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Abstract

Parallelization transformations are an important vehicle for
improving the performance and scalability of a software sys-
tem. Utilizing concurrency requires that the developer first
identify a suitable parallelization scope: one that poses as a
performance bottleneck, and at the same time, exhibits con-
siderable available parallelism. However, having identified a
candidate scope, the developer still needs to ensure the cor-
rectness of the transformation. This is a difficult undertaking,
where a major source of complication lies in tracking down
sequential dependencies that inhibit parallelization and ad-
dressing them.

We report on HAWKEYE, a dynamic dependence-analysis
tool that is designed to assist programmers in pinpointing
such impediments to parallelization. In contrast with field-
based dependence analyses, which track concrete memory
conflicts and thus suffer from a high rate of false reports,
HAWKEYE tracks dependencies induced by the abstract se-
mantics of the data type while ignoring dependencing arising
solely from implementation artifacts. This enables a more
concise report, where the reported dependencies are more
likely to be real as well as intelligible to the programmer.
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1. Introduction

Program dependence graphs are a useful aid in software par-
allelization [13]. However, parallelization of existing pro-
grams using dependence analysis remains challenging. One
reason is the inherent difficulty of computing static depen-
dencies in programs with complex data structures. Yet even
the dynamic dependencies exhibited by a single execution
trace may embody superfluous information.

Consider the following illustrative example (in Java):
Pair[] pairs = makePairs();
Map m = new ConcurrentHashMap();
for (int i=0; i<pairs.length; ++i) {

m.put (pairs[i].fst, pairs[i].snd);
compute (pairs[i].snd); }

Assume that (i) the fst field of each Pair object points
to a unique object, but there are two distinct Pair objects
whose snd fields point to a shared object, and (ii) compute
modifies some fields of the object pointed-to by its argument.

A dynamic dependence-analysis tool based on field reads
and writes will infer that the two relevant compute invo-
cations depend on each other, which would in turn inhibit
parallelization of the loop. However, it would also indicate
dependencies between put calls. These dependencies arise
from access to the internal fields of ConcurrentHashMap.'
These dependencies are spurious, in the sense that they do
not reflect genuine constraints on parallelization.

Spurious dependencies obscure the real constraints on
parallelization, and thus stand in the developer’s way toward

! For example, when we ran this code using the IBM V9 JRE, de-
pendencies were reported on ConcurrentHashMap$HashEntry.hash,
ConcurrentHashMap$Segment .modCount, and several other internal
fields of ConcurrentHashMap.

207



arriving at a parallel version of the code. In the above exam-
ple, instead of focusing the developer’s attention on the only
real impediment to parallelization—the two compute calls
operating on the same object—a concrete dependence anal-
ysis would also overwhelm the developer with (potentially
many) put/put conflicts that can all safely be ignored.

Scope This paper takes a step toward reporting useful dy-
namic dependencies in support of programmer-guided paral-
lelization. We assume that the programmer has already iden-
tified a suitable scope for parallelization, where there are
both performance bottlenecks and a great deal of available
parallelism. The remaining challenge is to uncover (the few)
dependencies that impede parallelization and address them.

Naive reporting of (concrete) data dependencies often
yields a prohibitive amount of spurious dependencies. It is
then the developer’s responsibility to distill the real con-
straints on parallelization, a task that in many cases obviates
the value of using a dependence analysis in the first place.
This paper tackles the challenge of reporting dataflow im-
pediments to parallelization in a precise, concise and intelli-
gible manner.

Our Approach We build on the centrality of abstract data
types (ADTs) in the design and development of object-
oriented software. Data structures implementing ADTs can
come from libraries, but may also be user-defined data types.

In our approach, concrete data structures are considered
in terms of the semantics of the ADTs they represent during
dependence analysis. This allows the analysis to suppress
spurious dependencies due to the specifics of the ADT im-
plementation, and report conflicts at the semantic level. We
have implemented our approach in HAWKEYE, a dynamic
dependence analysis that accounts for ADT semantics.

Past research has already addressed the problem of spu-
rious dependencies, though there are some important dif-
ferences, which we now briefly discuss. The commutativity
analysis framework [30-32], used in parallelizing compil-
ers, employs symbolic reasoning and other specialized al-
gorithms to recognize and exploit commuting operations.
HAWKEYE, instead, is a dynamic analysis. HAWKEYE also
utilizes abstraction, rather than commutativity proofs, to ig-
nore spurious dependencies.

