN . There is an edge between the vertices corresponding
to vi andvj in BN if and only if (vi f→vj) or (vj f→vi) appears inN , for somef ∈ F . Thedistance between
logical variablesvi andvj in the formulaN is the minimal edge distance between the corresponding verticesvi
andvj in BN .

For example, for the formulaN = (v0 f→v1) ∧ (v0 f→v2) the distance betweenv1 and v2 in N is 2, and its
underlying graphBN looks like this:v1 — v0 — v2.

Definition 4.1.3 A routing expression is an extended regular expression, defined as follows:

R ::= ∅ empty set
| ǫ empty path
| f
→ f ∈ F forward along edge

| f
← f ∈ F backward along edge

| u u ∈ U test if u holds
| ¬u u ∈ U test if u does not hold
| c c ∈ C test if c holds
| ¬c c ∈ C test if c does not hold
| R1.R2 concatenation
| R1|R2 union
| R∗ Kleene star

Intuitively, a routing expression describes a path in the heap.
A routing expression can require that a path traverse some pointer fields backwards. For example, the routing

expressionf→
∗
. f←

∗ describes a sequence off -edges that may look like this:f→
f
→

f
←

f
←

f
←. We use this routing

expression in Section4.3.2to describe disjoint data-structures.
A routing expression has the ability to test properties of heap objects along the path. For example, a routing

expression(f→.¬y)
∗ describes a path which does not traverse an object pointed-to by the program variabley. We

use this routing expression to describe a path along which some property holdsuntil the path reaches the object
pointed-to byy (see Section4.3.2).

Definition 4.1.4 (Syntax ofL0) A reachability constraint is a closed formula of the form:

∀v0, . . . , vn.R(c, v0)⇒ (N(v0, . . . , vn)⇒ ψ(v0, . . . , vn)) (4.1)

1We can also allow auxiliary constants and fields including abstract fields [BCC+05].

40 CHAPTER 4. LOGIC OFREACHABLE PATTERNS IN L INKED DATA -STRUCTURES

wherec ∈ C is a constant,R is a routing expression,N is a neighborhood formula, andψ is an arbitrary
quantifier-free formula, such thatFV (N) ⊆ {v0, . . . , vn} andFV (ψ) ⊆ FV (N) ∪ {v0}. In particular, if the
neighborhood formulaN is true (the empty conjunction), thenψ is a formula with a single free variablev0.

AnL0 formula is a boolean combination of reachability constraints.

The subformulaR(c, v0) defines anR-labelled path fromc tov0. The subformulaN(v0, . . . , vn)⇒ ψ(v0, . . . , vn)
defines apattern, denoted byp(v0). Here, the designated variablev0 denotes the “central” node of the “neigh-
borhood” reachable fromc by following anR-path. Intuitively, neighborhood formulaN binds the variables
v0, . . . , vn to nodes that form a subgraph, andψ defines more constraints on those nodes.2

For example, the patterndetf (v0) defined by the formula(v0 f→v1) ∧ (v0 f→v2) ⇒ (v1 = v2) ensures thatv0
has at most one outgoingf -edge. The neighborhood formula(v0 f→v1)∧ (v0 f→v2) contains two edges emanating
from the central nodev0. The restriction on the neighborhood is that the edges are infact the same, because they
have the same source,v0, the same target,v1 = v2, and the same labelf .

Shorthands

We usec[R]p to denote a reachability constraint (4.1). Intuitively, the reachability constraint requires thatevery
node that is reachable fromc by following anR-path satisfy the patternp.

We uselet expressions to specify the scope in which the pattern is declared:

let p1(v0)
def
= N1(v0, . . . , vn)⇒ ψ1(v0, . . . , vn) in ϕ

This allows us to write more concise formulas via reuse of pattern definitions. For example, we can say that
program variablesx andy are pointing to (potentially shared) doubly-linked lists:

let invf,b(v0)
def
= (v0 f→v1 ⇒ v1 b

→v0) in x[f→
∗
]invf,b ∧ y[f→

∗
]invf,b

We usec1[R]¬c2 to denotelet p(v0)
def
= (true⇒ ¬(v0 = c2)) in c1[R]p. In this simple case, the neighborhood

is only the node assigned tov0. Intuitively, c1[R]¬c2 means that the node labeled by constantc2 is not reachable
along anR-path from the node labeled byc1. We usec1〈R〉c2 as a shorthand for¬(c1[R]¬c2). Intuitively,
c1〈R〉c2 means thatthere existsanR-path fromc1 to c2. We usec1 = c2 to denotec1〈ǫ〉c2, andc1 6= c2 to denote
¬(c1 = c2).

We usec[R](p1 ∧ p2) to denote(c[R]p1) ∧ (c[R]p2), whenp1 andp2 agree on the central node variable.
When two patterns are often used together, we introduce a name for their conjunction (instead of naming each
one separately):let p(v0)

def
= (N1 ⇒ ψ1) ∧ (N2 ⇒ ψ2) in ϕ.

For a quantifier-free formulaψ(v0) with a single free variablev0, we write c[R]ψ instead oflet p(v0)
def
=

(true ⇒ ψ(v0)) in c[R]p. In particular, for a unary relation symbolu, we usec[R]u to denotelet p(v0)
def
=

(true ⇒ u(v0)) in c[R]p. We useu(c) to denote the formulac〈ǫ〉u (equivalently,c[ǫ]u). We abuse the notations
slightly by writingN ∧ ψ1 ⇒ ψ2 instead ofN ⇒ (ψ1 ⇒ ψ2).

In routing expressions, we useΣ→ to denote the routing expression(f1→|
f2
→| . . . |

fm
→), the union of all the fields

in F . Similarly, Σ
← denotes the routing expression(f1←|

f2
←| . . . |

fm
←). For example,c1[Σ

→
∗]¬c2 means thatc2 is not

reachable fromc1 by any path. Finally, we sometimes omit the concatenation operator “.” in routing expressions.

4.1.2 Semantics ofL0

L0 formulas are interpreted over labeled directed graphs. A labeled directed graphG over a vocabularyτ =
〈C,U, F 〉 is a tuple〈V G, EG, CG, UG〉 where:

• V G is a set of nodes modelling the heap objects,

• EG : F → P(V G × V G) are labeled edges,

• CG : C → V G provides interpretation of constants as unique labels on the nodes of the graph, and

2 In all our examples, a neighborhood formulaN used in a pattern is such thatBN (the Gaifman graph ofN) is connected.

4.1. THE L0 LOGIC 41

• UG : U → P(V G) maps unary relation symbols to the set of nodes in which they hold.

The languageL(R) of words accepted by a routing expressionR is defined as usual for regular expression.
The semantics ofL0 formulas is formally defined as follows.

Definition 4.1.5 Consider a routing expressionR andw ∈ L(R). We say thatthere is a path labeled by w from
a node s1 to a node s2 in G if one of the following conditions holds:

• s1 = s2 andw = ǫ,

• s1 = s2, w = u for a unary relation symbolu ands1 ∈ UG(u),

• s1 = s2, w = ¬u for a unary relation symbolu ands1 /∈ UG(u),

• s1 = s2, w = c for a constantc andCG(c) = s1,

• s1 = s2, w = ¬c for a constantc andCG(c) 6= s1,

• w = f
→ for an edgef ∈ F and〈s1, s2〉 ∈ EG(f),

• w = f
← for an edgef ∈ F and〈s2, s1〉 ∈ EG(f),

• w = w1.w2 and there exists a nodes3 such that there is a path labeled byw1 froms1 to s3 and there exists
a path labeled byw2 from s3 to s2 .

A node tuple inG satisfies a patternp if it satisfies the quantifier-free formula that definesp, according to the
usual semantics of the first-order logic over graph structures.

The satisfaction relation|= between a graphG and anL0-formula is defined similarly to the usual semantics
of the first-order logic with transitive closure over graphs. A graphG satisfies a formulac[R]p (and we write
G |= c[R]p) if and only if for everyw ∈ L(R) and for every node tuples0, . . . , sn in G, if there is a path labeled
byw from c to s0, then the tuples0, . . . , sn, satisfiesp with s0 used as the central node forp. The meaning of
Boolean connectives is defined in a standard manner.

We say thatnodes ∈ G is labeled withσ if σ ∈ C ands = CG(σ) or σ ∈ U ands ∈ UG(σ). For an edge
〈s1, s2〉 ∈ G andf ∈ F , we say that the edge〈s1, s2〉 is labeled withf , if 〈s1, s2〉 ∈ EG(f). In the rest of
this chapter,graphdenotes a directed labeled graph, in which nodes are labeledby constant and unary relation
symbols, and edges are labeled by binary relation symbols, as defined above.
Remark. The translation fromL0 to MSO in Section4.4.1provides an alternative definition for the semantics of
L0.

4.1.3 Finite Model Property

We are interested in checking validity (and satisfiability)of L0 formulas only over finite graphs. The graphs are
finite because they represent data-structures allocated bya program. (However, the graphs may be unbounded,
due to dynamic allocation of memory.) In general, a finite validity problem is considered more difficult than a
validity problem. For example, in first-order logic, the validity problem is recursively enumerable while the finite
validity problem is not. In a logic with the finite model property, the notions of validity andfinitevalidity coincide.
Thus, the finite model property is desirable.
L0 with arbitrary patterns has a finite model property. If formulaϕ ∈ L0 has an infinite model, each reacha-

bility constraint inϕ that is satisfied by this model has a finite witness.

Theorem 4.1.6 (Finite model property)Every satisfiableL0 formula is satisfiable by a finite graph.
Sketch of Proof:We show thatL0 can be translated into a fragment of an infinitary logic that has a finite model
property. Observe thatc[R]p is equivalent to an infinite conjunction of universal first-order sentences. Therefore,
if G is a model ofc[R]p then every subgraph ofG is also its model. Dually,¬c[R]p is equivalent to an infinite
disjunction of existential first-order sentences. Therefore, ifG is a model of¬c[R]p, thenG has a finite subgraph
G′ such that every subgraph ofG that containsG′ is a model of¬c[R]p. It follows that every satisfiable boolean
combination of formulas of the formc[R]p has a finite model. Thus,L0 has a finite model property.

42 CHAPTER 4. LOGIC OFREACHABLE PATTERNS IN L INKED DATA -STRUCTURES

Figure 4.1: A sketch of a grid model for a tiling problemT . Then-edges are depicted with solid lines, theb-edges
are depicted with dashed lines. The filled circles denote nodes labeled with “red”.

4.2 Undecidability ofL0

The satisfiability and the validity problems ofL0 formulas are undecidable. SinceL0 is closed under negation,
it is sufficient to show that its satisfiability problem is undecidable. The proof uses a reduction from the tiling
problem.

Definition 4.2.1 Define atiling problem, T = 〈T,R,D〉, to consist of a finite list of tile types,T = [t0, . . . tk],
together with horizontal and vertical adjacency relations, R,D ⊆ T 2. HereR(a, b) means that tiles of typeb fit
immediately to the right of tiles of typea, andD(a, b) means that tiles of typeb fit one step down from those of
typea. A solutionto a tiling problem is an arrangement of instances of the tiles in a rectangular grid such that
a t0 tile occurs in the top left node of the grid, and atk tile occurs in the bottom right node of the grid, and all
adjacency relationships are respected.

It is well-known that tiling problems of this flavor are undecidable. Therefore, if a logic can express tilings,
its satisfiability problem is also undecidable. Given a tiling problemT , we construct a formulaϕT , such thatϕT

is satisfiable if and only if there exists a solution toT .
The idea is that each node in the graph that satisfiesϕT describes a tile, with unary relation symbolsT0, . . . , Tk

encoding the tile typest0, . . . tk. There is ab-edge between every two nodes that are vertically adjacent in the
grid. There is ann-edge between every two nodes that are horizontally adjacent in the grid, and from the last
node of every row to the first node in the subsequent row. The constantc labels the top left node of the grid, the
constantc′ labels the top right node of the grid, the constantc′′ labels the first node of the second row of the grid,
and the constantc′′′ labels the bottom right node of the grid (see sketch in Fig.4.1). The unary relationred labels
the nodes of the last column of the grid.

The most interesting part of the formulaϕT ensures that all graphs that satisfyϕT have a grid-like form. It
states that for every nodev that isn-reachable fromc, if there is ab-edge fromv to u, then there is ab-edge from
then-successor ofv to then-successor ofu:

let p(v)
def
= (v b
→u) ∧ (v n→v1) ∧ (u n

→u1)⇒ (v1 b
→u1) in c[(n→)∗]p (4.2)

Theorem 4.2.2 (Undecidability)The satisfiability problem ofL0 formulas is undecidable.
Proof: Given a tiling problemT = 〈T,R,D〉, we construct anL0 formulaϕT as a conjunction of the following
formulas:

1. There isn-path fromc to c′: c〈(n→)∗〉c′

2. There isn-edge fromc′ to c′′: c′〈 n→〉c
′′

3. There isn-path fromc′′ to c′′′: c′′〈(n→)∗〉c′′′

4. There isb-edge fromc to c′′ : c〈 b→〉c
′′.

5. Non-edge exitst: c′′′[n→]false.

4.3. DECIDABLE AND USEFUL FRAGMENT OFL0 43

6. For every nodev that isn-reachable froms, if there is ab-edge fromv to u, then there is ab-edge from the
n-successor ofv to then-successor ofu: let p(v) def

= (v b
→u)∧(v n→v1)∧(u n

→u1)⇒ (v1 b
→u1) in c[(n→)∗]p.

7. Then-edges and theb-edges reachable froms are deterministic:let detn(v)
def
= (v n→v

′)∧(v n→v
′′)⇒ (v′ =

v′′) in s[(n→)∗]detn, similarly, for b-edges.

8. The top left node of the grid has at0 tile type, and the bottom right node of the grid has atk tile type:
T0(c) ∧ Tk(c′′′).

9. Each node in the grid has exactly one tile type:

c[(n→)∗]




∧

0≤i<j≤k

¬(Ti ∧ Tj)



 ∧




∨

0≤i≤k

Ti





10. Every node in the last column of the grid is labeled withred: c′[(b→)∗]red.

11. To express that only nodes in the last column of the grid are labeled withred, we say that the first row is not
labeled withred, except its last node, and if a node is labeled withred, then itsb-predecessor is labeled:

c[(n→.¬c
′)∗]¬red ∧ let p(v) def

= (w b
→v) ∧ red(v)⇒ red(w) in c[(n→)∗]p

12. Two horizontally adjacent tiles are compatible according toR:

let p(v) def
= (v n→w) ∧ ¬red(v)⇒




∨

R(ti,tj)

(Ti(v) ∧ Tj(w))



 in c[(n→)∗]p

13. Two vertically adjacent tiles are compatible accordingtoD:

let p(v) def
= (v b
→w)⇒

∨

D(ti,tj)

(Ti(v) ∧ Tj(w)) in c[(n→)∗]p

Remark. The reduction uses only two binary relation symbols and a fixed number of unary relation symbols. It
can be modified to show that the logic with three binary relation symbols (and no unary relations) is undecidable.

4.3 Decidable and Useful Fragment ofL0

In this section, we define a fragment ofL0, calledL1, by syntactically restricting the patterns. We show that
L1 naturally describes some commonly-used data-structures,express verification conditions, and characterizes
certain shape abstractions. In the next section, we show that L1 is decidable.

4.3.1 TheL1 Fragment

TheL1 fragment is defined by syntactically restricting the patterns which can be used. The fragmentL1 permits
arbitrary boolean combinations in patterns, but it restricts the distance between variables and forbids the use of
constants in positive occurrences of equality and edge formulas.

Definition 4.3.1 (The syntax ofL1) In every reachability constraintc[R]p that appears in anL1 formula, the
patternp(v0)

def
= N(v0, . . . , vn)⇒ ψ(v0, . . . , vn) satisfies the following restrictions onψ:

• (equality restriction) If ψ contains a positive occurrence of an equality between variablesvi = vj , then the
distance betweenvi andvj in N is at most2 (distance is defined in Definition4.1.2).

44 CHAPTER 4. LOGIC OFREACHABLE PATTERNS IN L INKED DATA -STRUCTURES

Pattern Name Pattern Definition Meaning
detf (v0) (v0 f→v1) ∧ (v0 f→v2)⇒ (v1 = v2) at most one outgoingf -edge fromv0
unsf (v0) (v1 f→v0) ∧ (v2 f→v0)⇒ (v1 = v2) v0 has at most one incomingf -edge

unsf,g(v0) (v1 f→v0) ∧ (v2 g
→v0)⇒ false

v0 is not heap-shared byf -edge
andg-edge

invf,b(v0) (v0 f→v1 ⇒ v1 b
→v0)

everyf -edge fromv0 to v1 has a
b-edge in the opposite direction.

samef,g(v0)
(v0 f→v1 ⇒ v0 g

→v1)
∧ (v0 g

→v1 ⇒ v0 f→v1)
edgesf andg emanating fromv0 are
parallel

Figure 4.2: Useful pattern definitions (f, b, g ∈ F are edge labels).

• (edge restriction) If ψ contains a positive occurrence of an edge formula of the formvi f→vj , then the
distance betweenvi andvj in N is at most1.

• (constant restriction) Positive occurrences of formulas of the formv f→c, c
f
→v, andv = c in ψ are not

allowed.

Remark. Note that formula (4.2), which is used in the proof of undecidability in Theorem4.2.2, is not inL1,
becausep contains a positivev1 b

→u1 with distance3 betweenv1 andu1, while L1 allows edge patterns with
distance at most1.

4.3.2 Describing Linked Data-Structures inL1

In this section, we show thatL1 can express properties of data-structures. Fig.4.2 lists some useful patterns and
their meanings. For example, the first patterndetf means that there is at most one outgoingf -edge from a node.
Another important patternunsf means that a node has at most one incomingf -edge. We use the subscriptf to
emphasize that this definition is parametric inf .

Well-formed heapsWe assume thatC (the set of constant symbols) contains a constant for each pointer
variable in the program (denoted byx, y in our examples). Also,C contains a designated constantnull that
representsnull values. Throughout the rest of the chapter we assume that allthe graphs denote well-formed
heaps, i.e., the fields of all objects reachable from constants are deterministic, and dereferencing NULL yields
null. In L1 this is expressed by the formula:

WF
def
= (

∧

c∈C

∧

f∈F

c[Σ∗]detf) ∧ (
∧

f∈F

null〈 f→〉null) (4.3)

Using the patterns in Fig.4.2, Fig.4.3defines some interesting properties of data-structures usingL1. The for-
mulareachx,f,y means that the object pointed-to by the program variabley is reachable from the object pointed-to
by the program variablex by following an access path off field pointers. We can also use it withnull in the place
of y. For example, the formulareachx,f,null describes a (possibly empty) linked-list pointed-to byx. Note that
reachx,f,null implies that the list is acyclic, becausenull is always a “sink” node in a well-formed heap. We can
also express that there are no incomingf -edges into the list pointed to byx, by conjoining the previous formula
with unsharedx,f . We can specify the fact thatx is located on a cycle off -edges:cyclicx,f . Disjointness can
be expressed by the formuladisjointx,f,y,g that uses both forward and backward traversal of edges in therouting
expression. Disjointness of data-structures is importantfor parallelization (e.g., see [HHN92]). For example, we
can express that the linked list pointed to byx is disjoint from the linked-list pointed to byy, using the formula
disjointx,f,y,f . This formula guarantees that every nodev that is reachable from the node pointed-to byx using
anf -path mustnot be reachable fromy using anf -path. However,v may be reachable fromy using other edges,
or v maybe a part of another data-structure which shares elements withy.

The last three examples in Fig.4.3 specify data-structures with multiple fields. The formulainversex,f,b,y
describes a doubly-linked list with variablesx andy pointing to the head and the tail of the list, respectively. First,
it guarantees the existence of anf -path. Next, it uses the patterninvf,b to express that if there is anf -edge from
one node to another, then there is ab-edge in the opposite direction. This pattern is applied to all nodes on the
f -path that starts fromx and that does not visity, expressed using the test “¬y” in the routing expression.