HAWKEYE is also reminiscent of recent works in the area
of transactional memory [16, 20-23] that leverage ADT se-
mantics for more robust online conflict detection. Unlike
these works, HAWKEYE performs offline conflict detection.
Moreover, the HAWKEYE specification is in the form of a
representation function, rather than a commutativity speci-
fication, which—in our experience—facilitates support for
user types.

Contributions This paper makes the following contribu-

tions:

e Effective dependence analysis. Our approach augments
dynamic dependence analysis with conflict detection
based on ADT semantics. This supports our objective

of concise and precise dependencies, as our experimental
results confirm. The reported dependencies are also more
intelligible to the user being at the semantic level.

e Flexible specification language. HAWKEYE enables a
wide spectrum of specifications for a given ADT that
represent different tradeoffs between the complexity of
the specification and the cost and precision of the anal-
ysis. Our experience suggests that the simplest form of
specification, whereby commutativity between ADT op-
erations is inferred automatically based (only) on a defi-
nition of the ADT’s representation function, suffices for
most ADTs. This facilitates the definition and incorpora-
tion of user types into the analysis.

e Uniform conflict-detection framework. The theoretical
underpinnings of our analysis, which we evolve in Sec-
tions 3—6, enable uniform treatment of concrete and se-
mantic dependencies. This property of our framework
simplifies reasoning on the behavior of the analysis, as
well as implementation effort.

e Implementation and evaluation. We have implemented
our approach in HAWKEYE, and evaluated it via two sets
of experiments. First, we compared HAWKEYE and an
analogous analysis that is unaware of ADT semantics by
using both to discover loop-carried dependencies in seven
real-world benchmarks. We then applied parallelization
transformations in three of these benchmarks guided by
the dependencies reported by HAWKEYE to assess its
value in end-to-end parallelization. The results are highly
encouraging: HAWKEYE reported significantly fewer de-
pendencies than the baseline analysis, and the surviv-
ing dependencies represented real impediments to par-
allelization, which greatly facilitated manual paralleliza-
tion of the benchmarks we studied.

Organization In the remainder of this paper, we first illus-
trate our approach via a real-world example in Section 2.
Then, in Sections 3—6, we establish a uniform framework
for detecting both semantic conflicts between ADT opera-
tions and concrete conflicts between non-ADT operations.
The implementation of HAWKEYE is described in Section 7,
which also reports on its experimental evaluation. Section 8
discusses related work. We conclude in Section 9.

2. Overview

Consider the (pseudo-)code fragment in Fig. 1 taken from
the JGraphT library [4], which builds the block-cutpoint
graph [33] representation of a connected undirected graph.
The block-cutpoint graph of connected undirected graph G
is a bipartite graph connecting “cutpoints” in G to their
containing “blocks”, where node v in G is called a cutpoint if
its removal disconnects (7, and subgraph b of G is considered
a block if it is a maximal subgraph of G not containing a
cutpoint as an independent graph (i.e., disregarding the rest
of Gi). Fig. 2 presents a simple example of a connected graph
(G) and its corresponding block-cutpoint graph (G”).
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| for (Vertex cutpoint : this.cutpoints) {
UndirectedGraph subgraph = new SimpleGraph();
subgraph.addVertex (cutpoint);
this.cutpointGraphs.put(cutpoint, subgraph);
this.addVertex (subgraph);
Set blocks = this.vertex2blocks.get (cutpoint);
for (UndirectedGraph block : blocks) {
int oldHitCount = this.block2hits.get(block);
this.block2hits.put(block, oldHitCount+1);
this.addEdge (subgraph, block); } }

Figure 1. Simplified pseudo-code version of the JGraphT
algorithm for building a block-cutpoint graph

{Vs,Ve,V7,Vg}

(@) (@)

Figure 2. Connected undirected graph G and its corre-
sponding block-cutpoint graph G’

The code in Fig. 1 builds a BlockCutpointGraph in-
stance, G’ (pointed-to by the this pointer), where the nodes
of G’ are themselves graphs, by iterating over the cutpoints
in the graph G underlying G’. For each cutpoint ¢, (i) a
fresh graph enclosing ¢ (line 3) is added to G (line 5), (ii)
the blocks c is contained in (which were computed ahead of
the loop) are retrieved (line 6), and (iii) these blocks are tra-
versed by an inner loop (line 7) that inserts an edge into G’
between ¢ and each of them via an addEdge call (line 10).
Prior to the edge insertion, a counter counting the number of
times each block was encountered is incremented (line 9).

Program Parallelization The loop in Fig. 1 has a great
deal of available parallelism: Different iterations process dis-
tinct cutpoints, and thus manipulate disjoint portions of the
block-cutpoint graph. Dependence analysis is a useful tech-
nique for testing this observation: Loop-carried dependen-
cies reported by the analysis pose as potential impediments
to parallelization, which the developer can review and — if
needed — address before parallelizing the loop. Dually, fail-
ure to find dependencies (by a sound analysis) is a correct-
ness proof for the parallelization transformation.
Unfortunately, existing dependence analyses, which track
conflicts at the level of conrete memory locations, are overly
pessimistic. Fig. 3, which visualizes the dynamic loop-
carried dependencies recorded when running the loop with
graph GG from Fig. 2 as input, illustrates this. The many
reported dependencies obscure the parallelization potential
latent in the loop. Most of these dependencies are due to the
internals of collection implementations (e.g., the HashMap
implementing vertex2block), and are thus spurious. Par-
allelizing compilers are likely to arrive at an even more con-

iter.hasNext() < o] iter.hasNext()

cutpoint = iter.next() <O cutpoint = iter.next() <O
subgraph = new SimpleGraph(...) subgraph = new SimpleGraph(...)
subgraph.addVertex(...) subgraph.addVertex(...)
vertex2block.put(...) <—O——————— vertex2block.put(...)
addVertex(...) addVertex(...)

blocks = ... blocks = ...

iterator = ... iterator = ...

iterator.hasNext() iterator.hasNext()

oldHitCount = ... oldHitCount = ...
block2hits.put(...) < o}

block = ...

block2hits.put(...)
block = ...

addEdge(...) addEdge(...)
iterator.hasNext() iterator.hasNext()
oldHitCount = ... oldHitCount = ...
block2hits.put(...)
block = ...

addEdge(...)

block2hits.put...)
block = ...
addEdge(...)

iterator.hasNext() iterator.hasNext()

Figure 3. Dynamic dependence graph for the program
in Fig. 1 running on the graph in Fig. 2

servative result due to their limited ability to handle aliasing
and track graph invariants maintained by G (which is a tree).

The important dependencies (denoted in red) are (i) those
involving the induction variable (iter), as well as (ii) a
specific pair of calls to put on block2hits where block
{vs, vs}, which is shared by cutpoints v and vs, is used
as the key. Each of these essential dependencies can be
addressed by standard parallelization techniques. For (i),
cutpoints can be changed into a random-access list, or alter-
natively, the sequential loop structure can be preserved while
making the loop body asynchronous. For (ii), atomicity can
be guaranteed for the statements at lines 8-9 via appropriate
synchronization (e.g., locks or transactions), or block2hits
can be privatized and its different copies can be merged after
the loop.

As this example demonstrates, often the challenge in par-
allelization is not how to transform the code, but where to
apply the transformation. A developer confronted with the
dependence graph of Fig. 3 is likely to spend a long time
separating the wheat from the chaff, or even give up at some
point. Our goal is to distill the report by a dependence anal-
ysis toward more concise and precise reporting of candidate
impediments to parallelization.