4.3. DECIDABLE AND USEFUL FRAGMENT OFL0 45

Name Formula
reachx,f,y x〈(f→)∗〉y

the heap object pointed-to byy is reachable from the heap object pointed-
to byx.

cyclicx,f x〈(f→)+〉x
cyclicity: the heap object pointed-to byx is located on a cycle.

unsharedx,f x[(f→)∗]unsf
every heap object reachable fromx by anf -path has at most one incom-
ing f -edge.

disjointx,f,y,g ¬(x〈(f→)∗(g←)∗〉y)
disjointness: there is no heap object that is reachable fromx by anf -path
and also reachable fromy by ag-path.

samex,f,g x[(f→|
g
→)∗]samef,g

thef -path and theg-path fromx are parallel, and traverse the same ob-
jects.

inversex,f,b,y reachx,f,y ∧ x[(f→.¬y)
∗]invf,b

doubly-linked lists between two variablesx andy with f andb as forward
and backward edges.

treeroot,r,l root[(l
→|

r
→)∗](unsl,r ∧ unsl ∧ unsr) ∧ ¬(root〈(l

→|
r
→)+〉root)

tree rooted atroot.
treeroot,r,l,b treeroot,r,l ∧ root[(l

→|
r
→)∗]invl,b ∧ invr,b

tree rooted atroot with parent pointersb from every tree node to its
parent.

Figure 4.3: Properties of data-structures expressed inL1.

The formulatreeroot,r,l describes a binary tree. The first part requires that the nodes reachable from the root
(by following any path ofl andr fields) not be heap-shared. The second part prevents edges from pointing back
to the root of the tree by forbidding the root to participate in a cycle. The formulatreeroot,r,l,b describes a binary
tree rooted atroot with parent pointersb from every tree node to its parent.

The ability to express properties liketreeroot,r,l is non-trivial, because we are operating on general graphs,
and not just trees. Operating on general graphs allows us to verify that the data-structure invariant is reestablished
after a sequence of low-level mutations that temporarily violate the data-structure invariant.

Unary relations symbols can be used to describe data values from a limited domain, and their interaction with
the structural properties of the heap. For example, for a tree we can specify that both children of every white node
are green:

let wg(v0)
def
= (white(v0) ∧ (v0 l

→v1)⇒ green(v1)) ∧ (white(v0) ∧ (v0 r
→v1)⇒ green(v1))

in root[(l
→|

r
→)∗]wg

Moreover, unary information can be used to describe states of objects, and sets of objects.

4.3.3 Expressing Verification Conditions inL1

The Reverse Procedure

Thereverse procedure shown in Fig.4.4performs in-place reversal of a singly-linked list. This procedure is
interesting because it destructively updates the list and anatural specification of its partial correctness requires
reasoning about two fields. Moreover, it manipulates linkedlists in which each list node can be pointed-to from
the outside. We show that the verification conditions for theprocedurereverse can be expressed inL1. If the
verification conditions are valid, then the program is partially correct with respect to the specification. The validity
of the verification conditions can be checked automaticallybecause the logicL1 is decidable, as shown in the next
section. We can show how to automatically generate verification conditions inL1 for arbitrary procedures that
are annotated with preconditions, postconditions, and loop invariants inL1.

46 CHAPTER 4. LOGIC OFREACHABLE PATTERNS IN L INKED DATA -STRUCTURES

Node reverse(Node x){
[0] Node y = null;
[1] while (x != null){
[2] Node t = x.n;
[3] x.n = y;
[4] y = x;
[5] x = t;
[6] }
[7] return y;

}

Figure 4.4: Thereverse procedure performs in-place reversal of a singly-linked list

x0 y1 x1, y6 x6

◦
n0

// ◦ n0

//
n1cc

n6

[[◦
n0

//
n1bb

n6

[[◦
n0

//
n1 ::

n6

^^ ◦
n0

//
n1 ;;

n6

CC◦

Figure 4.5: An example graph that satisfies theV Cloop formula forreverse.

Notice that in this section we assume that all graphs denote valid states, i.e., satisfy (4.3). The precondition
requires thatx point to an acyclic list, on entry to the procedure. We use thesymbolsx0 andn0 to record the
values of the variablex and then-field on entry to the procedure.

prereverse
def
= x0〈(n0

→)∗〉null

The postcondition ensures that the result is an acyclic listpointed-to byy. Most importantly, it ensures that each
edge of the original list is reversed in the returned list, which is expressed in a similar way to a doubly-linked list,
usinginverse formula. We use the relation symbolsy7 andn7 to refer to the values on exit.

postreverse
def
= y7〈(n7

→)∗〉null ∧ inversex0,n0,n7,y7

The loop invariantϕ shown below relates the heap on entry to the procedure to the heap at the beginning of each
loop iteration (line[1]).First, we require that the part of the list reachable fromx be the same as it was on entry
to reverse. Second, the list reachable fromy is reversed from its initial state. Finally, the only original edge
outgoing ofy is tox.

ϕ
def
= samex1,n0,n1 ∧ inversex0,n0,n1,y1 ∧ y1〈n0

→〉x
1

Note that the postcondition uses two binary relations,n0 andn7, and also the loop invariant uses two binary
relations,n0 andn1. This illustrates that reasoning about singly-linked lists may involve more than one binary
relation.

The verification condition ofreverse consists of two parts,V Cloop andV Cexit, explained below.

The formulaV Cloop expresses the fact thatϕ is indeed a loop invariant. To express it in our logic, we use
several copies of the vocabulary, one for each program point. Different copies of the relation symboln in the
graph model values of the fieldn at different program points. Similarly, for constants. Forexample, Fig.4.5
shows a graph that satisfies the formulaV Cloop below. It models a heap at the end of some loop iteration of
reverse. The superscripts of the symbol names denote the corresponding program points.

To show that the loop invariantϕ is maintained after executing the loop body, we assume that the loop con-
dition and the loop invariant hold at the beginning of the iteration, and show that the loop body was executed

4.3. DECIDABLE AND USEFUL FRAGMENT OFL0 47

Node append(Node x, Node y) {
[0] Node t = x;
[1] if (t == null)
[2] return y;
[3] while (t.n != null) {
[4] t = t.n;
[5] }
[6] t.n = y;
[7] return x;

}

Figure 4.6: Theappend procedure concatenates two singly-linked lists.

without performing a null-dereference, and the loop invariant holds at the end of the loop body:

V Cloop
def
= (x1 6= null) loop is entered
∧ϕ loop invariant holds on loop head
∧(y6 = x1) ∧ x1〈n1〉x6 ∧ x1〈n6〉y1 loop body
∧samey1,n1,n6 ∧ samex6,n1,n6 rest of the heap remains unchanged

⇒ (x1 6= null) no null-derefernce in the body
∧ϕ6 loop invariant after executing loop body

Here,ϕ6 denotes the loop-invariant formulaϕ after executing the loop body (line[6]), i.e., replacing all occur-
rences ofx1, y1 andn1 in ϕ by x6, y6 andn6, respectively. The formulaV Cloop defines a relation between three
states: on entry to the procedure, at the beginning of a loop iteration and at the end of a loop iteration.

The formulaV Cexit expresses the fact that if the precondition holds and the execution reaches the exit of the
procedure (i.e., the loop is not entered because the loop condition does not hold), the postcondition holds on exit:
V Cexit

def
= pre ∧ (x0 = x1) ∧ (x1 = null)⇒ post.

The Append Procedure

Theappend procedure given in Fig.4.6concatenates two singly-linked lists.
To describe the effect of a procedure on the heap, we sometimes useauxiliary relations and constants, whose

interpretation is constrained in the precondition, and used in the postconditions. It allows us to relate the values
after a call to a procedure returns to the values before that call. Note that the auxiliary constant does not have an
index, because it is not part of the program. In this example,we use the auxiliary constantlast to label the last
node of the first list.

The precondition for append requires thatx andy point to acyclic and disjoint lists, and defines the meaning
of the new constantlast:

preappend = x0〈(n0

→)∗〉null ∧ y0〈(n0

→)∗〉null ∧ disjointx0,n0,y0,n0∧

x0〈(n0

→.¬null)
∗〉last ∧ last〈n0

→〉null

The postcondition for append usesx7 to denote the return value, which points to an acyclic list. It uses the constant
last to identify the object whosenext field was modified by the procedure.

postappend = x7〈n7

→
∗
〉null ∧ x7 = x0 ∧ last〈n7

→〉y
0∧

x0[(n0

→.¬last)
∗]samen0,n7 ∧ y0[n0

→
∗
]samen0,n7

4.3.4 Characterizing Shape Abstractions inL1

Recall thatγ̂ operation maps every abstract valuea of a given abstract domain to a logical formula, called a
characteristic formula, whose meaning is exactly the setγ(a). Specifically, [Yor03, YRSW07], gives an algorithm
for γ̂ that characterizes canonical abstraction [SRW02] using first-order logic with transitive closure. The problem

48 CHAPTER 4. LOGIC OFREACHABLE PATTERNS IN L INKED DATA -STRUCTURES

is that automatic reasoning in first-order logic with transitive closure is difficult, as discussed in Section1.3.4.
Instead, we can use a decidable logicL1 to characterize certain shape abstractions such as [MYRS05, LAIS06].
In particular, we show in this section how to characterize the shape abstraction described in [MYRS05].

The abstraction of [MYRS05] is designed for programs operating on singly-linked lists. The idea is to sum-
marize list elements on unshared list segments not pointed-to by local variables. An object is aninterruption if it
is pointed-to by a variable (or null) or heap-shared (i.e., has two or more predecessors). Anuninterrupted listis a
path delimited by two interruptions that does not contain interruptions other than the delimiters.

The abstraction of a concrete state is performed in three steps:
(a) remove all garbage objects (i.e., objects not reachablefrom any program variable),
(b) partition the heap into uninterrupted lists, where eachlist is delimited by a pair of interruption objects,
(c) abstract the path length of the uninterrupted lists into“=1” (exactly one edge) and “>1” (more than one edge).

It is easy to describe an uninterrupted list inL1. The main difficulty in specifyinĝγ in L1 is that not all
interruption objects have unique names. That is, an interruption object can be a heap-shared object that is not
pointed-to by a program variable. Fortunately, the restriction to singly-linked lists allows us to uniquely identify
each of these objects by its distance (defined by the number ofuninterrupted lists) from objects pointed-to by
program variables. For every program variablex, we count the interruption objects on the (unique) path emanating
from x, and mark thei-th interruption with an auxiliary variablexi. We need at mostn2 auxiliary variables to
mark all interruptions, because every simple path in a garbage-free heap, consisting of only singly-linked lists
with n program variables, contains at mostn interruptions.

Logical representation of concrete states Given a set of program variablesVar, wheren = |Var|, we define the
vocabularyτ = {C,U, F} whereC = {xi | x ∈ Var, 0 ≤ i ≤ n} ∪ Var∪ {null},U is empty, andF = {f}. A
graphG overτ represents a valid concrete state whenG represents a well-formed heap (i.e., satisfies the formula
WF given in (4.3)), and for everyx ∈ Var, and for everyi = 0, . . . , n, the constant symbolxi is interpreted
as thei-th interruption on the unique path from the object pointed-to by a variablex. In particular,x andx0 are
interpreted by the same node inG. If there are less thann interruptions reachable fromx, then the remaining
auxiliary variables are interpreted by the same node asnull.

Characterization of abstraction An abstract value is a set of shape graphs. A shape graphS, as defined
in [MBC+07], is a quadruple〈NodesS ,EdgesS , EnvS , LenS〉, whereNodesis the set of nodes, which represent
the interruption objects and the designatednull node,EdgesS ⊆ NodesS × NodesS is a set of edges, each of
which represents an uninterrupted list,EnvS : Var ∪ {null} → NodesS maps program variables (and null) to
nodes, andLenS : EdgesS → {=1, >1} maps edges to their (abstracted) lengths. We omit the superscript S
when no confusion is likely.

Theγ̂ operation returns anL1 formula overτ , computed as described below.
For every shape graph〈Nodes,Edges, Env, Len〉, we compute the mappingm : C → Nodesas follows:

m(null) := Env(null)
For every x ∈ Var

m(x) := Env(x)
m(x0) := Env(x)

For every x ∈ Var, For every i = 1, . . . , n− 1
If m(xi) = m(null) then m(xi+1) := m(null)
else m(xi+1) := v′ where (m(xi), v

′) ∈ Edges

The mappingm extendsEnv with auxiliary variables. Fori = 1, . . . , n, we define the formulaξ[xi] which
characterizes uninterrupted lists between auxiliary variablesxi−1 andxi, where the length of a list is given by
Len of the corresponding edge:

ξ[xi]
def
=

{
xi−1〈 f→〉xi if Len(m(xi−1),m(xi)) is =1
xi−1〈 f→.

f
→

+
〉xi ∧ xi−1[(f→.¬xi)

+]unsf ∧ npt if Len(m(xi−1),m(xi)) is>1

To enforce that the intermediate nodes on the path fromxi−1 to xi are unshared, we use the patternunsf , defined

as in Fig.4.2: unsf(v0)
def
= (v1 f→v0) ∧ (v2 f→v0) ⇒ (v1 = v2). To enforce that the intermediate nodes are not

4.4. DECIDABILITY OF L1 49

pointed-to by any program or auxiliary variable, we use the patternnpt defined by:

npt(v0)
def
=

∧

c∈C

c 6= v0

For every pair of variablesc1, c2 ∈ C, we useξeq[c1, c2] to denote the formulac1 = c2 if m(c1) = m(c2), and
the formulac1 6= c2 otherwise.

Now we can define a formula that characterizes a shape graph:

ξ(S)
def
= WF∧

∧

c1, c2 ∈ C
c1 6= c1

ξeq[c1, c2] ∧
∧

x ∈ Var
i = 0, . . . , n

ξ[xi]

Note that in every graphG that satisfiesξ(S), everyxi is interpreted as thei-th interruption from an object
pointed-to by a variablex. That is, two graphs that satisfyξ(S) cannot differ only by their interpretation of the
auxiliary variables.

For every abstract valuea, γ̂(a) is a disjunction of characteristic formulas for the shape graphs that constitute
a: γ̂(a)

def
=

∨
S∈a ξ(S).

Theγ̂ operation defined above exactly characterizes the abstraction of [MYRS05]. That is, for every abstract
valuea, and every graphG overτ ,G |= γ̂(a) if and only if the abstraction of the concrete state represented byG
is a shape graph ina.

To simplify the exposition, we use a straightforward encoding of theγ̂. It is possible to optimize this encoding,
in particular, by taking into account the context in which the γ̂ formulas are used.

4.4 Decidability ofL1

In this section, we show thatL1 is decidable for validity and satisfiability. SinceL1 is closed under negation, it is
sufficient to show that it is decidable for satisfiability. The proof proceeds as follows:

1. Translate anL0 formula into an equivalent formula in weak monadic second-order (MSO) logic (Lemma4.4.2).

2. Define a class of simple graphsAk, for which the Gaifman graph (Definition4.4.4) is a tree with at mostk
additional edges (Definition4.4.5).

3. Show that the satisfiability of MSO logic overAk is decidable, by reduction to MSO logic on trees [Rab69]
(Lemma4.4.6). We could have also shown decidability using the fact that the tree width of all graphs inAk
is bounded byk, and that MSO logic over graphs with bounded tree width is decidable [Cou89, ALS91,
See92].

4. Every formulaϕ ∈ L1 can be effectively translated into an equi-satisfiable normal-form formula that is
a disjunction of formulas inCL1 (Definition 4.4.9and Theorem4.4.12). It is sufficient to show that the
satisfiability ofCL1 is decidable.

5. Show that if formulaϕ ∈ CL1 has a model,ϕ has a model inAk, wherek is proportional to the size of the
formulaϕ (Theorem4.4.14). This is the main part of the proof, given in detail in Section 4.5.

In Section4.6, we extend this proof to show decidability ofL2.

4.4.1 Translation fromL0 to MSO

Every regular expressionR can be effectively translated into an MSO formulaϕR(x, y), that describes the paths
from x to y labeled withw, for every wordw in R. To encode the Kleene star expression, we use a least fixed
point operation, expressible in MSO logic.

Lemma 4.4.1 Every routing expressionR can be translated into an MSO formulatr(R)(v1, v2) with two (first-
order) free variablesv1 andv2 such that for every graphS and nodesa, b ∈ S, there is anR-path froma to b if
and only ifS, a, b |= tr(R)(v1, v2).

50 CHAPTER 4. LOGIC OFREACHABLE PATTERNS IN L INKED DATA -STRUCTURES

Sketch of Proof:For atomic regular expressions and concatenation, we definetr(R)(v1, v2) as follows:

tr(R)(v1, v2)
def
=






f(v1, v2) if R is f
→

f(v2, v1) if R is f
←

¬(c = v1) ∧ (v1 = v2) if R is¬c
u(v1) ∧ (v1 = v2) if R is u
¬u(v1) ∧ (v1 = v2) if R is¬u

tr(R1.R2)(v1, v2)
def
= ∃v3.tr(R1)(v1, v3) ∧ tr(R2)(v3, v2)

The formulatr(R∗)(v1, v2) holds when the minimal setY that containsv1 and is closed underR, containsv2.
Formally, we define

tr(R∗)(v1, v2)
def
= ∃Y.(v2 ∈ Y) ∧Q(v1, Y) ∧ ∀Y ′.Q(v1, Y

′)⇒ Y ⊆ Y ′

whereQ(v1, Z) is (v1 ∈ Z) ∧ ∀v′1, v
′
2.(v

′
1 ∈ Z) ∧ ϕR(v′1, v

′
2)⇒ (v′2 ∈ Z).

For example, the routing expressionR
def
= (n→.¬y)

∗ is translated into the MSO formulatr(R)(x, v)
def
= ∃Y.(v ∈

Y)∧Q(x, Y)∧∀Y ′.Q(x, Y ′)⇒ Y ⊆ Y ′, whereQ(x, Z) is (x ∈ Z)∧∀v′1, v
′
2.(v

′
1 ∈ Z)∧∃v′3.(f(v′1, v

′
3)∧¬(x =

v′3) ∧ (v′3 = v′2))⇒ (v′2 ∈ Z).
Using the translation of regular expressions as defined above, it is easy to translate a generalL0 formula to

anequivalentMSO formula. Forϕ ∈ L0 overτ , TR2(ϕ) is an MSO formula over the same vocabularyτ . The
translationTR2 is defined inductively:

TR2(c[R]p)
def
= ∀v0, v1, . . . , vn.ϕR(c, v0)⇒ p(v0, . . . , vn)

TR2(ϕ1 ∧ ϕ2)
def
= TR2(ϕ1) ∧ TR2(ϕ2)

TR2(¬ϕ1)
def
= ¬TR2(ϕ1)

For example, theL0 formulaϕ
def
= x〈 n→

∗〉y ∧ x[(n→.¬y)
∗]invn,n′ which is part of a loop invariant of the reverse

procedure (Section4.3.3), is translated into the MSO formula

TR2(ϕ) = tr(n→
∗)(x, y) ∧ ∀v0, v1.tr((n→.¬y)

∗)(x, v0)⇒ (n(v0, v1)⇒ n′(v1, v0))

wheretr(n→
∗) andtr((n→.¬y)

∗) are defined as above.

Lemma 4.4.2 For all ϕ ∈ L0 and all graphsS, S |= ϕ iff S |= TR2(ϕ).

4.4.2 Decidability of MSO on Ayah Graphs

We define a setT k of undirected graphs, each of which is a tree3 with at mostk extra edges.

Definition 4.4.3 An undirectedgraphB is in T k if removing self loops and at mostk additional edges fromB
results in an acyclic (undirected) graph.

For a directed graph we define the corresponding undirected graph:

Definition 4.4.4 LetG(S) denote theGaifman graph of the graphS, i.e., an undirected graph obtained fromS
by removing node labels, edge labels, and edge directions (and parallel edges).

We define a notion of simple tree-like (directed) graphs, calledAyahgraphs.

Definition 4.4.5 (Ayah Graphs)For k ≥ 0, an Ayah graph ofk is a graphS whose Gaifman graph is inT k:
Ak = {S|G(S) ∈ T k}.

Examples of graphs inA0,A1, andA2 are shown in Fig.4.7. Forj = {0, 1, 2}, a structureSj ∈ Aj is shown
in the left column, and the corresponding Gaifman graphG(Sj) ∈ T j is shown in the right column; withj dashed
edges. Removing the dashed edges fromG(Sj) yields a tree.

3In this chapter, we use the term “tree” instead of the term “forest” to refer to an acyclic graph, possibly undirected.

4.4. DECIDABILITY OF L1 51

S0 G(S0)

S1 G(S1)

S2 G(S2)

Figure 4.7: Examples of graphs inA0, A1, andA2. For j ∈ {0, 1, 2}, Sj ∈ Aj (left column) andG(Sj) ∈ T j

(right column). Dashed edges denote extra edges removing which results in a tree.

The graphS0 describes an acyclic singly-linked list pointed-to byx. The node labeled withnull doesnot
represent an element of the list: it is a “sink” node which models thenull value, as explained in Section4.3.2.
In G(S0), the self-loop is not dotted because Definition4.4.3ignores self-loops. (As we show later, self-loops can
be easily handled, while larger cycles require a more complex treatment.) The graphS1 describes a cyclic doubly-
linked list. InG(S1), a single edge represents the parallel edges ofS1 with different directions and different labels.
The graphS2 describes a tree with pointers from every tree node to the root. In G(S2), removing a single edge
cannot break both cycles, thus the graphS2 is inA2, but not inA1.
Remark. For every graphS inAk, the tree width [RS86, Die00] of G(S) is at mostk+1, but can it can be strictly
less than that. For example, a graph which consists of17 simple disjoint cycles is inA17, but its tree width is2.

The satisfiability problem of MSO logic on Ayah graphs can be reduced to the satisfiability problem of MSO
logic on trees. The latter is decidable, due to the classicalresult by Rabin [Rab69]. This reduction provides a
constructive way to check satisfiability ofL1 formulas, using an existing decision procedure for MSO on trees,
MONA [HJJ+95].

The reduction consists of two satisfiability-preserving translations: The first is a translationTR3 from MSO
on Ayah graphs to MSO onΣ-labeled trees, defined below. The second is a translationTR4 from MSO on
Σ-labeled trees to MSO on (infinite) binary trees.

Lemma 4.4.6 There are translationsTR3 andTR4 between MSO-formulas such that for every MSO-formula
ϕ, there exists a graphS ∈ Ak that satisfiesϕ if and only if there exists a binary treeS′ such thatS′ |=
(TR3 ◦ TR4)(ϕ).

We describe here only the translationTR3, and omit the (standard) translation,TR4.

EncodingAk Graphs asΣ-Labeled Trees

Given the vocabularyτ = 〈C,U, F 〉 and a numberk we define a new vocabularyτ ′ = 〈C′, U ′, {E}〉, whereE
is the only binary relation,C′ = C ∪ {c1, . . . , ck} ∪ {d1, . . . , dk}, andU ′ = {Ff , Bf , Lf , F d

i

f , B
di

f |f ∈ F, i =
1, . . . , k}).

52 CHAPTER 4. LOGIC OFREACHABLE PATTERNS IN L INKED DATA -STRUCTURES

Let Σ = P(C′ ∪ U ′) be the set of all possible node labels fromτ ′. A Σ-labeled treeis a graphS overτ ′ that
satisfies the following:

1. TheE-edges form a directed forest: each node inS has at most one incomingE edge. AnE-edge from
nodeu1 to nodeu2 means thatu2 is a child ofu1 in the tree.

2. If a node has no incomingE-edge, then it must not be labeled byFf , Bf , for anyf ∈ F .

We useTΣ to denote the set of allΣ-labeled trees.
Every graph inAk can be represented by aΣ-labeled tree. For example, consider the cyclic doubly-linked list

S1 from Fig. 4.7, defined over the vocabularyτ with C = {x}, U = {}, andF = {f, b}. The new vocabulary
τ ′ consists ofC′ = {x, c1, d1}, U ′ = {Ff , Fb, F d

1

f , F d
1

b , Bd
1

f , B
d1

b }, andF ′ = {E}. The graphS1 can be
represented by the followingΣ-labeled tree (actually, it is a list in this example):

Bd
1

f , F
d1

b
Ff , Bb Ff , Bb Ff , Bb

/.-,()*+ E ///.-,()*+ E ///.-,()*+ E ///.-,()*+

x, c1 d1

The graphS represented by aΣ-labeled tree has the same set of nodes as the tree. The labelsof S are defined as
follows. A graph node is labeled with the constants and unaryrelation symbols that hold for the corresponding
node in the tree. An edge in the tree from nodev to v′ represents edges between the corresponding nodesv and
v′ in the graph. Additional labels on tree nodes represent the direction and the labels of the graph edges adjacent
to the corresponding nodes in the graph, as follows.

For each binary relation symbolf ∈ F , we introduce two unary relation symbolsFf andBf , denoting forward
and backwardf -edge. If there is an edge fromv to v′ in the tree, andv′ is labeled withFf in the tree, then there is
anf -edge fromv to v′ in S. Similarly, if there is an edge fromv′ to v in the tree, andv is labeled withBf in the
tree, then there is anf -edge fromv to v′ in S. There is a self-loop off on a nodev in S if the nodev in the tree
is labeled withLf . Also, each of thek pairs of constantsci anddi in a tree represents edges between the nodes
corresponding toci anddi in the graph. Ifv is labeled withci andF d

i

f in the tree, then there is anf -edge fromv

to the node labeled withdi in S. If v is labeled withci andBd
i

f in the tree, then there is anf -edge from the node
labeled withdi to v in S.

For an MSO formulaϕ overτ , TR3(ϕ) is an MSO formula over the vocabularyτ ′. The translationTR3 is
defined inductively onϕ, where the only interesting part is the translation of a binary relation formulaf ∈ F :

TR3(f(v1, v2)) = (E(v1, v2) ∧ Ff (v2))
∨(E(v2, v1) ∧Bf (v1))
∨(E(v1, v2) ∧ v1 = v2 ∧ Lf(v1))∨k

i=1 ((ci = v1 ∧ di = v2 ∧ F d
i

f (v1)) ∨ (ci = v2 ∧ di = v1 ∧Bd
i

f (v2)))

Lemma 4.4.7 Let ϕ be an MSO formula. There is a graphS ∈ Ak such thatS |= ϕ if and only if there is a
Σ-labeled treeT ∈ TΣ such thatT |= TR3(ϕ).
Proof: Given a graphS in Ak, we can encode it as aΣ-labeled treeT as follows. First, remove all self loops and
at mostk additional edges from the Gaifman graph ofS to obtain an acyclic undirected graph,U . It is easy to
transform the undirected graphU into a directed forestT , by choosing one node in every connected component of
U as a root, and directing all edges from it downwards. Then, wecan set the labels ofT uniquely from the labels
of the corresponding nodes inS. To encode that an edge inS is labeled withf , we identify the corresponding
edge inT , and label the target of the edge with a unary relation to remember the labelf .

GivenT ∈ TΣ, we can uniquely reconstruct the graphS ∈ Ak that corresponds to it. Every node inT that is
labeled withFf has exactly one incoming edge, which defines the corresponding edge inS, labeled withf . For
eachF d

i

f , at most one edge can be created inS, becauseTR3 guarantees that inT the source is labeled withci,
and the target is labeled withdi, which are constants.

Theorem 4.4.8 The satisfiability problem of MSO formulas is decidable onAk.
Proof: Follows from Lemma4.4.6and [Rab69].

4.4. DECIDABILITY OF L1 53

4.4.3 Normal Form ofL0 Formulas

We define a normal-form formula to be a disjunction of conjunctions of formulas of the formc〈R〉c′ andc[R]p.

Definition 4.4.9 (Normal-form formulas) A formula in CL0 is of the form
∧

i

¬(ci[Ri]¬c
′
i) ∧

∧

j

cj [Rj]pj

A normal-form formula is a disjunction of CL0 formulas.
A formulaϕ is in CL1 if and only ifϕ ∈ CL0 andϕ ∈ L1, i.e., all the patterns that appear inϕ satisfy the

requirement of Definition4.3.1.

For a formulaϕ ∈ CL0, we useϕ♦ to denote the first part ofϕ, namely
∧
i ¬ci[Ri]¬c

′
i, andϕ� to denote the

second part ofϕ, namely
∧
j cj [Rj]pj . We use|ϕ♦| to denote the number of conjuncts in the formulaϕ♦.

Note that whileL0 is closed under negation,CL0 is not. The following theorem shows that everyL0-formula
can be effectively translated into an equi-satisfiable normal-form formula. The main difficulty is to translate a
formula of the form¬c[R]p, wherep is an arbitrary pattern, into a formula in which negation appears only in front
of constraints of the formc′[R]¬c′′.

Definition 4.4.10 Let θ be the formula¬c[R]p over τ , wherep(v0) = N(v0, . . . , vn) ⇒ ψ(v0, . . . , vn). We
introduce new constant symbolsc0, . . . , cn, and defineτ ′ = τ ∪ {c0, . . . , cn}. We definetr(θ) as follows:

• Translate¬ψ into an equivalent negated normal form formulaψ′,

• Letθ′ bec〈R〉c0 ∧N(c0, . . . , cn)∧ ψ′(c0, . . . , cn), where every edge formulavi f→vj that appears inN or
ψ′ is replaced byci〈 f→〉cj .

4

• If ¬c〈R〉c′ appears inθ′, replace it withc[R]¬c′, to obtainθ′′.

• Transformθ′′ into an equivalent disjunctive normal form formulaθ′′′.

• Let tr(θ) beθ′′′.

The formulatr(θ) is a normal-form formula by Definition4.4.9, because it is a disjunction ofCL0-formulas.
In fact, tr(θ) is a very simple formula: all the patterns in it are of the formtrue ⇒ c 6= v0. Thus, negation
can appear only in front of reachability constraints of the formc[R]¬c′ whereR does not contain the Kleene star
operator.

Lemma 4.4.11For a graphS overτ , if S satisfiesθ, then there exists an expansion ofS to τ ′, that satisfiestr(θ).
For a graphS′ overτ ′, if S′ |= tr(θ) then the restrictionS of S′ to τ satisfiesϕ.

Theorem 4.4.12There is a computable translationTR1 fromL0 to a disjunction of formulas in CL0 that pre-
serves satisfiability.
Sketch of Proof:For every formulaϕ ∈ L0 overτ , the formulaTR1(ϕ) is a disjunction of formulas inCL0 over
τ ′ such thatϕ is satisfiable if and only ifTR1(ϕ) is satisfiable. The vocabularyτ ′ is an extension ofτ with new
constant symbols. The translationTR1(ϕ) is defined as follows:

1. Translateϕ into an equivalent formulaϕ′ in negated normal form using deMorgan rules to push negations
inwards.

2. Replace every sub-formula¬c[R]p that appears inϕ′ with tr(¬c[R]p), as in Definition4.4.10. The resulting
formulaϕ′′ is satisfiable if and only ifϕ′ is satisfiable, by Lemma4.4.11. Note that this translation only
preserves satisfiability (not equivalence).

3. Translateϕ′′ into an equivalent disjunctive normal form formulaϕ′′′. All atomic formulas are of the form
c[R]¬c′.

The result ofTR1(ϕ) isϕ′′′.

4Recall from Section4.1.1thatc〈R〉c′ is a shorthand for¬c[R]¬c′.

54 CHAPTER 4. LOGIC OFREACHABLE PATTERNS IN L INKED DATA -STRUCTURES

The translation is applicable to the fullL0 logic, in which case the reachability constraints inϕ� can contain
arbitrary patterns.

The translationTR1 may introduce only patterns of the formtrue ⇒ c2 6= v0 beyond those patterns that
appear in the input formula. This observation yields the following corollary:

Corollary 4.4.13 For ϕ ∈ L1, the translationTR1 returns a disjunction of formulas in CL1 (and preserves
satisfiability).

4.4.4 Decidability ofL1

The following theorem states thatCL1 has an Ayah-model property, i.e., every satisfiableCL1 formulaϕ has a
model inAf(ϕ) wheref(ϕ) is defined by

f(ϕ)
def
= 2× n× |C| × |ϕ♦| (4.4)

Here, we assume that for every routing expression that appears in ϕ♦ there is an equivalent automaton with at
mostn states.

Theorem 4.4.14 (Ayah model property ofL1) If ϕ ∈ CL1 is satisfiable, thenϕ is satisfiable by a graph in
Af(ϕ), wheref is defined in (4.4).

A non-trivial proof of this theorem is presented in Section4.5.

Theorem 4.4.15The satisfiability problem ofL1 is decidable.
Proof: Follows from combining the results of Theorem4.4.12, Theorem4.4.14, Lemma4.4.2, Theorem4.4.8.

4.5 Ayah Model Property ofL1

In this section we provide a detailed proof of the main technical theorem of this chapter, Theorem4.4.14. Before
diving into the details, we explain the main proof at a high-level.

Given a normal-form formulaϕ ∈ CL1 and a graphS such thatS |= ϕ, we construct a graphS′ and show
thatS′ |= ϕ andS′ ∈ Ak.

The construction operates as follows. We construct a pre-modelS0 of S andϕ, which satisfies all constraints
of the formc〈R〉c′ in ϕ. The idea is to extract fromS a witness path for each constraint of the formc〈R〉c′ in ϕ,
and defineS0 to be the union of these witness paths (Section4.5.5).

The pre-modelS0 may violate some of the constraints of the formc[R]p in ϕ. Consider the case when the pat-
ternp contains a positive occurrence of edge formula or equality formula. If a graphG violates a constraintc[R]p,
then there is an enabled merge operation or edge-addition operation, depending on the patternp (Section4.5.3).

For example, ifp is of the formN(v0, v1, v2)⇒ v1 = v2, it defines a merge operation. We say that this merge
operation is enabled in a graphG (by c[R]p) whenG contains a nodew0 reachable by anR-path fromc and
distinctnodesw1 andw2 forming the neighborhoodN(w0, w1, w2). Applying this operation means merging the
nodesw1 andw2. After mergingw1 andw2, other merge operations may still be enabled inG by c[R]p. If there
are no more enabled operations inG, thenG |= c[R]p. Similarly, if p is of the formN(v0, v1, v2) ⇒ v1 f→v2, it
defines an edge-addition operation. Applying this operation means adding anf -edge.

Given a pre-modelS0, we apply all enabled operations in any order, producing a sequence of distinct graphs
S0, S1, . . . until the last graphS′ has no enabled operations. Thus,S′ satisfies all constraints of the formc[R]p
wherep contains a positive occurrence of edge formula or equality formula. We show that applying any enabled
operation preserves witness paths for the constraints of the formc〈R〉c′. Thus,S′ also satisfies all constraints of
the formc〈R〉c′. This construction also guarantees thatS′ satisfies all the constraints of the formc[R]p wherep
is a negative formula. To show this formally, we use homomorphisms (Section4.5.4) which preserves existence
of edges and both existence and absence of labels on nodes (preserving absence of labels is non-standard).

Finally, the fact thatS′ is in Ak is proved by induction. By construction,S0 is in Ak (Lemma4.5.11), and
Ak is closed under operations enabled byL1 formulas (Lemma4.5.5). The proof of closure properties ofAk is
based on closure properties for a class of undirected graphs, T k (Lemma4.5.1).

4.5. AYAH MODEL PROPERTY OFL1 55

The rest of the section describes the building blocks of the proof of Theorem4.4.14: closure properties of
T k (Section4.5.1), closure properties ofAk (Section4.5.2), the definition of operations enabled byL1 formulas
(Section4.5.3), the definition of homomorphism relation and its properties (Section4.5.4), and the definition
of witness splitting and properties of a pre-model (Section4.5.5). The proof of Theorem4.4.14concludes the
section.

4.5.1 Trees with Extra Edges

Recall from Definition4.4.3thatT k is a set of undirected graphs that are trees withk extra edges. In this section
we prove thatT k is closed under merging of vertices at distance at most2.

Thedistancebetween the verticesv1 andv2 in an undirected graphB is the number of edges on the shortest
path betweenv1 andv2 in B.

Merging two vertices in an undirected graph is defined in the usual way, by gluing these vertices. Formally,
let the undirected graphB′ denote the result of merging nodesv1 andv2 in B. The set of vertices ofB′ is
V B

′ def
= (V B \ {v1, v2}) ∪ {v12}, wherev12 is a new vertex. Letm : V B → V B

′

be defined as follows:

m(v) =

{
v12 if v = v1 or v = v2
v otherwise

If there is an edgee between the verticesv1 andv2 in B then there is an edgem(e) betweenm(v1) andm(v2) in
B. If there is an edgee betweenv′1 andv′2 in B′ then there exist verticesv1 andv2 in B such thatm(v1) = v′1,
m(v2) = v′2, and there is an edge betweenv1 andv2 in B.

Lemma 4.5.1 Assume thatB is in T k and verticesv1 andv2 are at distance at most two inB. The graphB′

obtained fromB by mergingv1 andv2 in B is also inT k.
Proof: By definition ofT k, there exists a set of edgesD ⊆ E such thatB \ D, denoted byT , is acyclic and
|D| ≤ k. We show how to transformD intoD′ ⊆ E′ such thatB′ \D′, denoted byT ′, is acyclic and|D′| ≤ k.
We consider only the case whenv1 andv2 are at distance of exactly two inB, i.e., there is a vertexv0 distinct form
v1 andv2, an edgee1 betweenv1 andv0, and an edgee2 betweenv0 andv2. We consider three cases, depicted in
Fig. 4.8.

• If e1, e2 /∈ D, letD′ = {m(e)|e ∈ D}.

• Assume thate1 /∈ D ande2 ∈ D. If v2 is not reachable fromv1 in T , let D′ = {m(e)|e ∈ D}, thus
|D′| ≤ k.

If v2 is reachable fromv1 in T , there is at most one (simple) path fromv1 to v2 in T , becauseT is acyclic.
If the path containse1, we defineD′ as before:D′ = {m(e)|e ∈ D}.

If the path fromv1 to v2 does not containe1, lete3 be the first edge on the path fromv1 to v2 (see the second
case in Fig.4.8).5 To obtainD′ fromD, we removee2 and adde3: D′ = ({m(e)|e ∈ D} \ {m(e2)}) ∪
{m(e3)}. The size ofD′ is the same as the size ofD, becausee2 ∈ D.

• Assume thate1, e2 ∈ D. If v2 is not reachable fromv1, we can use the simple constructionD′ = {m(e)|e ∈
D}. It follows that |D′| = |D| − 1, because bothe1 ande2 are mapped to the same edgee′ = m(e1) =
m(e2), and no multiple edges are allowed.

If v2 is reachable fromv1, let e3 be the first edge on the path. We defineD′ = {m(e)|e ∈ D} ∪ {m(e3)}
(see the third case in Fig.4.8). Same construction applies whenv1 or v2 are reachable fromv0.

5Note that we cannot use the simpleD′ definition as before, because mergingv1 andv2 in T to obtainT ′ creates a cycle that does not
involve e1. We observe that, in this case, the subgraph reachable fromv1 throughe1 in T remains acyclic after the merge operation, because
it is disjoint from the subtree ofv2. Thus,e1 need not be removed fromT .

56 CHAPTER 4. LOGIC OFREACHABLE PATTERNS IN L INKED DATA -STRUCTURES

T T ′

e1, e2 /∈ D

e1 /∈ D, e2 ∈ D

e1, e2 ∈ D

Figure 4.8: Merge operation onT k-graphs. Dotted lines represent additional edges, i.e., edges of aT k-graph that
do not belong to the tree. The vertexv12 and the edgee12 in T ′ result from merging the verticesv1 andv2, and
the edgese1 ande2 in T .

4.5. AYAH MODEL PROPERTY OFL1 57

4.5.2 Ayah Graphs

In this section we prove thatAk is closed under edge-addition operations at distance at most one (Lemma4.5.2),
and under merge operations at distance at most2 (Lemma4.5.3).

Thedistancebetween nodesv1 andv2 in a graphS is the distance betweenv1 andv2 in G(S), i.e., the number
of edges on the shortest path betweenv1 andv2 in G(S).

It is easy to see thatAk is closed under edge-addition operations at distance at most one, which means adding
an edge in parallel to an existing one (distance one) or adding a self-loop (distance zero).

Lemma 4.5.2 (Adding edges at distance≤ 1 in Ak) Assume that the graphS′ is obtained fromS by adding an
edge fromv1 to v2 in S. If S is inAk and nodesv1 andv2 are at distance at most1 in S, thenS′ is inAk.
Proof: Distance at most1 betweenv1 andv2 means that there is already an edge betweenv1 andv2. Addition of
edges toS in parallel to existing edges does not affect theG(S), and self-loops do not affectT k.

Merging two nodes in a graph is defined in the usual way by gluing these nodes. Formally, letS′ be the result
of merging the nodesv1 andv2 in S. The set of nodes ofS′ is V S

′ def
= (V S \ {v1, v2}) ∪ {v12}, wherev12 is a

new node. We definem : V S → V S
′

as follows:

m(v) =

{
v12 if v = v1 or v = v2
v otherwise

The interpretation of constant and relation symbols inS′ is defined as follows:

1. For every constant symbolc ∈ τ , and for every nodev ∈ S, v is labeled withc in S if and only ifm(v) is
labeled withc in S′.

2. For every unary relation symbolσ ∈ τ , and for every nodev ∈ S, if v is labeled withσ in S thenm(v) is
labeled withσ in S′.

3. For every unary relation symbolσ ∈ τ , and for every nodev′ ∈ S′, if v′ is labeled withσ in S′ then there
exists a nodev in S such thatm(v) = v′ andv is labeled withσ in S.