Dependence Analysis with ADTs In our approach, ADT
instances are treated at the semantic rather than the con-
crete level. The developer specifies the ADT implemented
by a concrete type (that is known to have a concurrent im-
plementation), and the analysis then computes dependencies
according to this specification, which enforces a more pre-
cise notion of commutativity between ADT operations. The
result by the analysis is then more accurate and thus also
more actionable.
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Representation Functions for Map and UndirectedGraph

MAP(m):
state = &

for each e in m.entrySet

state = state Um " e.key

value(e
state = state U e.key (@)

return state

e.value

UNDIRECTEDGRAPH(g):
state = &

for each n in g.nodeSet

d
state = state U g no—e>(n) n

for each e in g.edgeSet

state = state U {e.ny tmgt(e)

return state

target(e)
enz,eny  —  eni}

Figure 4. Pseudo-code version of the representation func-
tions for the Map and UndirectedGraph ADTs used by the
program in Fig. 1

Our choice of description for ADTS is as a store mapping
logical fields to their respective values. For example, the Map
ADT can represent keys as logical fields that point to their
associated values, which is the natural way of perceiving a
mapping. A pleasing property of this representation is that
it enables a uniform conflict-detection framework based on
data dependencies, which we formalize in Sections 3—6.

HAWKEYE accepts ADT specifications in the form of a
Java method receiving a concrete data-structure instance as
input and returning the object’s state as an ADT. This is il-
lustrated in Fig. 4, where — for example — the specifica-
tion for UndirectedGraph lets the state of graph instance
g map g to the nodes it contains via entries of the form
(g9,node(n)) — n, and node u map to its neighbors via en-
tries of the form (u, target(e)) — v (where e = {u,v}).
For the program in Fig. 1, HAWKEYE reports all the essen-
tial dependencies (those in red), and only these dependen-
cies, based only on a user-provided representation function
for the UndirectedGraph ADT. (HAWKEYE already has
built-in representation functions for the Java collections.)

Technical Outline The algorithm undelying HAWKEYE is
evolved incrementally in Sections 3—6. Sections 3—4 formal-
ize the connection between parallelization and dynamic data
dependencies. First, in Section 3, we define a correctness cri-
terion for parallel execution of a single trace (assuming an
interleaving semantics of concurrency) whereby a parallel
schedule is correct iff all the interleavings it permits of state-
ments from its underlying trace yield the final state of the
trace. We further discuss how (local) reasoning about com-
mutativity between adjacent trace transitions can be utilized
toward conservative enforcement of this criterion. Section 4
then links the criterion to data dependencies based on the ob-
servation that absence of data dependencies implies commu-

tativity. Importantly, this section defines the read and write
accesses made by a trace transition in a way that we can later
use both in concrete and in abstract semantics, which is key
for the uniformity of our framework.

Sections 5—6 build on the results of the two preceding
sections. Section 5 instantiates the definitions of Section 4
both in a standard concrete semantics where a state is en-
coded as a store mapping stack and heap locations to their
corresponding values, and in an abstract semantics where
states are structured as mappings from abstract locations to
abstract values. Finally, Section 6 considers abstraction us-
ing representation functions, and presents an efficient algo-
rithm for computing dependencies between ADT operations
based on the definitions of Section 4.

3. Correct Parallelization

We start by introducing the notations we use for program
states and traces. We then discuss how commutativity be-
tween statements in a trace can be used to reason about the
correctness of its parallel execution.

Low-level Program Semantics A state o: L — V is a

mapping from memory locations to values. We use dom(o)

to denote the domain of the mapping, i.e., the subset of
memory locations for which the partial function o is defined.

The intended meaning is that dom (o) includes the memory

locations that are allocated in state o (see Section 5.1). The

set of all states is denoted by Y. We use [p](o) to denote
the state resulting from executing program statement p in

state 0 € Y. A transition 7 is a triple (o, p,o’), where p

is a program statement and o,0’ € X are states such that

o’ = [p](o). The set of all transitions is denoted by 7. A

trace ¢ is a sequence (71, T2, . . . , T,) of transitions, such that

T = {(04,pi,05) € Tforl < i < nando, = 0,41 for

1<i<n.

Parallel Execution Semantics Let ¢t = (71, 72,...,7,) bea

trace, where p; is the i-th statement executed in ¢. Consider

a partitioning of the statements p; into consecutive segments

Iy,..., I according to indices 1 =73 < ... < ipy1 =N+

1, where I; = (p;;,...,pi; ., —1). I; intuitively corresponds

to a single command, which preserves the ordering between

the statements comprising it under parallelization.
We define an execution schedule for I,...,I; via the
standard composition operators:

1. Sequential composition. We denote the sequential exe-
cution of I and 11 by I; Ij4;.

2. Parallel composition. We denote concurrent execution
of consecutive segments I; and I 1 by I;||Ij11. || is
transitive in that I;||I;41||I;+2 denotes that I;, I, 11 and
I; o will be run concurrently to each other.