4. For every binary relation symbolσ ∈ τ , and every pair of nodesw1, w2 ∈ S, if there is an edge fromw1 to
w2 labeled withσ then there is an edge fromm(w1) tom(w2) in S′ labeled withσ.

5. for every binary relation symbolσ ∈ τ , and every pair of nodesw′
1, w

′
2 ∈ S

′, if there is an edge fromw′
1

tow′
2 labeled withσ in S′ then there are nodesw1 andw2 in S such thatm(w1) = w′

1,m(w2) = w′
2, and

there is an edge fromw1 tow2 in S labeled withσ.

Later, we guarantee that merge operations are applied only to those nodes which are labeled by the same unary
relations and constants.

The proof thatAk is closed under merge operations at distance at most two is based on the result of Lemma4.5.1
from the previous section.

Lemma 4.5.3 (Merging nodes at distance≤ 2 in Ak) Assume that the graphS′ is obtained fromS by merging
v1 andv2 in S. If S is inAk and nodesv1 andv2 are at distance at most2 in S, thenS′ is inAk.
Proof: To show thatS′ ∈ Ak, it is sufficient to show thatG(S′) ∈ T k. We use the definitions of a Gaifman graph
and a merging operation. First, merging the nodes ofG(S) that correspond tov1 andv2 in G(S), results inG(S′).
Second, the distance betweenv1 andv2 in G(S) is at most2 because the distance between the corresponding
nodes inS is at most2. Third,G(S) ∈ T k, becauseS ∈ Ak. Thus, using Lemma4.5.1, we get thatG(S′) ∈ T k.

4.5.3 Graph Operations Enabled byL1 Formulas

The notion of enabled operations defined in this section is used for defining the construction in the proof of
Theorem4.4.14.

Let p(v0)
def
= N(v0, . . . , vn)⇒ ψ(v0, . . . , vn) be anL1 pattern. LetS be a graph, andw1, w2 nodes inS.

We say thatmerge operation ofw1 andw2 is enabled(by c[R]p) when (a) the equality between variables
(v1 = v2) appears positively inψ, (b) we can assign nodesw0, . . . , wn to v0, . . . , vn, respectively, such that there

58 CHAPTER 4. LOGIC OFREACHABLE PATTERNS IN L INKED DATA -STRUCTURES

is anR-path fromc tow0,N(w0, . . . , wn) holds butψ(w0, . . . , wn) does not hold, and (b)w1 andw2 aredistinct
nodes. Merging the nodesw1 andw2 disables this merge operation (other merge operations may still be enabled
after mergingw1 andw2).

We say thatedge-addition betweenw1 andw2 is enabled(by c[R]p) when (a) the edge formula(v1 f→v2)
appears positively inψ, (b) we can assign nodesw0, . . . , wn to v0, . . . , vn, respectively, such that there is an
R-path fromc tow0,N(w0, . . . , wn) holds butψ(w0, . . . , wn) does not hold, and (c) there isno f -edge fromw1

tow2. We can add anf -edge fromw1 andw2 to discharge this assignment.

Lemma 4.5.4 LetN(v0, . . . , vn) be a neighborhood formula, andS be a graph with an assignment tov0, . . . , vn
that satisfiesN . If the variablesv1 andv2 are at distance at mostk in N , then the nodes assigned tov1 andv2
are at distance at mostk in S.
Proof: Follows from the definition of neighborhood as a conjunction of edges (Definition4.1.2).

The following lemma is the key observation of the proof.

Lemma 4.5.5 Let p(v0)
def
= N(v0, v1, . . . , vn)⇒ ψ(v0, . . . , vn) be anL1 pattern. LetS be a graph, andw1, w2

nodes inS. Assume that a merge (an edge-addition) operation is enabled in a graphS between nodesw1 andw2

by a reachability constraintc[R]p. If S ∈ Ak, then the result of merging (adding an edge) betweenw1 andw2 is
a graph inAk.
Proof: Suppose that a merge operation is enabled inS between nodesw1 andw2. It is possible to assign nodes
w0, . . . , wn to the variablesv0, . . . , vn, such thatN holds. In particular,w1 is assigned tov1 andw2 is assigned
to v2, and the equalityv1 = v2 appears positively inψ. According to the equality restriction onL1 patterns,v1
andv2 are at distance at most2 in N . By Lemma4.5.4, w1 andw2 are at distance at most2 in S. Thus, by
Lemma4.5.3we get that the result of mergingw1 andw2 is a graph inAk, becauseS is in Ak. The proof for
edge-addition is similar, using Lemma4.5.2.

4.5.4 Homomorphism Preservation

In this section, we give a slightly non-standard definition of homomorphism between graphs. It preserves existence
of edges and both existence and absence of labels on nodes (preserving absence of labels is non-standard). The
homomorphism relation is preserved byCL1 formulas, and also by merging operations.

Definition 4.5.6 (Homomorphism)Let S1 andS2 be graphs over the same vocabularyτ . A homomorphism
fromS1 to S2 is a mappingh : V S1 → V S2 such that

1. for every constant symbol and unary relation symbolσ ∈ τ , and for everyv ∈ S1, v is labeled withσ in S1

if and only ifh(v) is labeled withσ in S2.

2. for every binary relation symbolσ ∈ τ , and every pair of nodesv1, v2 ∈ S1, if there is an edge fromv1 to
v2 in S1 labeled withσ, then there is an edge fromh(v1) to h(v2) in S2 labeled withσ.

Lemma 4.5.7 Let h : S1 → S2 be a homomorphism. IfS1 |= c1〈R〉c2 thenS2 |= c1〈R〉c2. Dually, if S2 |=
c[R]p, andp does not contain positive occurrences of edge formulas or equality formulas, thenS1 |= c[R]p.
Sketch of Proof:If S1 |= c1〈R〉c2, there exists anR-path fromc1 to c2. By definition of homomorphism fromS1

to S2, the same path exists inS2. Thus,S2 |= c1〈R〉c2.
For the sake of contradiction, assume thatS2 |= c[R]p butS1 6|= c[R]p. That is, there exists anR-path fromc

to some nodev in S1 andv does not satisfy the patternp. The same path exists inS2, due to the homomorphism
fromS1 to S2. To obtain a contradiction, we show thath(v) does not satisfy the patternp in S2. The formulap is
of the formN ⇒ ψ, whereN contains only positive occurrences of edge formulas. By assumption, we get thatψ
does not contain positive occurrences of edge formulas or equality formulas. Thus, the formulap does not contain
positive occurrences of edge formulas and equality formulas. If S1 does not satisfyp, there exists a subgraph in
S2 which satisfies¬p. This subgraph exists inS2 as well, due to homomorphism.6 Thus,S2 satisfies¬p, and a
contradiction is obtained.

Lemma 4.5.8 Assume thatf is a homomorphism fromS1 to S, andS2 is obtained by merging the nodesv1 and
v2 in S1. If f(v1) = f(v2) then there is a homomorphism fromS2 to S.

6Note that¬p may contain negative occurrences of unary formulas, but these are also preserved under the (non-standard) homomorphism
relation we are using.

4.5. AYAH MODEL PROPERTY OFL1 59

S

S0

S1

Figure 4.9: The graphS satisfies the formula in (4.5), andS ∈ A1. A pre-model ofS is S0. Note thatS0 ∈ A0.
The graphS1 is the result of applying a merge operation toS0. Note thatS1 satisfies the formula in (4.5), and
S1 ∈ A0. The graphS1 is the final result of the construction used in the proof of Theorem4.4.14.

4.5.5 Witness Splitting

A witnessW for c1〈R〉c2 in a graphS, is a path inS, labeled with a wordw ∈ L(R), from the node labeled
with c1 to the node labeled withc2. Note that the nodes and edges on a witness path forR need not be distinct.S
contains a witness forc1〈R〉c2 if and only if S |= c1〈R〉c2.

Using a witnessW for c1〈R〉c2 in S, we construct a graphW ′ that consists of a path, also labeled withw,
that starts at the node labeled byc1 and ends at the node labeled byc2. Intuitively, we createW ′ by duplicating
a node ofS each time the witness pathW traverses it, unless the node is labeled with a constant. Thenodes in
W ′ are namedtv,l wherev is a node inS andl ≥ 0 is an integer. Forl > 0, a nodetv,l in W ′ corresponds to
the l-th occurrence ofv on the witness pathW , if a nodev in S is not labeled with a constant. Ifv is labeled
with a constant, we create for it a unique nodetv,0 in W ′ even ifv is traversed several times byW . As a result,
all shared nodes inW ′ are labeled with constants. Also, every cycle contains a node labeled with a constant. By
construction,W ′ satisfiesc1〈R〉c2.

For example, consider the formula

ϕ
def
= x〈 f→

∗
〉z ∧ y〈 f→.(

g
→

+.(c|u). f→)∗〉z ∧ c[ǫ]unsf (4.5)

whereu is a unary relation symbol andc is a constant symbol. Fig.4.9 shows a graphS which satisfies
ϕ. The shortest witness path forx〈 f→

∗
〉z is labeled with the wordf→.

f
→.

f
→. The shortest witness path for

y〈 f→.(
g
→

+.(c|u). f→)∗〉z is labeled with the wordf→.
g
→.

g
→.

g
→.u.

f
→.

g
→.c.

f
→. Note that this witness traverses each

of the nodes labeled byu and byc twice. To split this witness, the node marked byu is duplicated, while the node
marked byc is not duplicated, becausec is a constant. After splitting the witnesses, we construct apre-model of
S, denoted byS0, by taking the union of both witness paths and merging the nodes of the different witness paths
which are labeled with the same constant.

Formally, the witness pathW is a sequence of nodes fromS: t1, t2, . . . , tr, whereti ∈ S. LetC(ti) denote

60 CHAPTER 4. LOGIC OFREACHABLE PATTERNS IN L INKED DATA -STRUCTURES

the set of constant symbols that label the nodet: C(ti)
def
= {σ ∈ C|CS(σ) = ti}. We define a mappingd(ti) as

follows:

d(ti)
def
=

{
tv,0 if C(ti) 6= ∅ andti is the nodev
tv,l if ti is thel-th occurrence of the nodev ∈ S on the pathW

W ′ is a graph with nodes{d(t1), . . . , d(tr)}. If the witness pathW goes fromti to ti+1 through an edge labeled
with fi ∈ F , then there is an edge inW ′ labeled withfi from d(ti) to d(ti+1). Note thatW ′ contains only edges
traversed by the witness path. For every unary relation and constant symbolσ ∈ C ∪ U and nodeti ∈ W , d(ti)
is labeled withσ in W ′ if and only if ti is labeled withσ in S.

We say thatW ′ is the result ofsplitting the witnessW . We say thatW is theshortest witnessfor c1〈R〉c2 if
any other witness path forc1〈R〉c2 is at least as long asW .

For a formulaϕ ∈ CL1 and a graphS such thatS |= ϕ, we define apre-model of aS andϕ to be the graph
S0 constructed as follows.

• LetWi denote a shortest witness inS for everyci〈R〉c′i in ϕ♦.

• LetW ′
i be the result of splitting the witnessWi. Let tiv,l be the names the nodes ofW ′

i .

• LetS′
0 be a disjoint union of allWi’s.

• For everyc ∈ C, if S′
0 does not contain any node labeled withc, add a new nodet0v,0 to S′

0, wherev is the
node inS labeled withc. For allσ ∈ C ∪ U , t0v,0 is labeled withσ in S′

0 if and only if v is labeled withσ
in S.

• The graphS0 is the result of merging all nodes that are labeled with the same constants, i.e., nodestiv,0 for
all i are merged and the new node namedt0v,0.

Note thatS′
0 cannot be used as a legal interpretation forL0 formulas overτ , because it may contain several nodes

labeled with the same constant, or no interpretation for some constants. These problems are addressed by the last
two steps of the construction.

By construction,S0 contains a witness for eachc1〈R〉c2 in ϕ♦.

Lemma 4.5.9 If S |= ϕ andS0 is a pre-model ofS andϕ, thenS0 |= ϕ♦.

Lemma 4.5.10LetS0 be a pre-model ofS andϕ. There is a homomorphismh0 : S0 → S defined byh0(t
i
v,l) = v.

Proof: We defineh′0 : S′
0 → S by h′0(t

i
v,l) = v. The mappingh′0 preserves existence of edges and the presence

and absence of node labels betweenS′
0 andS because it is preserved for everyW ′ separately, by definition of

witness splitting, andS′
0 is adisjoint union ofW ′

is. Thus,h′0 is a homomorphism.
BecauseS0 is obtained fromS′

0 by merging nodes that are mapped byh′0 to the same node inS, the mapping
h0 is also a homomorphism, by Lemma4.5.8.

Lemma 4.5.11For ϕ ∈ CL1, if S0 is a pre-model ofS andϕ, thenS0 ∈ Af(ϕ), wheref is defined in (4.4).
Proof:

Recall that for every routing expression that appears inϕ♦ there is an equivalent automaton with at most
n states. If a node is visited more than once in the same state ofthe automaton, the path can be shortened by
removing the part traversed between the two visits. Thus, a shortest witness visits a node at mostn times. In the
worst case, each time a shortest witness visits a node, it enters and exits the node with a different edge. Because
S0 consists of|ϕ♦| shortest witnesses, there are at most2× n× |ϕ♦| edges adjacent to any node.

In fact, by construction ofS0, only nodes labeled by constants inS0 can have more than two adjacent edges.
Thus, every (simple) cycle inS0 must go through a constant. To break all cycles inS0 (and, thus, in its Gaifman
graph), it is sufficient to remove all the edges adjacent to nodes labeled with constants, i.e., at mostk = 2× n×
|ϕ♦| × |C| edges. It follows thatS0 ∈ Ak.7

7This bound is not tight.

4.5. AYAH MODEL PROPERTY OFL1 61

4.5.6 Ak-Model Property of L1

Theorem4.4.14(Ayah model property ofL1) If ϕ ∈ CL1 is satisfiable, thenϕ is satisfiable by a graph inAf(ϕ),
wheref is defined in (4.4).
Proof: Given a graphS such thatS |= ϕ, we construct a graphS′ and show thatS′ ∈ Ak andS′ |= ϕ.

First, we construct a pre-modelS0 of S andϕ, and define the mappingh0 : S0 → S according to Lemma4.5.10.
Then, we apply all enabled merge operations and all enabled edge-addition operations in any order, producing a
sequence of distinct graphsS0, S1, . . . , Sr, until Sr has no enabled operations. The resultS′ = Sr.

Formally, for everyc[R]p ∈ ϕ and ever pair of nodesw1, w2 ∈ Sj ,

• If a merge operation is enabled, andhj(w1) = hj(w2) in Sj then constructSj+1 by mergingw1 andw2,
and definehj+1 : Sj+1 → S to behj+1(w) = hj(w1) if w is the result of mergingw1 andw2, otherwise
hj+1(w) = hj(w).

• If an edge-addition operation is enabled forf ∈ F , and there is anf -edge fromhj(w1) to hj(w2) in S then
constructSj+1 by adding anf -edge fromw1 tow2, and definehj+1 : Sj+1 → S to be the same ashj.

For example, the pre-modelS0 shown in Fig.4.9 does not satisfy the constraintc[ǫ]unsf from (4.5), which
requires that the node labeled withc have at most one incomingf -edge. The result of applying the corresponding
merge operation is the structureS1, also shown in Fig.4.9.

An enabled merge operation is not applied toSj if the corresponding nodes in the original modelS are distinct.
Similarly, an enabled edge-addition is not applied, unlessthe corresponding edge is present inS. This allows us
to deal with disjunctions in patterns. For example,

let p(v0)
def
= (v0 f→v1)⇒ (v0 = v1 ∨ (v0 g

→v1) ∨ (v0 g
′

→v1)) in
c〈 f→

∗
〉c′ ∧ c[f→

∗
]p ∧ (c 6= c′)

Suppose thatS0 looks like this: GFED@ABCw1
f // GFED@ABCw2

c c′

The nodesw1 andw2 are labeled with the constantsc and c′,

respectively. Both merge and edge-addition operations areenabled inS0 by c[f→
∗
]p. Had we applied the merge

operation, we would have immediately obtained a contradiction with c 6= c′. However, if we consult the original
model, we find out that the corresponding nodes are distinct,8 but there is ag-edge between them. Therefore,
adding ag-edge toS0 would not lead to a contradiction.
Remark. Even when we consult withS whether to apply an enabled operation or not, we do not merge more
than necessary, or add more edges than necessary. In the previous example, after addingg the formula holds,
i.e., the edge-addition operation ofg′ is not enabled any more. However, a different order of application of the
enable operations may produce different graphs at the end. Fortunately, it does not affect the size ofAk, or the
decidability.

The process described above terminates after a finite numberof steps, because in each step either the number
of nodes in the graph is decreased (by merge operations) or the number of edges is increased (by edge-addition
operations). For a fixed vocabulary and a fixed number of nodes, the number of edges that can be added to the
graph is bounded, because a pair of nodes in a graph can have atmost onef edge in each direction, for every
f ∈ F .

To show thatS′ ∈ Ak, we prove a stronger claim that for allj, Sj ∈ Ak. In particular, it follows that
S′ ∈ Ak. Recall that all operations applied in the process above areenabled byL1 patterns. The key observation
of the proof is thatAk is closed under all operations enabled byL1 patterns (Lemma4.5.5). This is the only place
in our proof where we use the distance restriction ofL1 patterns. The proof proceeds by induction on the process
described above. Initially,S0 is in Ak, by Lemma4.5.11. By inductive hypothesis,Sj ∈ Ak. BecauseSj+1 is
obtained fromSj by an operation that is enabled by anL1 pattern, we get thatSj+1 ∈ Ak, using Lemma4.5.5.

To show thatS′ |= ϕ, we observe that the graphs generated by the process above are related to each other by
different homomorphism relations (Definition4.5.6), as depicted in Fig.4.10.

First, each step of the process can be seen as a transformation tj from Sj−1 to Sj , which is defined by an
operation applied at stepj. That is,tj is either a merge operation or an edge-addition operation. It is easy to see
that both operations are homomorphisms. Therefore, eachtj is a homomorphism, for allj.

8The nodesh0(w1) andh0(w2) in S are distinct, because our construction of pre-modelS0 does not split nodes labeled by constants.

62 CHAPTER 4. LOGIC OFREACHABLE PATTERNS IN L INKED DATA -STRUCTURES

Figure 4.10: Construction and homomorphisms in the proof ofdecidability.

Second, we define a mappingfj from S0 to Sj as a compositiontj ◦ . . . ◦ t0; the mappingfj is a homomor-
phism, because it is a composition of homomorphisms. Initially, S0 |= ϕ♦, according to Lemma4.5.9. For allSj ,
from the existence of a homomorphismfj from S0 to Sj we get thatSj |= ϕ♦, by Lemma4.5.7. In particular,
S′ |= ϕ♦.

Third, we show that for allj, hj defined by the process above is a homomorphism. Initially,h0 : S0 → S is
a homomorphism, according to Lemma4.5.10. If tj is a merge operation ofw1 andw2, then the process applies
this operation only ifhj(w1) = hj(w2). From the inductive hypothesis thathj is a homomorphism, we get that
hj+1 is a homomorphism, by Lemma4.5.8.

For everyc[R]p ∈ ϕ�, if p does not contain positive occurrences of edge formulas or equality formulas, then
by Lemma4.5.7and the existence of a homomorphismhr fromS′ to S, S′ |= c[R]p, becauseS |= c[R]p.

For the sake of contradiction, assume that the process terminates, butS′ 6|= c[R]p, wherep(v0)
def
= N(v0, . . . , vn)⇒

ψ(v0, . . . , vn). That is, we can assign nodesw0, . . . , wn to v0, . . . , vn, respectively, such that there is anR-path
fromc tow0,N(w0, . . . , wn) holds butψ(w0, . . . , wn) does not hold. Consider the assignmenthr(w0), . . . , hr(wn)
in S. Because homomorphism preserves existences of paths and edges, there is anR-path fromc to hr(w0), and
N(hr(w0), . . . , hr(wn)) holds. BecauseS |= c[R]p, we know thatψ(w0, . . . , wn) holds. Therefore, there is an
atomic formulaθ that appears positively inψ and evaluates tofalse in S′ and totrue in S.

If θ is an equality formulav1 = v2, then the merge operation ofw1 andw2 in S′ is enabled (becauseθ is
false in S′), andh(w1) = h(w2) in S (becauseθ is true in S), contradiction to the assumption that the process
terminated. Similarly, ifθ is an edge formulav1 f→v2, then the edge-addition operation ofw1 andw2 in S′ is
enabled (becauseθ is false in S′), and there is anf -edge fromh(w1) to h(w2) in S (becauseθ is true in S),
contradiction to the assumption that the process terminated. Thus,S′ |= ϕ�.

4.6 TheL2 Fragment and its Decidability

In this section, we define another fragment ofL0, calledL2, and show its decidability.
The fragmentL2 extendsL1 (defined in Section4.3) by allowing constants to be freely used in patterns,

removing the last restriction of Definition4.3.1. For example, the property that a general graph is a tree in which
each node has a pointerb back to the root is expressible inL2, using the patterntrue ⇒ b(v0, root), but this
pattern is not inL1. It can be shown that the property cannot be expressed inL1.

In the rest of this section, we explain how to modify the proofof decidability ofL1, to prove the decidability
of L2. We start by explaining why the proof of Theorem4.4.14does not go through forL2. Recall that if a graph
is inAk, and an operation that is enabled by anL1 reachability constraint is applied, then the result is inAk, due
to the distance restrictions inL1 patterns (see Lemma4.5.5). In L2, this nice property no longer holds.

For example, consider theL2 constraint

let p(v0)
def
= (v0 f→v1)⇒ (v1 g

→c) in c[f→
∗
]p

Givenk, we construct a graphGk that consists of anf -path ofk + 3 disjoint nodes, but onlyk + 1 nodes on the
path have ag-edge back toc. Fig. 4.11showsG4. The graphGk is inAk, but violates the reachability constraint

4.6. THE L2 FRAGMENT AND ITS DECIDABILITY 63

Figure 4.11: The graphG4.

above. Thus, it has an edge-addition operation enabled for adding ag-edge between the first and the last nodes. It
is easy to see that after adding the edge, we get a graphG′

k that is not inAk.9

If the construction of Theorem4.4.14is applied to anL2 formula, it might generate a graph in which the
number of extra edges is proportional to the number of nodes,due to the use of constants in patterns, and not
bounded by the size of the formula. The good news is that the extra edges have one of the endpoints labeled with
a constant, except, possibly a small number of them. The proof of decidability ofL2 is based on the fact that each
extra edge has one of its endpoints labeled with a constant.

We define a graph operationrem that removes all edges to and from nodes labeled with constants. Formally,
the result ofrem(S) is a graphS′ with the same set of nodes asS, such that there is anf -edge fromv1 to v2 in
S′ if and only if there is anf -edge fromv1 to v2 in S and the nodesv1 andv2 are not labeled by any constants in
S. Aremk is the set of graphs on whichrem yields a graph inAk, i.e.,Aremk

def
= {S | rem(S) ∈ Ak}.

4.6.1 Arem
k -Model Property of L2

We define graph operations enabled byL2 formulas (similarly to Section4.5.3), and prove thatAremk is closed
under those operations (similarly to Lemma4.5.5).

Let p(v0)
def
= N(v0, . . . , vn) ⇒ ψ(v0, . . . , vn) be anL2 pattern. LetS be a graph,w1 be a node inS, and

c2 ∈ C.
We say thatedge-addition betweenw1 and c2 is enabled(by c[R]p) when (a)(v1 f→c2) (resp. (c2 f→v1))

appears positively inψ, (b) we can assign nodesw0, . . . , wn to v0, . . . , vn, respectively, such that there is an
R-path fromc to w0, N(w0, . . . , wn) holds, butψ(w0, . . . , wn) does not hold, and (c) there isno f -edge from
w1 to the node labeled withc2 in S (resp. tow1 from the node labeled withc2).

Lemma 4.6.1 Assume that a graph operation is enabled in a graphS by anL2 reachability constraint. IfS ∈
Aremk then the result of applying the operation is a graphS′ ∈ Aremk .
Proof: For graph operations that do not involve constants, the result follows directly from Lemma4.5.5.

Assume thatS ∈ Aremk . Suppose that an edge-addition operation between a nodew1 andc2 is enabled in a
graphS. The graphS′ is the result of adding the edge betweenw1 and the constantc. In this case,rem(S) and
remS′ is the same graph. Thus,S′ ∈ Aremk .

Remark. We can show thatAremk is closed under merge operations enabled by a pattern withv1 = c. However,
this situation never occurs in the construction used in Theorem 4.4.14, because we do not split nodes that are
labeled with constants, when we create a pre-model.

The following theorem shows thatL2 hasAremk -property, i.e., every satisfiableL2 formula has a model in
Aremk . The proof is similar to the proof of Theorem4.4.14, except the use of Lemma4.6.1to show that the result
S′ ∈ Aremk .

Theorem 4.6.2 (Aremk -Model Property) If ϕ ∈ L2 is satisfiable, then there exists a graphS such thatS |= ϕ
andS ∈ Aremk , wherek = f(ϕ) andf is defined in (4.4).

4.6.2 MSO is decidable onArem
k

In this section, we show a reduction from the satisfiability problem of MSO logic onAremk to the satisfiability of
MSO onAk, which is decidable by Theorem4.4.8. This reduction completes the proof of decidability ofL2.

9The tree width ofG(Gk) is k and the tree width ofG(G′

k
) is k + 1.

64 CHAPTER 4. LOGIC OFREACHABLE PATTERNS IN L INKED DATA -STRUCTURES

Lemma 4.6.3 There is a translationTR5 between MSO-formulas such that for every MSO-formulaϕ, there exists
a graphS ∈ Aremk such thatS |= ϕ if and only if there exists a graphS′ ∈ Ak such thatS′ |= TR5(ϕ).

Given the vocabularyτ = 〈C,U, F 〉 and a numberk we define a new vocabularyτ ′ = 〈C,U ′, F 〉, where
U ′ = U ∪ {F cf , B

c
f |f ∈ F, c ∈ C}.

For an MSO formulaϕ overτ , TR5(ϕ) is an MSO formula over the vocabularyτ ′. The translationTR5 is
defined inductively onϕ, as usual. For a binary relation formulaf ∈ F , we define:

TR5(f(v1, v2)) = (E(v1, v2) ∧ Ff (v2)) ∨ (E(v2, v1) ∧Bf (v1))∨
c∈C∪{d1,...,dk} (c = v1 ∧ F cf (v2)) ∨ (c = v2 ∧Bcf (v1))

Intuitively, a tree nodev is labeled withF cf if and only if there is anf -edge fromv to the node labeled byc in
the corresponding Ayah graph. A tree nodev is labeled withBcf if and only if there is anf -edge tov from the
node labeled byc in the corresponding Ayah graph. This allows us to encode both the direction and the label of
the extra edges.
Remark. We have chosen a simple encoding that is not parsimonious inthe number of additional unary relations.
For example, if an edge has two constants on its adjacent nodes, it can be encoded in more than one way. This
ambiguity can be resolved using ordering between constants, but we ignore it here, to simplify the presentation.

Theorem 4.6.4 The satisfiability problem of MSO formulas is decidable onAremk .
Proof: Follows from Lemma4.6.3and Theorem4.4.8.

Theorem 4.6.5 The satisfiability problem ofL2 is decidable.
Proof: Follows from combining Theorem4.4.12, Theorem4.6.2, Lemma4.4.2, and Theorem4.6.4.

4.7 Complexity

In this section, we start with a short discussion of the practical issues related to checking satisfiability ofL1

formulas. Then, we provide proofs of upper and lower bounds on the worst-case complexity of satisfiability
problem forL1.

In Section4.4, we proved decidability by reduction to MSO on trees, which allows us to check satisfiability
of L1 formulas using MONA decision procedure [HJJ+95]. Alternatively, we can directly construct a tree au-
tomaton from anL1 formula, and can then check emptiness of the automaton, which yields a double-exponential
procedure(Section4.7.2).

However, a naı̈ve translation ofL1 formulas to automata does not yield a practical decision procedure. First,
the size of the automaton is exponential in the input vocabulary, regardless of the complexity of the input formula.
Second, a naı̈ve translation producestwo-way alternatingtree automata. To the best of our knowledge, there are
no tools that can check emptiness of such automata. A translation from two-way alternating tree automata to tree
automata that can be handled by existing tools, such as MONA [HJJ+95], Timbuk [GT01], or H1 [NNS02], is at
least exponential.

We are investigating tableaux-based techniques to implement a decision procedure for validity, satisfiability,
and model generation forL1. A tableaux-based decision procedure can be adaptive to specific formulas, and the
formulas that come up in practice are quite simple.

The lower bound on the complexity of the satisfiability problem ofL1 is NEXPTIME (Section4.7.1), but it
remains elementary (in contrast to MSO on trees, which is non-elementary [Mey75]). The complexity depends
on the boundk of Ak models, according to Theorem4.4.14. Finding tighter upper and lower bounds forL1 is an
open problem.

Bounded-Model Property ofL1 We can show thatL1 has a bounded model property: every satisfiableL1

formula has a model whose size is a (elementary) function of the size of the formula. The translation ofL1

formulas to automata and the finite-model property (Theorem4.1.6) yield a double-exponential bound on the
size of a model. We believe that it can be improved. Bounded-model property is important for example for
guaranteeing termination of tableaux-based decision procedures.

Bounded Branching ofL1 Lemma4.5.11implies that an upper bound on the branching of a node in aΣ-
labeled tree isr = 2 × n × ϕ♦ × |C|. If a node is not labeled with a constant, we can improve the bound to be
2 × n × ϕ♦. The branching does not increase as a result of merging and edge additions enabled byL1 patterns.

4.7. COMPLEXITY 65

Thus, for checking satisfiability ofL1 it is sufficient to consider onlyΣ-labeled trees with a branching bounded
by r.

The Use of Constants in Routing ExpressionsIf the routing expressions do not contain positive occurrences
of constant symbols, then the boundk for L1 does not depend on the routing expressions:

Theorem 4.7.1 Assume thatϕ ∈ L1 is satisfiable, and that the routing expressions that appearin ϕ do not
contain positive occurrences of constant symbols. Then, there exists a graphS ∈ Ak wherek = |ϕ♦|, and
S |= ϕ.
Sketch of Proof:To prove this, we modify the proof of Theorem4.4.14. The main observation is that we cannot
force a path to visit a node labeled with a constant, except atthe endpoints of a path. (a) when creating a pre-
model, duplicate nodes with constants, (b) witness splitting results in a pre-model with at most|ϕ♦| extra edges,
(c) use homomorphism which only preserves existence of constants, not their absence, and (d) merge operation
enabled byL1 preserve homomorphism, because they do not require merginga node with a constant, because a
pattern may not contain a positive occurrence of equality between a variable and a constant (unlikeL2).

Constant symbols can be eliminated from routing expressions, but the complexity of this operation is prohibitive.
TheL1 formulas that come up in practice are well-structured, and we hope to achieve a reasonable performance.

4.7.1 Lower Bound:L1 is NEXPTIME-hard

In this section, we show that the worst-case complexity of checking satisfiability ofL1 formulas is at least NEX-
PTIME. The proof is by reduction from a tiling problem. This proof is an adapted version of the NEXPTIME-
hardness proof from [IRR+04a, Theorem 5]. In [IRR+04a, Theorem 5], universal quantification over nodes is
used in the proof. Since this feature is not available inL0, we use here reachability constraints and patterns.

Let T be a tiling problem as in Definition4.2.1, and letn be a natural number. It is an NEXPTIME-complete
problem to test on input(T , 1n) whether there is aT -tiling of a square grid of size2n by 2n [Pap94].

Theorem 4.7.2 The satisfiability ofL1 formulas is NEXPTIME-hard.

Proof: LetT be a tiling problem as in Definition4.2.1, and letn be a natural number. We define a formulaϕn that
exactly expresses a solution to the tiling problem. Whenϕn is satisfiable, it has a minimal model of size2Ω(n).

We use two constants:s, denoting the top left node of the grid, andt, denoting the bottom right node of the
grid. The desired model will consist of22n tiles:

s = [1, 1, t0] · · · [1, 2n, t]
[2, 1, t′] · · · [2, 2n, t′′]

...
...

[2n, 1, t′′′] · · · [2n, 2n, tk] = t

The binary relationn holds between each pair of consecutive tiles, including, for example,[1, 2n, t] and
[2, 1, t′]. We include the following unary relation symbols:H1, . . . Hn, indicating the horizontal position as an
n-bit number;V1, . . . Vn, indicating the vertical position; andT0, . . . Tk, indicating the tile type.

The formulaϕn is the conjunction of the following assertions.
There is a path froms to t:

s〈 n→
∗〉t (4.6)

All E edges reachable froms are deterministic and unshared:

s[n→
∗]detn ∧ unsn (4.7)

The node labeled withs is the first tile, has tile typet0, and the node labeled witht is the last tile and has tile
typetk:

T0(s) ∧
n∧

i=1

(¬Hi(s) ∧ ¬Vi(s)) ∧ Tk(t) ∧
n∧

i=1

(Hi(t) ∧ Vi(t)) (4.8)

66 CHAPTER 4. LOGIC OFREACHABLE PATTERNS IN L INKED DATA -STRUCTURES

We have chosen for simplicity to encode the tile types in unary so we need to say that tile types are mutually
exclusive and every node has a tile:

s[n→
∗]




∧

0≤i<j≤k

¬(Ti ∧ Tj)



 ∧




∨

0≤i≤k

Ti



 (4.9)

The arrangement of tiles honorsT ’s horizontal and vertical adjacency requirements:

let p(v) def
= Nexth(v, v′)⇒ Hor(v, v′) in s[n→

∗]p (4.10)

let p(v) def
= Nextv(v, v

′)⇒ Vert(v, v′) in s[n→
∗]p (4.11)

The abbreviation Nextv,Nexth,Vert,Horz, and Next denote formulas which contain only unary relation sym-
bols and variables, and no equality. We rely on the fact that aneighborhood of a pattern need not be connected.

The abbreviation Nexth(x, y) means thatx andy have the same vertical position andy’s horizontal position
is one more than that ofx. Nextv(x, y) means thatx andy have the same horizontal position andy’s vertical
position is one more than that ofx.

Nexth(x, y) ≡ (
∧n
i=1 Vi(x)↔ Vi(y)) ∧ PlusOneh(x, y)

Nextv(x, y) ≡ (
∧n
i=1Hi(x)↔ Hi(y)) ∧ PlusOnev(x, y)

The abbreviations PlusOneh(x, y) and PlusOnev(x, y) are nearly identical. Thus, we restrict our attention to
PlusOneh(x, y), which means that the horizontal position ofy is one greater than the horizontal position ofx.
(Our convention is that the bit positions are numbered 1 ton, with 1 being the high-order bit, andn the low-order
bit.) PlusOneh(x, y) can be written as follows:

PlusOneh(x, y) ≡
∨n
i=1[

∧
j>i(Hj(x) ∧ ¬Hj(y)) ∧ (¬Hi(x) ∧Hi(y))

∧
∧
j<i(Hj(x)↔ Hj(y))]

The length of the formula PlusOneh(x, y) isO(n2).
The abbreviation Hor(x, y) (resp. Vert(x, y)) is a disjunction over the tile types asserting that the tiles in

positionsx andy are horizontally (resp. vertically), compatible. For example,

Hor(x, y) ≡
∨

R(ti,tj)

(Ti(x) ∧ Tj(y)) (4.12)

The abbreviation Next(x, y) means Nexth(x, y) or x has horizontal position2n, y has horizontal position 1,
andy’s vertical position is one more than that ofx:

Next(x, y) ≡ Nexth(x, y)
∨

(
(
∧n
i=1Hi(x)) ∧ (

∧n−1
i=1 ¬Hi(y)) ∧Hn(y) ∧ PlusOnev(x, y)

)

Finally, if there is an edge fromx to y, then thereNext(x, y) holds:

let p(v) def
=

(
v n→v

′ ⇒ Next(v, v′)
)

in s[n→
∗]p (4.13)

Remark. The length of the formulaϕn described above isO(n2). The only difficulty in keepingϕn to total size
O(n) is in writing the formulas PlusOneh(x, y) and PlusOnev(x, y). We can decrease the size by keeping track
of the positioni using2n addition unary relation symbols, similarly to the proof of [IRR+04a, Lemma 14].

4.7. COMPLEXITY 67

4.7.2 Upper Bound:L1 is in 2EXPTIME

In this section, we show that the worst case complexity of checking satisfiability ofL1 formulas is at most
double-exponential in the size of the formula. The proof is by reduction to non-emptiness of tree automata. The
technique used in this proof is based on ideas for proving an upper bound on the satisfiability problem of two-way
µ-calculus [Var98].

A Σ-labeled tree is a pair〈T, V 〉 whereT is a tree (i.e., a connected directed acyclic graph), andV is a
mapping that assigns for each node ofT a label inΣ.

Definition 4.7.3 (TATA) Two-way alternating tree automaton (TATA) on finiteΣ-labeled trees with branching
bounded byr is A = 〈Σ, Q, δ, q0〉 whereΣ is the input alphabet,Q is a finite set of states,q0 ∈ Q is an initial
state, andδ : Q× Σ → B+({−1, 0, . . . r} ×Q) is the transition function. Here,B+(X) is the set of all positive
propositional formulas over the propositional variables in the setX .

A run ofA on a labeled tree〈T, V 〉 is a labeled tree〈Tρ, ρ〉 in which every node is labeled by an element of
T ×Q. Intuitively, a node labeled by(x, q) describes a copy of the automaton that is in stateq and reads the node
x of T . Formally,〈Tρ, ρ〉 satisfies:

• If y is the root ofTρ thenρ(y) = (x, q0) wherex is the root ofT .

• For everyy ∈ Tρ, if ρ(y) = (x, q), and δ(q, V (x)) = θ, then there is a (possibly empty) setS =
{(c1, q1), . . . , (cn, qn)} ⊆ {−1, 0, . . . r} × Q, such thatS |= θ, and for all i = 1, . . . , n, the nodey · i is
thei-th successor of the nodey in Tρ, andρ(y · i) = (x · ci, qi), Here,x · ci denote theci-th successor ofx
in T (wheni > 0), the nodex itself (whenci = 0), or the predecessor ofx (whenci = −1 andx is not the
root ofT).

An automaton accepts a treet if there exists a (finite) run ont. We denote byL(A) the set of allΣ-labeled trees
thatA accepts.

We start by showing an upper bound for checking satisfiability of normal-form formulas (Section4.4.3).

Lemma 4.7.4 For every formulaϕ ∈ CL1, there exists a TATAAϕ, such thatL(Aϕ) = ∅ if and only ifϕ is
unsatisfiable.
Sketch of Proof:Givenϕ ∈ CL1 over the vocabularyτ = 〈C,U, F 〉, we construct a TATAAϕ overΣ-labeled
trees, defined in Section4.4.2. Recall from Section4.4.2thatΣ = P(C′ ∪ U ′) whereC′ = C ∪ {c1, . . . , ck} ∪

{d1, . . . , dk}, U ′ = {Ff , Bf , Lf , F d
i

f , B
di

f |f ∈ F, i = 1, . . . , k}), andk is the bound computed fromϕ us-
ing (4.4).

The automatonAϕ is defined as the intersection of two automata described below. The first automatonA1

checks that the labeling of the input tree is legal: everyc ∈ C′ appears exactly once in the tree, and that the root
of the tree is not labeled byFf , Bf , for anyf ∈ F . The second automatonA2 checks thatϕ is satisfied by the
input tree.

We defineA1 = 〈Σ, Q1, δ1, q0〉 whereQ1 = {q0} ∪ {qc, q¬c | c ∈ C′}. In the initial stateq0, the automaton
first checks that the root of the input tree is not labeled by any of Ff ,Bf , then it threads into checking each of the
constants inC′. Intuitively, when the automaton is in stateqc on nodex of the input tree, the subtree rooted atx
must contain exactly one node labeled withc. When the automaton is in stateq¬c on nodex, the subtree rooted at
x must not contain any node labeled withc. The transition functionδ is defined as follows:

δ1(q0, σ) =
∧
c∈C′(0, qc) if σ ∩ {Ff , Bf | f ∈ F} = ∅

δ1(qc, σ) =
∨
i=1,...,r(i, qc) ∧

∧
j=1,...,r,j 6=i(j, q¬c) if c /∈ σ

δ1(qc, σ) =
∧
j=1,...,r(j, q¬c) if c ∈ σ

δ1(q¬c, σ) =
∧
j=1,...,r(j, q¬c) if c /∈ σ

Before definingA2, we need to introduce some notations. Forϕ ∈ CL1, cl(ϕ) denotes the set of all sub-
formulas of the formc〈R〉c′ andc[R]p that appear inϕ. For a formulaψ ∈ cl(ϕ), letR(ψ) denote the routing
expression that appears inψ. We usePatterns(ϕ) to denote the set of patterns that occur inϕ.