An execution schedule of segments I, ..., I correspond-
ing to trace ¢ is thus of the form
Il *1 IQ X9 LK1 Ik, (1)

where *,, € {;, ||} for1 <m < k.
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For example, schedule Iy;Io||I5||14; I5 prescribes that
first I; is run, then I, I3 and I4 run concurrently to each
other, and finally 75 is executed.

We assume an interleaving semantics of concurrency [27,
28], where the single steps of concurrent segments are in-
terleaved with each other (in an unscheduled way). For
Li|| ... |[Ij+m, all possible permutations of the statements
comprising these segments that preserve the internal order-
ing of statements in I;, ..., I;1,, are possible.

Commutativity Let ¢ = (r,72,...,7,) be a trace. We
denote the set of statements executed in ¢ by P(t) =
{pi | 1 < i < n}. We say that consecutive statements
DisDit1 € P(t) commute in t if the trace from running
(P1y- -y Dit1,Diy---,Ppn) Starting at oy has final state o7,.
That is, swapping between p; and p;;; does not change the
final state of the run.

We refer to two traces as equivalent if (i) they are both
over the same set of statements, and (ii) their starting and
final states are identical:

Tn) &
o1 =01 AP(t)=PA) Ao, =d"n. (2)

n

t:<71,...,7n>5t/\:<?1,,,,

Our definition of commutativity between statements sup-
ports this notion of equivalence. Denote by P(t) the organi-
zation of the statements in P(t) as a sequence (according to
their ordering in ¢). Considering traces ¢ and tA, if i) o1 = o071,
and (ii) P(?) is a transposition of P(t) where the transposed
statements are commutative in ¢, then by definition ¢ and t
are equivalent according to (2). We record this connection
between ¢ and 7 via (symmetric) relation =;: t = . We can
now define =,, inductively:

t=,t <3t t=,_1t" Nt = 1.

Note that foralln € N, if t =,, t' thent = t'.

Correct Parallel Schedule Let ¢ be a trace and S a (par-
allel) schedule based on ¢ (according to (1)). We say that
S is correct with respect to ¢ if every possible trace ¢’ re-
sulting from executing S is equivalent to ¢. If we consider ¢
as a single run of some program P, then a complementary
perspective is enabled: A transformation of P that makes P
more concurrent is incorrect if it results in a parallel execu-
tion schedule based on ¢ yielding traces that are inequivalent
to t. In this sense, information from a single trace provides
an upper bound on available parallelism that can be used to
test a proposed transformation.

Note that we can use any subset of the equivalence rela-
tion defined in (2) toward a conservative judgment about the
correctness of a schedule, which may reject valid schedules
being unable to prove them as such. In particular, we can
use [ J, ey =& C= or even a subset of | J; .y = that is built
based on a safe approximation of the commutativity relation
between statements, where a safe commutativity judgment
is one where two statements are said to be commutative (in

some trace) if they actually commute, but the opposite is not
necessarily true.

The motivation for using a conservative correctness judg-
ment stems from the cost and tractability of direct reasoning
about equivalence between traces. In what follows, we ap-
proximate the commutativity property by considering data
dependencies between trace transitions.

4. Formalizing Dependencies

In this section, we formally define the notion of data depen-
dencies. We then restate the (well-known) connection be-
tween data dependencies and commutativity [13], whereby
absence of data dependencies implies commutativity, in our
setting of dynamic dependencies recorded based on a single
execution trace.

4.1 Trace Dependence Graph

We first define the notion of best read and write sets, as well
as and their conservative approximation. We then use these
sets to define dependencies in a standard way.

Read and Write Sets Each transition 7 = (o,p,0’) is
associated with a write set write(7) and a read set read(T)
of memory locations, which we now define.

The write set is the set of memory locations modified by
the transition:

write(T) = mod(7) U alloc(t) U dealloc(t)  (3)

where
mod(t) = {m € dom(c) Ndom(c’) | o(m) # o' (m)}
alloc(t) & dom(c’) \ dom(o)
dealloc(t) 2 dom(c) \ dom(c")

The first line handles change of values of existing loca-
tions. The second and third lines handle memory allocation
and deallocation, respectively. We assume that identities of
memory locations do not change, and that deallocation is an
explicit transition (i.e., the garbage collector is treated as part
of the program).