Routing expressions that appear inL0 formulas overτ accept finite words over the input vocabularyτR =
{a,¬a | a ∈ C ∪ U} ∪ { f→,

f
←|f ∈ F}. For every routing expressionR, there is a nondeterministic finite

68 CHAPTER 4. LOGIC OFREACHABLE PATTERNS IN L INKED DATA -STRUCTURES

automaton on finite words that accepts the same language. Fora routing expressionR, an automatonAR is a
tuple〈τR, QR, qR0 , δ

R, QRf 〉, whereQR is a finite set of states,qR0 ∈ Q
R is the initial state,QRf ⊆ Q is the set of

final states, andδR : Q × τR × Q is the transition relation. The construction is analogous to the construction of
an automaton for regular expressions. The size of the automata is linear inR.

First, we defineA2 for the case thatk = 0. The idea is that we can “program” the automatonA2 to search for
a path in the input tree that satisfies a certain routing expression, using the automaton for that routing expression.

Formally,A2 = 〈Σ, Q, δ, q0〉, where

Q
def
= {q0} ∪ cl(ϕ) ∪ Patterns(ϕ) ∪ {Bf , Ff ,¬Ff ,¬Bf | f ∈ F}
∪ {(ψ, q)|ψ ∈ cl(ϕ), q ∈ Q(AR(ψ))}

The transition functionδ is defined as follows.

δ(q0, σ) =
∧
ψ∈cl(ϕ)(0, ψ)

δ(x〈R〉y, σ) =
∨
j=1,...,r(j, x〈R〉y) if x /∈ σ

δ(x〈R〉y, σ) = (0, (x〈R〉y, qR0)) if x ∈ σ
δ(x[R]p, σ) =

∨
j=1,...,r(j, x[R]p) if x /∈ σ

δ(x[R]p, σ) = (0, (x[R]y, qR0)) if x ∈ σ

For f ∈ F , δ(Ff , σ) = true if Ff ∈ σ andδ(¬Ff , σ) = true if Ff /∈ σ. Similarly, forBf . For every
patternp that occurs inϕ, we can defineδ(p, σ) by enumerating all possible neighborhoods of the node. Thisis
exponential in the size of patternp, but the patterns are usually quite small.

If y ∈ σ andq ∈ QRf , δ((x〈R〉y, q), σ) = true, otherwise

δ((x〈R〉y, q), σ) =

∨
a ∈ σ
a ∈ C ∪ U

δR(q, a) = q′

(0, (x〈R〉y, q′)) ∨
∨

a /∈ σ
a ∈ C ∪ U

δR(q,¬a) = q′

(0, (x〈R〉y, q′))

∨
∨
f∈F

∨
δR(q, f→)=q′

(0, Bf) ∧ (−1, (x〈R〉y, q′)) ∨
∨
j=1,...,r(j, Ff) ∧ (j, (x〈R〉y, q′))

∨
∨
f∈F

∨
δR(q, f←)=q′

(0, Ff) ∧ (−1, (x〈R〉y, q′)) ∨
∨
j=1,...,r(j, Bf) ∧ (j, (x〈R〉y, q′))

If q ∈ QRf , thenδ((x[R]p, q), σ) = (0, p) ∧∆, otherwiseδ((x[R]p, q), σ) = ∆, where

∆ =
∧

a ∈ σ
a ∈ C ∪ U

δR(q, a) = q′

(0, (x[R]p, q′)) ∧
∧

a /∈ σ
a ∈ C ∪ U

δR(q,¬a) = q′

(0, (x[R]p, q′))

∧
∧
f∈F,δR(q, f→)=q′

(0,¬Bf) ∨ (−1, (x[R]p, q′)) ∧
∧
j=1,...,r(j,¬Ff) ∨ (j, (x[R]p, q′))

∧
∧
f∈F,δR(q, f←)=q′

(0,¬Ff) ∨ (−1, (x[R]p, q′)) ∧
∧
j=1,...,r(j,¬Bf) ∨ (j, (x[R]p, q′))

We can extend the above definition for the case ofk > 0. Intuitively, if a node is marked withci andF di

f ,
and we want to traverse anf -edge emanating from that node, the target of such an edge canbe a child or a parent
of the current node (covered by the definition ofδ above), or a node marked withdi. To handle the latter case,
the automatonA2 transitions into a special state, in which it searches for the node marked withdi in the tree.
When the node marked withdi is reached, the automatonA2 continues with its previous task. Towards this end,
we extend the above definition ofA2 with the states{(di, (ψ, q)) | i = 1, . . . , k, ψ ∈ cl(ϕ), q ∈ Q(AR(ψ))}. A
state(di, (ψ, q)) records the task that should be performed when the nodedi is found. Formally, the traversal is
performed by the following transitions:

δ((di, (ψ, q)), σ) = (0, (ψ, q)) if di ∈ σ
δ((di, (ψ, q)), σ) = (−1, (di, (ψ, q))) ∨

∨
j=1,...,r(j, (d

i, (ψ, q))) otherwise

Also, δ-transitions of the formδ((ψ, q), σ) are extended to include(0, (di, (ψ, q′))) as one of the options, when
δR(q, f→) = q′ andF di

f ∈ σ. Similarly, we can handle backwards traversals of edges.

4.8. LIMITATIONS AND FURTHER EXTENSIONS 69

Lemma 4.7.5 For a fixedτ , and a formulaϕ ∈ CL1, letAϕ be defined as in Lemma4.7.4. The size ofAϕ is
exponential in the size ofϕ.

There is a translation fromΣ-labeled trees to infinite trees which preserves satisfiability. The emptiness of TATA
on infinite trees is DEXPTIME-complete [Var98]. The algorithm for checking emptiness (i) translates fromtwo-
way alternating automaton to one-way nondeterministic automaton, which may result in an exponential blowup,
and (ii) checks the emptiness of a one-way nondeterministicautomaton, which is polynomial in the size of the
automaton.

Proposition 4.7.6 The emptiness problem of TATA onΣ-labeled trees is DEXPTIME-complete.

This yields a double-exponential upper bound on the complexity of checking satisfiability of normal-form
formulas, as stated below.

Theorem 4.7.7 The satisfiability problem of CL1 is in deterministic 2EXPTIME.

It follows that the upper bound on the (asymptotic) complexity of the satisfiability problem forL1 is also
double-exponential, as shown below.

Theorem 4.7.8 The satisfiability problem ofL1 is in deterministic 2EXPTIME.
Proof: Given a formulaϕ ∈ L1, we use the translation to normal-form, described in Section 4.4.3, to get an
equi-satisfiable formulaϕ1 ∨ . . . ∨ ϕm, where for everyi = 1, . . . ,m, the formulaϕi is in CL1, the size ofϕi is
at most polynomial in the size ofϕ, andm is at most exponential in the size ofϕ. We can check satisfiability of
ϕ by checking satisfiability of everyϕi separately.

Let |ϕ| denote the size of the formulaϕ. For everyi = 1, . . . ,m, checking satisfiability ofϕi is O(22|ϕ|

),

according to Theorem4.7.7. Therefore, checking satisfiability ofϕ is 2|ϕ| × O(22|ϕ|

), which is alsoO(22|ϕ|

).
That is, the complexity of checking satisfiability ofL1 formulas is in deterministic 2EXPTIME.

4.8 Limitations and Further Extensions

Despite the fact thatL2 is useful, there are interesting program properties that cannot be expressed directly. For
example, transitivity of a binary relation, that can be used, e.g., to express partial orders, is naturally expressible
in L0, but not inL2. There are of course interesting properties that are beyondL0, such as the property that a
general graph is a tree in which every leaf has a pointer to theroot of a tree.

In the future, we plan to generalizeL2 while maintaining decidability, perhaps beyondL0 (i.e., to capture
properties that are not expressible inL0). We are encouraged by the fact that the proof of decidability in Sec-
tion 4.4 holds “as is” for many useful extensions. For example, more complex patterns can be used, as long as
they do not violate theAk-model property.

4.8.1 The LogicL3

In the L0 logic, reachability constraints describe paths that startfrom nodes labeled by some constant. The
requirement that a path start with a constant is not necessary for decidability. We defineL3 that generalizesL0

with paths that start from any node that satisfies a quantifier-freepositiveformulaθ:

θ[R]p
def
= ∀w0, . . . , wm, v0, . . . , vn.R(w0, v0) ∧ θ(w0, . . . , wm)⇒ p(v0, . . . , vn)

A simple and very useful fragment ofL3 isL4 in whichθ is fixed to betrue. We use[R]p to denotetrue[R]p.
For example, we can specify that allf -edges in the graph are deterministic, and not only those reachable from
some constant:[ǫ]detf .

The fragmentL3 provides several ways to express the same property; this flexibility can be useful when
writing specifications manually. For example, the formula(x ∨ y)[R]p in L3 is equivalent tox[R]p∨y[R]p in L1,
and to[x+ y.R]p in L4. The formula(x ∧ y)[R]p in L3 is equivalent to(x = y)⇒ x[R]p in L1 and to[x.y.R]p
in L4.

We can translate everyL0 formula toL4 using constants in routing expressions:x[R]p ∈ L0 is translated into
[x.R]p. We can show thatL3 has a finite model property. The logicLRP that results fromL3 by restricting it to
L2 patterns is decidable.

70 CHAPTER 4. LOGIC OFREACHABLE PATTERNS IN L INKED DATA -STRUCTURES

4.8.2 The LogicUL1

We can extendL1 with (a possibly restricted use of) quantifiers, going beyond the proposition logicL0. This
extension provides a more general way to write specifications.

We extendL1 with universal quantification over constants, as follows. For a vocabularyτ , a formula inUL1

over τ is a positive boolean combination of formulas of the form∀c1, . . . , cn.ϕ′, whereϕ′ is in L1 over the
vocabularyτ ′ = τ ∪ {c1, . . . , cn}). The semantics of the universal quantifiers is defined as usual. The problem
of validity of UL1-formulas is decidable by reduction to validity inL1.

Lemma 4.8.1 Letϕ ∈ UL1 be of the form∀c1, . . . , cn.ϕ′. The formulaϕ is valid if and only ifϕ′ is valid.

Note thatUL1 is not closed under negation (whereasL1 is closed under negation).
It is possible to add quantification over sets and relations,while preserving decidability, as long as there are

no quantifier alternations. Quantification of binary relations can be useful for writing modular specifications, and
analysis that does not violate abstraction layers. For example, if a procedure’s formal parameterx is a pointer
to an abstract data-type, we can specify that the field of objects that implement the abstract data-type are not
modified by the procedure, without exposing the implementation: ∀Σ.∀f, f ′.x[Σ

→
∗]samef,f ′ .

4.9 Related Work

There are several works on logic-based frameworks for reasoning about graph/heap structures. We mention here
the ones which are, as far as we know, the closest to ours.

The logicL0 can be seen as a fragment of the first-order logic over graph structures with transitive closure
(TC logic [Imm87]). It is well known that TC is undecidable, and that this factholds even when transitive
closure is added to simple fragments of FO such as the decidable fragmentL2 of formulas with two variables
[Mor75, GKV97, GME99].

It can be seen that our logicsL0 andL1 are both uncomparable withL2 + TC. Indeed, inL0 no alternation
between universal and existential quantification is allowed. On the other hand,L1 allows us to express patterns
(e.g., heap sharing) that require more than two variables (see Fig.4.2, Section4.3).

In [BRS99], decidable logicLr (which can also be seen as a fragment of TC) is introduced. ThelogicsL0

andL1 generalizeLr, which is in fact the fragment of these logics where only two fixed patterns are allowed:
equality to a program variable and heap sharing.

In [IRR+04a, BPZ05, LQ06, BCO04] other decidable logics are defined, but their expressive power is rather
limited w.r.t. L1 since they allow at most one binary relation symbol (modelling linked data-structures with 1-
selector). For instance, the logic of [IRR+04a] does not allow us to express the reversal of a list. Concerning
the class of 1-selector linked data-structures, [BI05] provides a decision procedure for a logic with reachability
constraints and arithmetical constraints on lengths of segments in the structure. It is not clear how the proposed
techniques can be generalized to larger classes of graphs. Other decidable logics [BIL04, KR04] are restricted in
the sharing patterns and the reachability they can describe.

Other works in the literature consider extensions of the first-order logic with fixed point operators. Such an
extension is again undecidable in general but the introduction of the notion of (loosely) guarded quantification
allows one to obtain decidable fragments such asµGF (or µLGF) (Guarded Fragment with least and greater
fixed point operators) [GW99, Grä02]. Similarly to our logics, the logicµGF (and alsoµLGF) has the tree
model property: every satisfiable formula has a model of bounded tree width. However, guarded fixed point
logics are incomparable withL0 andL1. For instance, theL1 patterndetf that requires determinism off -field,
is not a (loosely) guarded formula.

The PALE system [MS01] uses an extension of the weak monadic second order logic on trees as a specification
language. The considered linked data-structures are thosethat can be defined asgraph types[KS93]. Basically,
they are graphs that can be defined as trees augmented by a set of edges defined using routing expressions (regular
expressions) defining paths in the (undirected structure ofthe) tree.L1 allows us to reason naturally about arbitrary
graphs without limitation to tree-like structures. By restricting the syntax, we guarantee that satisfiability queries
posed over arbitrary graphs can be answered precisely by considering only tree-like graphs. This approach allows
us to automate the reasoning about limited but interesting properties ofarbitrary graphs.

4.9. RELATED WORK 71

Moreover, as we show in Section4.3, our logical framework allows us to express postconditionsand loop
invariants that relate the input and the output state. For instance, even in the case of singly-linked lists, our frame-
work allows us to express properties that cannot be expressed in the PALE framework: in the list reversal example
of Section4.3, we show that the output list is precisely the reversed inputlist, by expressing the relationships
between fields before and after the procedure, whereas in thePALE approach, a postcondition can only express
that the output is a list that is a permutation of the input list. In particular, a postcondition that relates fields before
and after the procedure involves two binary relations with arbitrary interpretation. This can be easily done inL0

which supports an arbitrary number of binary relations. This is not supported by PALE, which allows two binary
relations with a specific interpretation as tree edges. In the PALE approach, a postcondition can only express that
the output is a list that is a permutation of the input list.

In [IRR+04b], we tried to employ a decision procedure for MSO on trees to reason about reachability. How-
ever, this places a heavy burden on the specifier to prove thatthe data-structures in the program can be simulated
using trees. Our work aims at eliminating this burden by defining syntactic restrictions on the formulas and
showing a general reduction theorem.

Other approaches in the literature use undecidable formalisms such as [HHN92], which provides a natural and
expressive language, but does not allow for automatic property checking.

Separation logic has been introduced recently as a formalism for reasoning about heap structures [Rey02]. The
general logic is undecidable [CYO01] but there are few works showing decidable fragments [CYO01, BCO04].
One of the fragments is propositional separation logic where quantification is forbidden [CYO01, CGH05] and
therefore seems to be incomparable with our logic. The fragment defined in [BCO04] allows one to reason only
about singly-linked lists with explicit sharing. In fact, the fragment considered in [BCO04] can be translated to
L1, and therefore, entailment problems as stated in [BCO04] can be reduced to validity of implications inL1.

The logicL0 integrates features of such prominent formalisms as the modal logics, the classical first-order
logic, and the regular expressions. The hybrid logics [ABM01] also combine features of modal and classical log-
ics. The most relevant is the hybridµ-calculus [SV01] which extends theµ-calculus with the following features:
(i) nominals, that correspond to constants inL1, (ii) universal program, that corresponds to the fragmentL4, and
(iii) the ability to reasoning about the past, that corresponds to the use of backward edges in routing expressions.
The hybridµ-calculus is incomparable in its expressive power toL1: on one hand, it supports a more general
reachability via the least and greatest fixed point operators; on the other hand, the equality is restricted to nomi-
nals. For example, it cannot express that a graph is a tree. Unlike L0, the hybridµ-calculus does not have a finite
model property. Every satisfiable formula in hybridµ-calculus has a tree-like model. The complexity of hybrid
µ-calculus is EXPTIME-complete, but currently, there is no practical decision procedure available. Reportedly, a
tableaux-based decision procedure for the alternation-free fragment of hybridµ-calculus is being developed.
L0 shares some common features with description logics [ea03], which is traditionally used for knowledge

representation, databases, semantic web, with the notableexception of [GM05], which shows the description log-
ics can be used for reasoning about data-structures. The basic notions of Description Logics are concepts, that
correspond to unary relations inL0, and roles, that correspond to binary relations inL1. In addition, expressive
Description Logics support (iii) nominals, that correspond to constants inL0; quantified role restrictions, that can
encode determinism; and inverse roles, that correspond to backward edges in routing expressions. The combina-
tion of quantified role restrictions and inverse roles provides a way to express sharing. The need for transitivity
and fixed points arises in many contexts [CGL99], including, service description logics [Bon02]. It has been
shown that a description logic which combines with nominals, inverse roles, determinism, and least fixed points is
undecidable [BP04]. In light of the negative results, it is interesting to investigate the usefulness ofL1 for speci-
fying web services. There are a variety of efficient reasoning tools for description logics, both tableaux-based and
resolution-based, which provide some support for expressive features, such as nominals and inverse roles, e.g.,
FaCT, Racer. To the best of our knowledge, none of the existing tools supports transitive closure of roles or fixed
points.

Chapter 5

Conclusions and Future Work

This thesis explores several ways in which program analysisand verification can benefit from employing theorem
provers. While these algorithms are applicable to a wide range of analysis problems, the main focus of this thesis
is analysis of programs that manipulate linked data-structures.

In Chapter2, we presented a novel algorithm that computes abstract representation of reachable program
states using a novel combination of concrete execution, abstraction, and an automatic theorem prover. Our method
complements existing techniques that combine dynamic and static analysis in that it is oriented towards finding a
proof rather than finding errors. We leverage existing test suites and fabricated states to speed up the analysis and
to reduce the cost of a theorem prover.

This work suggests several interesting directions of research, including the use of fabricated states to (i) gen-
erate useful test inputs, (ii) classify potential errors into false alarms and real errors, and (iii) guide abstraction
refinement.

In Chapter3, we presented an algorithm that is specialized for canonical abstraction, and thus, for reason-
ing about linked data-structures. This algorithm solves several open problems in shape analysis, including the
problems of (i) computing the most-precise abstraction of the set of states that are represented bya and satisfy a
preconditionϕ, and (ii) implementing best abstract transformers.

An important issue is the definition of an appropriatespecification languagethat is both expressive enough
to describe invariants of linked data-structures and amenable to automated reasoning. These invariants often
involve reachability between objects in memory and sharing, i.e., aliasing of pointers and object fields deep in
the data-structures. Automated reasoning about the combination of these properties is usually undecidable and
unpredictable, withLRPbeing one of the rare exceptions.

The decidability result forLRP, presented in Chapter4, improves the state-of-the-art significantly. In con-
trast to [IRR+04a, BPZ05, LQ06, BCO04], LRP allows several binary relations. This provides a natural way
to (i) specify invariants for data-structures with multiple fields (e.g., trees, doubly-linked lists), (ii) specify post-
conditions for procedures that mutate pointer fields of data-structures, by expressing the relationships between
fields before and after the procedure (e.g., list reversal, which is beyond the scope of PALE [MS01]), (iii) express
verification conditions using a copy of the vocabulary for each program location. Operating on general graphs
allows us to verify that the data-structure invariant is reestablished after a sequence of low-level mutations that
temporarily violate the data-structure invariant.

Defining decidable fragments of first-order logic with transitive closure over arbitrary graphs is a difficult task
(e.g., [IRR+04a]). In Chapter4, we demonstrated that this is possible by combining the following principles:
• Allow arbitrary boolean combinations of the reachability constraints, which are closed formulas without

quantifier alternations.
• Define reachability using regular expressions denoting pointer access paths (not) reaching a certain pattern.
• Syntactically limit the way patterns are formed. Extensions of the patterns that allow larger distances

between nodes in the pattern either break our proof of decidability or are directly undecidable.
Interestingly, reachability and sharing are important properties in an entirely different context, namely the

semantic web. For example, both reachability and sharing properties canappear in a description of the functional
behavior of e-Services. These properties fall within some very expressive description logics, which are undecid-
able [BP04]. To the best of our knowledge, there is no decidable description logic which covers both of these

72

73

properties, and these properties cannot be handled by existing tools for description logics. It suggests that a deci-
sion procedure forLRP [YRS+06] can be useful in the context of the semantic web. We plan to investigate this
relationship further.

Perhaps the most exciting future application of the resultsdescribed in this thesis is modular analysis. The idea
of modular analysis is to exploit the modularity of softwaresystems. Complex software systems are necessarily
composed of numerous modules, reusable components, and layers of abstraction. When the module boundaries
and interactions between modules are specified by the user (software designer or program developer), each module
can be analyzed in isolation using a precise analysis.

In this setting, a user writes specifications that are later used by an automatic program analysis tool to reason
about the program. The problem is that user-provided specifications reason about properties ofconcreteprogram
states directly, whereas program analysis operates onabstractrepresentation of sets of concrete program states.
In other words, there is a gap between specifications writtenby humans and specifications consumed by program
analysis tools: they reason at different levels of abstraction.

This thesis provides a way to bridge the gap by
(a) assisting program analysis tools in reasoning about human-provided specifications, and
(b) developing specification languages that are natural forwriting specification, and can be incorporated in

automatic program analyses.

Bibliography

[ABM01] C. Areces, P. Blackburn, and M. Marx. Hybrid logics:characterization, interpolation and complex-
ity. The Journal of Symbolic Logic, 66(3):977–1010, 2001.

[ALS91] S. Arnborg, J. Lagergren, and D. Seese. Easy problems for tree-decomposable graphs.J. Algo-
rithms, 12(2):308–340, 1991.

[AMSS06] G. Arnold, R. Manevich, M. Sagiv, and R. Shaham. Combining shape analyses by intersecting
abstractions. InVMCAI, pages 33–48, 2006.

[Avr03] A. Avron. Transitive closure and the mechanizationof mathematics. InThirty Five Years of Au-
tomating Mathematics, pages 149–171. Kluwer Academic Publishers, 2003.

[Bal04] T. Ball. A theory of predicate-complete test coverage and generation. In3rd International Sympo-
sium on Formal Methods for Components and Objects, 2004.

[BCC+05] L. Burdy, Y. Cheon, D. Cok, M. Ernst, J. Kiniry, G. T. Leavens, K. R. M. Leino, and E. Poll. An
overview of jml tools and applications.Int. J. on Software Tools for Technology Transfer, 7(3):212–
232, 2005.

[BCO04] J. Berdine, C. Calcagno, and P. O’Hearn. A DecidableFragment of Separation Logic. InFounda-
tions of Software Technology and Theoretical Computer Science (FSTTCS). LNCS 3328, 2004.

[BFT05] P. Baumgartner, A. Fuchs, and C. Tinelli. Implementing the Model Evolution Calculus. In Stephan
Schulz, Geoff Sutcliffe, and Tanel Tammet, editors,Special Issue of the International Journal of
Artificial Intelligence Tools (IJAIT), International Journal of Artificial Intelligence Tools, 2005.
Preprint.

[BHPV05] A. Bouajjani, P. Habermehl, P.Moro, and T. Vojnar.Verifying programs with dynamic 1-selector-
linked structures in regular model checking. InInt. Conf. on Tools and Algorithms for the Construc-
tion and Analysis of Systems (TACAS), volume 3440 ofLNCS. Springer-Verlag, 2005.

[BI05] M. Bozga and R. Iosif. Quantitative Verification of Programs with Lists. InVISSAS intern. work-
shop. IOS Press, 2005.

[BIL04] M. Bozga, R. Iosif, and Y. Lakhnech. On logics of aliasing. InStatic Analysis Symp., pages 344–
360, 2004.

[BLM05] T. Ball, S. K. Lahiri, and M. Musuvathi. Zap: Automated theorem proving for software analysis.
In LPAR, pages 2–22, 2005.

[BMMR01] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. Automatic predicate abstraction of c
programs. InSIGPLAN Conf. on Prog. Lang. Design and Impl., pages 203–213, 2001.

[Bon02] P. A. Bonatti. Towards service description logics.In JELIA, pages 74–85, London, UK, 2002.
Springer-Verlag.

[BP04] P. A. Bonatti and A. Peron. On the undecidability of logics with converse, nominals, recursion and
counting.Artificial Intelligence, 158(1):75–96, 2004.

74

BIBLIOGRAPHY 75

[BPZ05] I. Balaban, A. Pnueli, and L. D. Zuck. Shape analysisby predicate abstraction. InVMCAI, pages
164–180, 2005.

[BR01] T. Ball and S.K. Rajamani. The SLAM toolkit. InInt. Conf. on Computer Aided Verification (CAV),
Lec. Notes in Comp. Sci., pages 260–264, 2001.

[BRS99] M. Benedikt, T. Reps, and M. Sagiv. A decidable logicfor describing linked data structures. In
European Symp. On Programming, pages 2–19, March 1999.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static analysis of
programs by construction of approximation of fixed points. In ACM Symposium on Principles of
Programming Languages (POPL), pages 238–252, New York, NY, 1977. ACM Press.

[CC79] P. Cousot and R. Cousot. Systematic design of programanalysis frameworks. InACM Symposium
on Principles of Programming Languages (POPL), pages 269–282, New York, NY, 1979. ACM
Press.

[CGH05] C. Calcagno, P. Gardner, and M. Hague. From Separation Logic to First-Order Logic. InFounda-
tions of Software Science and Computation Structures (FoSSaCS). LNCS 3441, 2005.

[CGL94] E.M. Clarke, O. Grumberg, and D.E. Long. Model checking and abstraction.Trans. on Prog. Lang.
and Syst., 16(5):1512–1542, 1994.

[CGL99] D. Calvanese, G. De Giacomo, and M. Lenzerini. Reasoning in expressive description logics with
fixpoints based on automata on infinite trees. InIJCAI, pages 84–89, 1999.

[CH78] P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a program.
In ACM Symposium on Principles of Programming Languages (POPL), pages 84–96, 1978.

[Cou89] B. Courcelle. The monadic second-order logic of graphs, ii: Infinite graphs of bounded width.
Mathematical Systems Theory, 21(4):187–221, 1989.

[CS03] K. Claessen and N. Sorensson. New techniques that improve mace-style finite model finding. In
CADE-19 Workshop: Model Computation - Principles, Algorithms, Applications, 2003.

[CS04] C. Csallner and Y. Smaragdakis. Jcrasher: an automatic robustness tester for java.Softw., Pract.
Exper., 34(11):1025–1050, 2004.

[CS05] C. Csallner and Y. Smaragdakis. Check ’n’ crash: combining static checking and testing. InICSE,
pages 422–431, 2005.

[CYO01] C. Calcagno, H. Yang, and P. O’Hearn. Computabilityand Complexity Results for a Spatial As-
sertion Language for Data Structures. InFoundations of Software Technology and Theoretical
Computer Science (FSTTCS). LNCS 2245, 2001.

[Dam96] D. Dams.Abstract Interpretation and Partial Refinement for Model Checking. PhD thesis, Technical
Univ. of Eindhoven, Eindhoven, The Netherlands, July 1996.

[Die00] Reinhard Diestel.Graph Theory. Springer-Verlag, 2000. Electronic Edition.

[Dij76] E.W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

[DNS03] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for program checking. Technical
Report HPL-2003-148, HP Labs, 2003.

[DOY06] D. Distefano, P. O’Hearn, and H. Yang. A local shape analysis based on separation logic. InTACAS,
pages 287–302, 2006.

[ea03] F. Baader et al., editor.The Description Logic Handbook: Theory, Implementation, and Applica-
tions. Cambridge University Press, 2003.

76 BIBLIOGRAPHY

[ECGN01] M. D. Ernst, J. Cockrell, W. G. Griswold, and D. Notkin. Dynamically discovering likely program
invariants to support program evolution.IEEE TSE, 27(2):1–25, February 2001.

[Ere04] G. Erez. Generating concrete counter examples for arbitrary abstract domains. Master’s thesis,
Tel-Aviv University, Israel, 2004.

[Ern03] M. D. Ernst. Static and dynamic analysis: Synergy and duality. InWODA 2003: ICSE Workshop
on Dynamic Analysis, pages 24–27, Portland, OR, May 9, 2003.

[FLL+02] C. Flanagan, K.R.M. Leino, M. Lillibridge, G. Nelson, J.B. Saxe, and R. Stata. Extended static
checking for java. InSIGPLAN Conf. on Prog. Lang. Design and Impl., 2002.

[Flo67] R. W. Floyd. Assigning meanings to programs. In J. T.Schwartz, editor,Mathematical Aspects of
Computer Science, Proceedings of Symposia in Applied Mathematics 19, pages 19–32, Providence,
1967. American Mathematical Society.

[GHK+06] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, andS. K. Rajamani. Synergy: a new
algorithm for property checking. InSIGSOFT FSE, pages 117–127, 2006.

[GKS05] P. Godefroid, N. Klarlund, and K. Sen. Dart: directed automated random testing. InSIGPLAN
Conf. on Prog. Lang. Design and Impl., pages 213–223, 2005.

[GKV97] E. Grädel, P. Kolaitis, and M. Vardi. On the decision problem for two variable logic.Bulletin of
Symbolic Logic, 1997.

[GM05] L. Georgieva and P. Maier. Description logics for shape analysis. InSEFM, pages 321–331, 2005.

[GME99] E. Grädel, M.Otto, and E.Rosen. Undecidability results on two-variable logics.Archive of Math.
Logic, 38:313–354, 1999.

[Grä02] E. Grädel. Guarded fixed point logic and the monadic theory of trees. Theoretical Computer
Science, 288:129–152, 2002.

[GS97] S. Graf and H. Saı̈di. Construction of abstract stategraphs with PVS. InInt. Conf. on Computer
Aided Verification (CAV), LNCS 1254, pages 72–83. Springer-Verlag, June 1997.

[GT01] T. Genet and V. Tong. Reachability analysis of term rewriting systems with timbuk. InLPAR, pages
695–706, 2001.

[GTS05] W. Grieskamp, N. Tillmann, and W. Schulte. XRT – exploring runtime for .NET: Architecture and
applications. InSoftMC, 2005.

[GW99] E. Grädel and I. Walukiewicz. Guarded Fixed Point Logic. In Logic in Computer Science (LICS).
IEEE, 1999.

[Har00] M. J. Harrold. Testing: a roadmap. InICSE - Future of SE Track, pages 61–72, 2000.

[Hen90] L. Hendren.Parallelizing Programs with Recursive Data Structures. PhD thesis, Cornell Univ.,
Ithaca, NY, Jan 1990.

[HHN92] L. Hendren, J. Hummel, and A. Nicolau. Abstractionsfor recursive pointer data structures: Im-
proving the analysis and the transformation of imperative programs. InSIGPLAN Conf. on Prog.
Lang. Design and Impl., pages 249–260, New York, NY, June 1992. ACM Press.

[HJJ+95] J.G. Henriksen, J. Jensen, M. Jørgensen, N. Klarlund, B.Paige, T. Rauhe, and A. Sandholm. Mona:
Monadic second-order logic in practice. InInt. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS), 1995.

[HJMS03] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Software verification with blast. InSPIN,
pages 235–239, 2003.

BIBLIOGRAPHY 77

[Hoa75] C.A.R. Hoare. Recursive data structures.Int. J. of Comp. and Inf. Sci., 4(2):105–132, 1975.

[Hol03] G. J. Holzmann.The Spin Model Checker: Primer and Reference Manual. Addison-Wesley, 2003.

[Imm87] N. Immerman. Languages that capture complexity classes.SIAM Journal of Computing, 16:760–
778, 1987.

[IO01] S. S. Ishtiaq and P. W. O’Hearn. Bi as an assertion language for mutable data structures. InACM
Symposium on Principles of Programming Languages (POPL), pages 14–26, 2001.

[IRR+04a] N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yorsh. The boundary between decidability
and undecidability for transitive-closure logics. InInt. Conf. on Computer Science and Logic (CSL),
pages 160–174, 2004.

[IRR+04b] N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yorsh. Verification via structure simula-
tion. In Int. Conf. on Computer Aided Verification (CAV), pages 281–294, 2004.

[KR04] V. Kuncak and M. Rinard. Generalized records and spatial conjunction in role logic. InStatic
Analysis Symp., Verona, Italy, August 26–28 2004.

[KS93] N. Klarlund and M. Schwartzbach. Graph types. InACM Symposium on Principles of Programming
Languages (POPL). ACM Press, 1993.

[LAIR +05] T. Lev-Ami, N. Immerman, T. Reps, M. Sagiv, S. Srivastava, and G. Yorsh. Simulating reachability
using first-order logic with applications to verification oflinked data structures. InConference on
Automated Deduction (CADE), pages 99–115, 2005.

[LAIS06] T. Lev-Ami, N. Immerman, and M. Sagiv. Abstractionfor shape analysis with fast and precise
transformers. InCAV, pages 547–561, 2006.

[LARSW00] T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static analysis to work for verification: A
case study. InISSTA, pages 26–38, 2000.

[LAS00] T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static analyses. InStatic Analysis
Symp., pages 280–301, 2000. The system is available from www.cs.tau.ac.il/∼tvla.

[LNS00] K. R. M. Leino, G. Nelson, and J. B. Saxe. Esc/java users manual. Technical Report 002, Compaq
Systems Research Center, 2000.

[Log04] F. Logozzo.Modular Static Analysis of Object Oriented Languages. PhD thesis, LEcole Polytech-
nique, 2004.

[LQ06] S. K. Lahiri and S. Qadeer. Verifying properties of well-founded linked lists. InACM Symposium
on Principles of Programming Languages (POPL), 2006.

[LY92] D. Lee and M. Yannakakis. Online minimization of transition systems (extended abstract). In
STOC, pages 264–274, 1992.

[LYY05] O. Lee, H. Yang, and K. Yi. Automatic verification of pointer programs using grammar-based shape
analysis. InESOP, pages 124–140, 2005.

[MBC+07] R. Manevich, J. Berdine, B. Cook, G. Ramalingam, and M. Sagiv. Shape analysis by graph decom-
position. InTACAS, pages 3–18, 2007.

[Mey75] Albert R. Meyer. Weak monadic second-order theory of successor is not elementary recursive. In
Logic Colloquium (Proc. Symposium on Logic, Boston, 1972), volume 453, pages 132–154, 1975.

[MLK98] J. S. Moore, T. W. Lynch, and M. Kaufmann. A mechanically checked proof of the amd5k86tm

floating point division program.IEEE Trans. Computers, 47(9):913–926, 1998.

[Mor75] M. Mortimer. On languages with two variables.Zeitschrift f̈ur Mathematische Logik und Grundla-
gen der Mathematik, 21:135–140, 1975.

78 BIBLIOGRAPHY

[MPC+02] M. Musuvathi, D. Y. W. Park, A. Chou, D. R. Engler, and D. L.Dill. Cmc: A pragmatic approach
to model checking real code. InOSDI, 2002.

[MS01] A. Møller and M.I. Schwartzbach. The pointer assertion logic engine. InSIGPLAN Conf. on Prog.
Lang. Design and Impl., pages 221–231, 2001.

[MYRS05] R. Manevich, E. Yahav, G. Ramalingam, and S. Sagiv.Predicate abstraction and canonical abstrac-
tion for singly-linked lists. InVMCAI, pages 181–198, 2005.

[NE02] J. W. Nimmer and M. D. Ernst. Invariant inference for static checking: An empirical evaluation. In
FSE 2002, pages 11–20, 2002.

[NNH99] F. Nielson, H.R. Nielson, and C. Hankin.Principles of Program Analysis. Springer-Verlag, 1999.

[NNS02] F. Nielson, H. R. Nielson, and H. Seidl. Normalizable horn clauses, strongly recognizable relations,
and spi. InSAS, pages 20–35, 2002.

[Pap94] C. M. Papadimitriou.Computational complexity. Addison-Wesley, 1994.

[PE05] Carlos Pacheco and Michael D. Ernst. Eclat: Automatic generation and classification of test inputs.
In ECOOP, pages 504–527, 2005.

[PPV05] C. Pasareanu, R. Pelanek, and W. Visser. Concrete model checking with abstract matching and
refinement. InCAV, 2005.

[Rab69] M. Rabin. Decidability of second-order theories and automata on infinite trees.Trans. Amer. Math.
Soc., 141:1–35, 1969.

[Rey02] J. C. Reynolds. Separation Logic: A Logic for SharedMutable Data Structures. InLogic in
Computer Science (LICS). IEEE, 2002.

[RS86] N. Robertson and P. D. Seymour. Graph minors. ii. algorithmic aspects of tree-width.J. Algorithms,
7(3):309–322, 1986.

[RSW04] T. Reps, M. Sagiv, and R. Wilhelm. Static program analysis via 3-valued logic. InCAV, pages
15–30, 2004.

[RSY04] T. Reps, M. Sagiv, and G. Yorsh. Symbolic implementation of the best transformer. InInt. Conf. on
Verification, Model Checking and Abstract Interpretation (VMCAI), pages 252–266, 2004.

[RV01] A. Riazanov and A. Voronkov. Vampire 1.1 (system description). In IJCAR, pages 376–380, 2001.

[See92] D. Seese. Interpretability and tree automata: A simple way to solve algorithmic problems on graphs
closely related to trees. InTree Automata and Languages, pages 83–114. North-Holland, 1992.

[SLA02] D. Stotts, M. Lindsey, and A. Antley. An informal formal method for systematic junit test case
generation. InXP/Agile Universe, pages 131–143, 2002.

[SMA05] K. Sen, D. Marinov, and G. Agha. Cute: a concolic unittesting engine for c. InESEC/SIGSOFT
FSE, pages 263–272, 2005.

[SP81] M. Sharir and A. Pnueli. Two approaches to interprocedural data flow analysis. In S.S. Muchnick
and N.D. Jones, editors,Program Flow Analysis: Theory and Applications, chapter 7, pages 189–
234. Prentice-Hall, Englewood Cliffs, NJ, 1981.

[SRW98] M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis problems in languages with destructive
updating.Trans. on Prog. Lang. and Syst., 20(1):1–50, January 1998.

[SRW99] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic. InACM Sympo-
sium on Principles of Programming Languages (POPL), pages 105–118, New York, NY, January
1999. ACM Press.

BIBLIOGRAPHY 79

[SRW02] M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued logic.Trans. on Prog.
Lang. and Syst., 2002.

[SV01] U. Sattler and M. Y. Vardi. The hybrid -calculus. InIJCAR, pages 76–91, 2001.

[Var98] M. Y. Vardi. Reasoning about the past with two-way automata. InICALP, pages 628–641, 1998.

[VHB+03] W. Visser, K. Havelund, G. P. Brat, S. Park, and F. Lerda. Model checking programs.Autom. Softw.
Eng., 10(2):203–232, 2003.

[Wei] C. Weidenbach. SPASS: An automated theorem prover forfirst-order logic with equality. Available
at “http://spass.mpi-sb.mpg.de/index.html”.

[XN03] T. Xie and D. Notkin. Tool-assisted unit test selection based on operational violations. InASE,
pages 40–48, 2003.

[YBS06] G. Yorsh, T. Ball, and M. Sagiv. Testing, abstraction, theorem proving: better together! InInterna-
tional Symposium on Software Testing and Analysis (ISSTA), pages 145–156, 2006.

[YBS07] G. Yorsh, T. Ball, and M. Sagiv. Testing, abstraction, theorem proving: better together!ACM
Transactions on Software Engineering and Methodology(TOSEM), 2007. Invited, submitted.

[Yor03] G. Yorsh. Logical characterizations of heap abstractions. Master’s thesis, Tel-Aviv University,
Tel-Aviv, Israel, 2003. Available at “http://www.cs.tau.ac.il/∼ gretay”.

[YRS04] G. Yorsh, T. Reps, and M. Sagiv. Symbolically computing most-precise abstract operations for
shape analysis. InInt. Conf. on Tools and Algorithms for the Construction and Analysis of Systems
(TACAS), pages 530–545, 2004.

[YRS+06] G. Yorsh, A. Rabinovich, M. Sagiv, A. Meyer, and A. Bouajjani. A logic of reachable patterns in
linked data-structures. InFoundations of Software Science and Computation Structures (FoSSaCS),
pages 94–110, 2006.

[YRS+07] G. Yorsh, A. Rabinovich, M. Sagiv, A. Meyer, and A. Bouajjani. A logic of reachable patterns in
linked data-structures.J. Log. Algebr. Program. (JLAP), 73(1-2):111–142, 2007.

[YRSW07] G. Yorsh, T. Reps, M. Sagiv, and R. Wilhelm. Logicalcharacterizations of heap abstractions.ACM
Transactions on Computational Logic (TOCL), 8, January 2007.

[ZHM97] H. Zhu, P.A. Hall, and H.R. May. Software unit test coverage and adequacy.ACM Computing
Surveys, 29(4):336–427, December 1997.