The read set is the set of memory locations whose values
determine the effect of p. Intuitively, a memory location m
is in the read set of (o, p, o’) if altering its value in o affects
the result of executing p. Formally, to ensure its uniqueness,
the read set is defined as the union of all minimal sufficient
read sets:

read(r) = | J{M € R(r) | VM’ € R(r).M' ¢ M} (4)

where R(7) is the set of all sufficient read sets of transition
7,i.e., M € R(7) if and only if M C dom(c) and for every
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if M C dom(o)
Vm € M.o(m) = a(m)
T=(0,po)eT
then mod(7) = mod(7T) 5)
alloc(t) = alloc(T)
dealloc(T) = dealloc(T)
Vm € write(t) Ndom(o’).0’'(m) = &’ (m)

Intuitively, M is a sufficient read set if whenever the states o
and o agree on the values of all memory locations in M (but
may differ in other values), the results of applying p to them
also agree on what locations change and how.

Dependencies There is a conflict between two transitions
when one of them writes a memory location that is accessed
(for read or write) by the other.

Let r,w: T — P(L) define some read and write sets.
The following definitions are (implicitly) parameterized by
r and w. We use em(7,7) to denote the set of locations that
participate in a conflict between two transitions, 7 and 7:

em(7,7) 2 w(T) N (w@) Ur(®) U w@) N (w(r) Ur(r))
(6)
We say that there is a conflict between 7 and 7 (or 7 and 7
are conflicting) when cm(7,7) # @. The conflict relation is
symmetric.
The set of dependencies of trace t = (71,...,7,), de-
fined with respect to a given w and 7, is the set of pairs of
conflicting transitions of the trace ¢, ordered by time:

D[rvw](t):{<7—iv7—j> |i<jvcm(7i77j)7é®} (7

We use 7; < 7; to denote that the dependency (7;, 7;)
is in D[r, w](t), when ¢, r, w are clear from the context. For
simplicity, we do not distinguish between RAW, WAR, and
WAW dependencies. It is easy to see that by using larger
read and write sets, we get more dependencies. A weaker
condition is stated in the following.

Lemma 4.1. Ler r,w,r’,w': T — P(L) such that for all
TeT, r(r) Cr'(r)Uw'(r) and w(r) C w'(7). For every
trace t, D[r,w](t) C D[r', w'](t).

Proof. See Appendix A. O

In particular, a location read by 7 according to r can be
in either r/(7) or w’(7). Mappings r,w: T" — P(L) define
conservative read and write sets when for all 7 € T,

read(r) Cr(t)Uw(r) and write(t) Cw(t) (8)

When referring to the “best” read and write sets, we intend
those defined in (4) and (3). Otherwise, when we mention
read and write sets, we refer to conservative read and write
sets as defined in (8). It follows from Lemma 4.1 that by
using conservative read and write sets, we do not miss any
dependencies that arise using the best read and write sets.

Trace Dependence Graph In the rest of this paper, we refer
to the (directed acyclic) graph induced by D[r,w]|(t) as a
“trace dependence graph” of ¢.

The nodes of this graph are the transitions of ¢, and the
edges are the dependencies of D|r,w](t).> The trace depen-
dence graph of ¢ is denoted by G|r,w]|(t). We write D(t)
and G(t) instead of D|r,w|(t) and G[r, w](t), respectively,
when the parameters 7, w are clear from the context. We lift
the definition of G(¢) to a (possibly infinite) set of traces by
taking the union of the individual trace dependence graphs
in the set.

4.2 Connection to Commutativity

Our goal in recording data dependencies is to enable reason-
ing about correct parallelization. We must therefore clarify
the connection between dependencies and commutativity to
be able to use the criterion specified in Section 3. The fol-
lowing establishes this connection.

Lemma 4.2. Consider trace t = (11,...,7T,), and let
DIr,w|(t) denote the set of dependencies of t according
to conservative read and write sets v and w. Then

1. every pair (p;,pi+1) of consecutive statements in ﬁ(t)
such that (1;,7;11) ¢ D|r,w|(t) is commutative in t.

2. Moreover, for every pair t and tAof traces and permuta-
tion 8, such that (i) P(t) = 6(P(t)), (ii) 61 = o1, and
(iii) for all (7;, ;) € D[r,w|(t), 6(i) < (j), there exists
a natural number m € N such thatt =, t.

Proof. See Appendix B. O

The second clause of the claim states that if trace 7 is the
result of running the statements in ¢ in a different order that
does not break any data dependency, then the two traces are
equivalent according to (2). Furthermore, we can arrive at
P(%) starting from P(t) via a finite number of “permitted”
transpositions (according to the conservative notion of com-
mutativity imposed by r and w).

This observation enables simple reasoning about the cor-
rectness of (parallel) schedule S based on trace ¢: As long
as S enables only traces that satisfy the second claim above,
and in particular, every possible trace of .S satisfies the con-
straints imposed by D[r, w]|(t), S is correct.

5. Concrete and Abstract Dependencies

We now explore the meaning of dependencies under abstrac-
tion. We show how the general definition of dependencies
we gave in the previous section can be used with both con-
crete and abstract semantics, including specialized abstrac-
tions for ADTs and loop parallelization. Fig. 5 summarizes
the notations for these semantic domains.

2Note the difference from standard program dependence graphs, where
nodes are program statements. Also, our presentation is in terms of data
dependencies only, without loss of generality, because control dependencies
are subsumed by trace order.
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Low-level Semantics

o: L—=V cex
T2 (o,p, o) TeT

Simple Concrete Semantics
Val £ Obj W {null}
p: Varld — Val
heap: Obj x FieldId — Val
state = (p, heap)

p € Env
heap € Heaps
state € States

L £ (Obj x Fieldld) W Varld
V £ Val
o = heap W p

Concrete Semantics with Methods
Val £ Obj W {null}
p: Varld — Val
stack = (P1y-- s pm)
heap: Obj x FieldId — Val
state = (stack, heap)

p € Env

stack € Stacks
heap € Heaps
state € States

L £ (N x VarId) W (Obj x FieldId)
V £Val
o = heapWw J'_{i} x pi

Abstract Semantics

o” e oF
e T#

o LF S VF
™ £ (0%, p, %)

Figure 5. Summary of notations for semantic domains,
where Obj is an unbounded set of dynamically allocated
objects, VarId is the set of local variable identifiers, and
FieldId is the set of field identifiers

l Instruction \ Read Set \ Write Set ‘
putfield(b,f,v) v (p(b), £)
r=getfield(b,f) (p(b), £) T
r=checkcast (x,T) X r
r=unaryop(—,v) v r
r=binaryop (+,x,y) X,y r

Figure 6. Read and write sets for several of the Java byte-
code instructions on a concrete state (stack, heap), where p
is the top frame on the stack

l ADT Operation \ Read Set \ Write Set ‘
m.put(k,v):r %) {(m,k),r}
m.get(k):r {(m, k) } {r}
m.containsKey (k) :r | { (m,k) } {r}
m.remove (k) :r 1) {{m,k) . x}

Figure 7. Conservative abstract read and write sets of sev-
eral operations of the Map ADT on abstract state o7, where
m = p(m), k = p(k) and v = p(v) (p being the top stack
frame)

5.1 Concrete Dependencies

We assume a standard concrete semantics for sequential pro-
grams, where a state consists of a stack of method invoca-
tions mapping local variables to values, and a heap mapping
object fields to values (see Fig. 5).

A memory location is a data storage that can be used by
the instructions of the programming language to store and
retrieve data values. In our semantics, there are two types
of memory locations: heap and environment locations. A
heap location is an object’s field. In state (stack, heap), each
pair (o, f) in dom(heap) defines a unique memory location.
An environment location is a local variable in the context
of an invocation of a method (i.e., a stack frame). In state
(stack, heap), where stack is {(p1,. .., pn), each pair (i, v)
defines a unique memory location, where v € VarId is a
local variable identifier of a method executed by stack frame
i,1.e.,v € dom(p;) and 1 < i <m.