Appendix A

Appendix for Chapter 2

A.1 Lattice operations

LetA be a set with partial order⊑. An elementa ∈ A is a lower bound of a setX ⊆ A if, for a x ∈ X , a ⊑ x.
Themeet operator, denoted by⊓, yields the greatest lower bound with respect to⊑; i.e., for a setX ⊆ A, ⊓X
is a lower bound ofX , and for every lower bounda of X , a ⊑ ⊓X . Similarly, an elementa ∈ A is anupper
bound of a setX ⊆ A if, for everyx ∈ X , x ⊑ a. Similarly, thejoin operator , denoted by⊔, yields the least
upper bound with respect to⊑; i.e., for every setX ⊆ A, ⊓X is an upper bound ofX , and for every upper bound
a of X , ⊓X ⊑ a.

A complete lattice is a partially-ordered set in which everysubset has both least upper bound and greatest
lower bound.

A widening operator onA is defined as a (partial) function▽ : A×A → A satisfying: (i) for eachx, y ∈ A,
x ⊑ x▽y andy ⊑ x▽y; and (ii) for all increasing chainsy0 ⊑ y1 ⊑ . . . the increasing chain defined byx0

def
= y0

andxi+1
def
= xi ▽ yi+1 is not strictly increasing.

A.2 Proofs

In this section, we provide (straightforward) proofs of thetheorems stated in Chapter2.
LetD be a complete lattice with⊑,⊓, and⊔ operations. A functionh : D → D is monotone if and only if for

all d, d′, if d ⊑ d′ thenh(d) ⊑ h(d′). A functionh : D → D is extensive if and only if for alld, d ⊑ h(d). We
use LFP(h) to denotes the least fixed point ofh, i.e., the elementd ∈ D such thath(d) = d and for alld′ ∈ D,
if h(d′) = d′ thend ⊑ d′. Also, for i ∈ D, LFP⊒i(h) denotes the least fixed point ofh w.r.t. i, i.e., the element
d ∈ D such thath(d) = d, i ⊑ d, and for alld′ ∈ D, if h(d′) = d′ andi ⊑ d′, thend ⊑ d′.

Theorem A.2.1 (Tarski Theorem, 1955)LetD be a complete lattice andf : D → D be a monotone function.

LFP(f) = ⊓Fix(f) = ⊓Red(f) ∈ Fix(f)

where
Fix(f) = {a ∈ D | f(a) = a}
Red(f) = {a ∈ D | f(a) ⊆ a}

Lemma A.2.2 LetD be a complete lattice andh : D → D be a monotone and extensive function. Forx, i ∈ D,
if h(x) ⊑ x andi ⊑ x then LFP⊒i(h) ⊑ x.
Proof: By definition of extensive function, we get thatx ⊑ h(x), and together with the assumption thath(x) ⊑ x,
we get thath(x) = x. Sincei ⊑ x, we conclude that LFP⊒i(h) ⊑ x.

Lemma A.2.3 LetD be a complete lattice andh : D → D be a monotone and extensive function. Giveni ∈ D,
let h′ : D → D be defined byh′(x) = h(x) ⊔ i, for all x ∈ D. Then, LFP⊒i(h) = LFP(h′).

80

A.2. PROOFS 81

Proof: Letx be LFP⊒i(h). By definition of LFP⊒i, h(x) = x andi ⊑ x, and we get thath(x) ⊔ i = x ⊔ i = x,
that is,h′(x) = x. By Tarski, fromh′(x) = x we get that LFP(h′) ⊑ x. Sincex = LFP⊒i(h) by definition, we
get that LFP(h′) ⊑ LFP⊒i(h).

Let y be LFP(h′). By definition of LFP,h′(y) = y, and using the definition ofh′ we get thath(y) ⊔ i = y.
It implies thati ⊑ y andh(y) ⊑ y. Using LemmaA.2.2we get that LFP⊒i(h) ⊑ y. Sincey = LFP(h′), we get
that LFP⊒i(h) ⊑ LFP(h′).

Lemma A.2.4 LetD be a complete lattice andf : D → D be a monotone and extensive function. Letf ♮ : A → A
be defined byf ♮ = α ◦ f ◦ γ. Leta♮ denote LFP⊒α(I)(f

♮). If α(T) ⊑ α(I), thenα(LFP⊒T (f)) ⊑ a♮.
Proof: Becausea♮ is a fixed point off ♮, we get thatf ♮(a♮) = a♮ and after applyingγ we get thatγ(f ♮(a♮)) =
γ(a♮). From the definition off ♮, we get thatγ(f ♮(a♮)) = γ(α(f(γ(a♮)))). By properties of Galois connection,
we get thatf(γ(a♮)) ⊑ γ(α(f(γ(a♮)))). Therefore,f(γ(a♮)) ⊑ γ(a♮).

Sincea♮ is LFP⊒α(I), we get thatα(I) ⊑ a♮. Fromα(T) ⊑ α(I), we get thatα(T) ⊑ a♮. From monotonicity
of γ, we get thatγ(α(T)) ⊑ γ(a♮) and from properties of Galois connection we get thatT ⊑ γ(α(T)). Therefore,
T ⊑ γ(a♮).

Fromf(γ(a♮)) ⊑ γ(a♮) andT ⊑ γ(a♮), using LemmaA.2.2, we get that LFP⊒T (f) ⊑ γ(a♮). By mono-
tonicity ofα and Galois connection, we get thatα(LFP⊒T (f)) ⊑ a♮.

Theorem2.3.1(Soundness)If a ∈ A is invariant underP andI ⊆ γ(a) thena is a sound overapproximation of
P .
Proof: By definition of invariant underP and the functionf from Section2.3.1, f is monotone and extensive
and the following holds:f(γ(a)) ⊆ γ(a). Using LemmaA.2.2, we get that LFP⊒I(f) ⊆ γ(a), i.e.,a is a sound
approximation ofP .
Theorem2.3.2Letf ♮ : A → A be defined byf ♮ = α ◦ f ◦ γ. The procedure in Fig.2.3computes the least fixed
point off ♮ w.r.t. α(I).
Proof: Leta♮ denotes LFP⊒α(I)(f

♮). Recall thatf is monotone and extensive.
Let Ti andai denote the set of concrete statesT and the abstract valuea, respectively, in iterationi of the

algorithm. Initially,a0 = ⊥ andα(T0) = α(I). For i ≥ 0,

ai+1 ⊑ ai ⊔ α(LFP⊒Ti
(f))

ai+1 ⊒ ai ⊔ α(Ti)
Ti+1 = {σ} such thatσ ∈ f(γ(ai+1)) andσ /∈ ai+1

Assume that the procedure terminates aftern iterations. From the termination condition follows thatf(an) ⊑ an.
First, we prove that upon termination of the procedure,a♮ ⊑ an.1 Initially, α(I) ⊑ a1 becausea0 ⊔ α(T0) =

α(T0) = α(I). In each iterationai ⊑ ai+1 by construction in line[6], thusα(I) ⊑ an. Using the termination
condition of the loop we get thatf(a) ⊑ a. By LemmaA.2.2, we get that LFP⊒α(I)(f

♮) ⊑ an, that is,a♮ ⊑ an.
Second, we prove that for alli ≥ 0, ai ⊑ a♮. The base case: initially,α(T0) = α(I) andα(I) ⊑ a♮, by

definition ofa♮. Using LemmaA.2.4 we get thatα(LFP⊒T0
(f)) ⊑ a♮. Recall thata1 = α(LFP⊒T0

(f)) ⊔ ⊥.
Thus,a1 ⊑ a♮.

By inductive hypothesis,ai ⊑ a♮. To prove thatai+1 ⊑ a♮, it is sufficient to show thatα(LFP⊒Ti
(f)) ⊑ a♮,

becauseExecute(f, Ti) ⊆ LFP⊒Ti
(f). Recall thatTi ⊆ f(γ(ai)). By (2.1) we get thatα(Ti) ⊑ α(f(γ(ai))) =

f ♮(ai). From the inductive hypothesisai ⊑ a♮ and the fact thatf ♮ is monotone, we get thatf ♮(ai) ⊑ f ♮(a♮) = a♮,
becausea♮ is the least fixed point off ♮. Thus,α(Ti) ⊑ a

♮, and by LemmaA.2.4we get thatα(LFP⊒Ti
(f)) ⊑ a♮.

Theorem2.3.3If the latticeA has a finite height, then the procedure in Fig.2.3terminates.
Proof: Consider a concrete stateσ chosen in thei-th iteration of the procedure. Recall thatExecute is guaran-
teed to terminate. From the properties ofExecute, it follows thatσ ∈ T . Using the fact that join distributes
overα, we get thatα(C) = ⊔c∈Cα(c), and we can write line[6] asai+1 = ai ⊔ α({σ}) ⊔

⊔
C\{σ}α(C). From

line [7] follows thatσ /∈ γ(ai). Therefore,ai ⊔ α({σ}) is strictly higher thanai in the abstract latticeA.

1It also implies the soundness of the procedure.

Appendix B

Proofs for Chapter 3

Lemma B.0.5 Consider the content of the setresult at the end of̂α procedure. IfS ∈ result then there exists
S♮ such thatS♮ |= ϕ andβ(S♮) = S.
Proof: For the sake of argument, assume that there existsS ∈ result such that for all concrete structuresS♮ that
satisfyϕ and embed intoS, β(S♮) 6= S.

Recall that at the end ofbif procedure, all the abstraction predicates have definite values inS. During phase
2, relation values can only be lowered, meaning that the abstraction predicates remain definite. Consequently, if
S♮ is embedded intoS, thenβ(S♮) is embedded intoS using the identity function, because embedding preserves
canonical names;β(S♮) embeds intoS by an identity function only when the set of canonical names in S♮ and
S is the same. Therefore, the assumptionβ(S♮) 6= S implies that there exists a relation whose value inS is
indefinite, but inβ(S♮) it is definite.

Formally, for each concrete structure that satisfiesϕ and embeds intoS, there exists a relationq with an
indefinite value on some tuple of nodesu1, . . . , uk in S, such that the value ofq on all tuples of nodes in the
concrete structureS♮ that are mapped tou1, . . . , uk by the embedding, is the same.

In phase2 of α̂ procedure, when the value ofq on u1, . . . , uk in S is examined, the first if-condition is
true, because the formulâγ(S) ∧ ϕ ∧ ϕq,u1,...,uk

is not satisfiable, as follows from the assumption. Therefore,
the statement guarded by this if-condition is executed, removing the structureS from result set. Therefore, a
contradiction is obtained.

Lemma B.0.6 For each structureS ∈ result, there exists a concrete structureS♮ that satisfiesϕ and embeds
into S.
Proof: By induction on the steps of̂α procedure. At the end ofbif procedure, this holds due to LemmaB.0.7.
Each iteration of the main loop in̂α preserves this, because structureS0 or S1 can be added toresult only when
the if-condition that guards its statement is true. The if-condition requires that there exists a concrete structure
that satisfiesϕ and embeds into the structure to be added toresult.

Lemma B.0.7 At the end of bif procedure, each structure inX represents at least one concrete structure that
satisfiesϕ.
Proof: After checking the precondition, all structures inX the claim holds. When a structure is added toX , there
are three case to consider.

First, if S′ is added toX . In this case, there exists a concrete structure that satisfiesγ̂(S)∧ϕ∧ϕq,u, denote it
by S♮. Consequently,S♮ satisfiesϕ and embedded intoS. Using LemmaB.0.8, S♮ is embedded intoS′, proving
the claim.

In the second case,S0 is added toX in statementX := X ∪ {S0}. This statement is executed when the
if-condition that guards it is true, i.e, there exists a concrete structure that satisfieŝγ(S0) ∧ ϕ. In particular, this
concrete structure is represented byS0 and satisfiesϕ, proving the claim. The third case, in whichS1 is added to
X , is symmetric to this case.

Lemma B.0.8 Consider an iteration of the while-loop inbif procedure. LetS ∈ W , q be an abstract predicate
andu ∈ US handled in that iteration. LetS♮ be a concrete structure such thatS♮ |= ϕ andS♮ is embedded into
S. S♮ is embedded into one of the structures{S′, S0, S1}, denote it byS′′.

82

83

Proof: By assumption, there exists embedding functionf such thatS♮ ⊑f S. Show that there existsS′′ ∈
{S′, S0, S1} such thatS♮ is embedded intoS′′ by constructing an embedding functionf ′ : S♮ 7→ S′′, based onf .

• If S♮ |= γ̂(S) ∧ ϕ ∧ ϕq,u thenS♮ contains two nodes, denoted byu0 andu1, such that the value ofq on
u0 is 0 and the value ofq onu1 is 1. In this case,S♮ is embedded intoS′ using the following embedding
function:

f ′(u♮) =






u.0 if f(u♮) = u andιS
♮

(q)(u) = 0

u.1 if f(u♮) = u andιS
♮

(q)(u) = 1
f(u♮) otherwise

f ′ is well-formed becausef is andιS
♮

(q)(u) cannot be0 and1 simultaneously.f ′ is surjective: its image
includesu.0 andu.1, becausef ′(u0) = u.0 andf ′(u1) = u.1 as follows for the denotations above; other
elements ofS′ are images off ′, becausef ′ is the same asf andf is surjective, by assumption.

Show thatf ′ preserves relation values. The values of all relations on all tuples inS′, are the same as inS,
except the value ofq on the new nodesu.0 andu.1. f ′ preserves these values, becausef does andf ′ is the
same asf for the relevant nodes (these are the concrete nodes inS♮ that arenot mapped to the new nodes
of S′). Let u♮ ∈ S♮ such thatf(u♮) = u. Without loss of generality, letιS

♮

(q)(u♮) = 0. By definition of
f ′, f ′(u♮) = u.0. By definition ofS′, the value ofq onu.0 is 0, that is the same as the value ofq onu♮. It
shows thatf ′ preserves the values ofq. The case whereιS

♮

(q)(u♮) = 1 is symmetric.

• If S♮ does not satisfŷγ(S) ∧ ϕ ∧ ϕq,u then the value ofq on all nodes inS♮ that are mapped tou by the
embedding is the same. If this value is0, S is embedded intoS0, otherwise — intoS1. These cases are
symmetric, therefore we consider only the former. Note thatS andS0 have the same universe, and differ
only in the value ofq onu. Hence, the embedding functionf ′ : S♮ 7→ S0 is the same asf . f ′ is well-formed
and surjective becausef is. For all relation values, except the value ofq onu, f ′ preserves the values of the
relations, because these values are the same inS andS′. The value ofq onu in S0 is 0, by construction of
S0. The value ofq on all nodes inS♮ that are mapped tou by f ′ is 0, by assumption. Therefore, the value
of q is preserved byf ′.

Lemma B.0.9 If S♮ |= ϕ then there existsS ∈ result such thatS♮ ⊑ S.
Proof: Use induction on the value ofresult at each step of the procedure.

The base case:after the initialization phaseresult0 = ⊤, therefore it represents all concrete structures, in
particular all structures that satisfyϕ.

The induction step: Let S♮ be a concrete structure such thatS♮ |= ϕ. Assume that afteri steps of the procedure,
the hypothesis holds: there existsSi ∈ resulti such thatS♮ ⊑ Si. Show that after stepi + 1, there exists
Si+1 ∈ resulti+1 such thatS♮ ⊑ Si+1.

If stepi+1 is the call to the procedurebif(result), the conclusion is obtained from LemmaB.0.8, because all
concrete structures satisfyingϕ that are represented by an abstract structure, are also represented by a bifurcation
of the abstract structure — there is no loss of “important” structures during bifurcation.

Otherwise, stepi+1 is an operation performed during the inner loop of phase2. Suppose that it operates with
a structureS, relationq of arity k and node tupleu1, . . . , uk in S. The only structure that could be removed from
result in this step isS.

Recall thatSi is the structure inresulti that, by assumption, representsS♮. If the structureS, that can
be removed fromresult is not Si, the hypothesis holds fori + 1 andS is the structure that representsS♮ in
resulti+1, i.e.,Si+1 is S. Otherwise,S andSi is the same structure, thus there exists an embedding function g
such thatS♮ ⊑g S. We shall prove that ifS is removed fromresult, then one of the structuresS0 orS1 represents
S♮ and it is added toresult.

According to the algorithm,S is removed when all concrete structures represented byS that satisfyϕ have the
same value for all node tuples mapped tou1, . . . , uk by the embedding. In particular, this holds forS♮. Without
loss of generality, assume that the value is0 and show thatS♮ is embedded inS0. The embedding functionf such
thatS♮ ⊑f S0 is g: (i) becauseS andS0 have the same universe,f is well-defined and surjective; (ii) we only

84 APPENDIX B. PROOFS FORCHAPTER 3

have to show thatf preserves values ofq overu1, . . . , uk, because the values of other relations are the same inS
andS0. The value ofq over all tuples mapped tou1, . . . , uk is 0 by assumption, andιS0(q)(u1, . . . , uk) is 0 by
the construction ofS0.

To complete the proof, we have to show thatS0 is added toresult, that is the if-condition that guards the
statementresult := result∪ {S0} is true. We have to show that there exists a concrete structure that satisfies the
formulaγ̂(S0) ∧ ϕ. Indeed,S♮ satisfies the condition:S♮ satisfieŝγ(S) because it is embedded intoS♮ as shown
above; also, by assumption,S♮ satisfiesϕ.

Recall that̂γ is only defined for bounded structures. The following lemma is a prerequisite for the use ofγ̂ in
theassume algorithm. It shows that ifassume is applied to a bounded structure, then all the structures created
by assume are bounded, and thereforeγ̂ can be used.

Lemma B.0.10 In every step ofassume algorithm, the result is a bounded structure, given that theinput is a
bounded structure.
Proof: Assume that the input of each operation considered below is a bounded structure. Then, to violate this
“boundedness” property, the operation must change a definite value of some abstraction predicate, according to
the definition of a bounded structure. (from1 to 0 or 1/2 and from0 to1 or 1/2).

The procedurebif either (i) lowers a value of a relation from1/2 to 1 or 0, or (ii) duplicates a node and sets
an abstraction predicateq with indefinite value to definite values on the two copies of the node. Both operations
do not violate “boundedness” property. Also, phase2 of the algorithm by its definition can only lower relation
values, therefore it cannot violate the “boundedness” property.

	Introduction
	Thesis Contributions
	Thesis Organization
	Overview
	Combining Concrete Execution, Abstraction and Theorem Proving
	Symbolically Computing Most-Precise Abstract Operations for Shape Analysis
	Comparison between the Algorithms
	The Role of a Theorem Prover
	The Logic of Reachable Patterns

	Combining Concrete Execution, Abstraction, and Theorem Proving
	Introduction
	Example
	Finding a Bug
	Finding a Proof
	Finding a False Error

	Formal Description
	Abstraction and Concretization
	Basic Procedure
	Symbolic Procedure

	Towards a Realistic Implementation
	Program Analysis Infrastructure
	Cutpoints
	On-the-fly Abstraction
	Interprocedural Analysis
	Employing a Theorem Prover
	Controlling Concrete Execution
	Hybrid Approach

	Prototype Implementations
	Based on Predicate Abstraction and XRT
	Based on Canonical Abstraction and TVLA

	Avoiding Unnecessary Abstraction Refinement
	Related Work

	Computing Most-Precise Abstract Operations for Shape Analysis
	Overview of Canonical Abstraction
	3-Valued Structures
	Embedding Order on 3-Valued Structures
	Integrity Rules
	Canonical Abstraction

	The assume Algorithm
	Employing a Theorem Prover
	Materialization
	Refining Relation Values
	Properties of the Algorithm
	Computing "0362

	Implementing the Best Transformer
	Related Work

	Logic of Reachable Patterns in Linked Data-Structures
	The L0 Logic
	Syntax of L0
	Semantics of L0
	Finite Model Property

	Undecidability of L0
	Decidable and Useful Fragment of L0
	The L1 Fragment
	Describing Linked Data-Structures in L1
	Expressing Verification Conditions in L1
	Characterizing Shape Abstractions in L1

	Decidability of L1
	Translation from L0 to MSO
	Decidability of MSO on Ayah Graphs
	Normal Form of L0 Formulas
	Decidability of L1

	Ayah Model Property of L1
	Trees with Extra Edges
	Ayah Graphs
	Graph Operations Enabled by L1 Formulas
	Homomorphism Preservation
	Witness Splitting
	Ak-Model Property of L1

	The L2 Fragment and its Decidability
	Aremk-Model Property of L2
	MSO is decidable on Aremk

	Complexity
	Lower Bound: L1 is NEXPTIME-hard
	Upper Bound: L1 is in 2EXPTIME

	Limitations and Further Extensions
	The Logic L3
	The Logic UL1

	Related Work

	Conclusions and Future Work
	Bibliography
	Appendix for Chapter 2
	Lattice operations
	Proofs

	Proofs for Chapter 3