To apply the uniform definition of dependencies from Sec-
tion 4.1, we encode concrete states of the form (stack, heap)
as states in the low-level semantics by simply mapping from
memory locations to values. Given a state (state, heap), we
define the low-level mapping o to be the (disjoint) union of
the mapping defined by heap and the mappings defined by
pifori =1,...,n,asshowninFig. 5. This can be extended
in the usual way to handle threads, types, arrays and static
variables.

Fig. 6 shows read and write sets for several interest-
ing Java bytecode instructions. These sets are conservative.
For example, consider a transition 7 for putfield(b,f,v)
from a state where the value of b.f before the update is al-
ready p(v). The best write set for this transition does not
contain memory location (p(b),f), because the value at
(p(b), £) has not changed. The best read set for this transi-
tion contains memory location {(p(b), £), because by chang-
ing the value of this location, the best write set changes.
The read set of this transition according to Fig. 6 does not
contain (p(b), f), but the write set does. Fig. 6 is therefore
conservative: The read and write sets it prescribes may give
rise to more dependencies than the best read and write sets.

In return, the specification in Fig. 6 is simpler than (3)
and (4), because the read set in Fig. 6 depends only on the
state in which the statement executes, whereas (4) depends
on all possible executions of the same statement. In the
above example, the best read set takes into account that there
exists another state in which the value of (p(b),f) is not
p(v). For a transition that starts in that state, write contains
(p(b), £), and therefore differs from the best write set for 7.

5.2 Abstraction of Trace Segments

We define an abstraction of trace ¢ by breaking the sequence
of transitions constituting ¢ into multiple segments whose
concatenation is the original trace. Each segment is mapped
to an abstract transition, and intermediate states between the
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concrete transitions represented by the abstract transition are
omitted.

Let trace t be (71, ..., 7). We define segments of ¢ using
aset I = {ay,b1,...,ax, by} of indexes, where

l=a1 <b,bi+1=as<by,...ap <br=n

Fori =1,...,k, the i-th segment of ¢ consists of transitions
between indexes a; and b;, inclusive. The abstraction of ¢ is
the trace I(t) £ (71,...,7y), such that 7; £ (04,,p;, 0, )
and p; is a sequential composition of the statements in the
i-th segment of t.

A read (resp. write) set of an abstract transition 7; can
be naturally defined as the union of all the read (resp. write)
sets of the concrete transitions in segment ¢ of ¢:

w(Ti) = Ua,<j<e, w(75) 9

T(Ti) = Ud<j<p 7(75)

This definition is conservative with respect to the best read
and write sets: read(7;) C wW(T;) UT(T;) and write(T;) C
w(T;) fori = 1,..., k assuming that w, r are conservative.
For the definition of the best read set of 7; according to (4),
we use the semantics of sequential composition to compute
the effect of p, on 7.

Next, we define two useful instances of trace segments
abstraction by specifying different ways of partitioning a
trace into segments.

Loop-based Segments Segments can be defined by loop it-
erations. We use this for loop parallelization, because we are
interested in dependencies between different loop iterations
only, and not between statements within the iteration body.

Method-based Segments Segments can be defined by calls
and returns to certain methods, e.g. methods implementing
ADT operations. Instructions executed by the body of such
a method, including instructions executed by methods called
indirectly from it, are represented by a single transition in
the abstract trace. Dependencies computed from the result
of this abstraction are between ADT operations, but based
on concrete memory locations, which reflect the internals of
an ADT implementation. To abstract away from internals,
we combine this abstraction with an abstraction of states,
described in the next section.

5.3 Abstraction of States

The definition of dependencies from Section 4.1 can be ap-
plied to any abstract trace that satisfies a simple requirement
whereby abstract states essentially map (abstract) memory
locations to (abstract) values: o7 : L# < V#_ Intuitively,
abstract memory locations enable more precise approxima-
tion of commutativity between statements. Instead of testing
for conflicing accesses to concrete memory, we consider a
more abstract notion of conflict that stems from a semantic
dependency between the statements.

Let 3: ¥ — X% be an abstraction function mapping
concrete to abstract states (see examples of 3 in Section 6).

4 = . Logical

Figure 8. Concrete versus logical representation of a Map
instance

Legend:

Map
sLinked entry
/ al

Concrete

*Value

Lett = (71,...,7,) be a trace. The abstraction of ¢ using
B is the trace tfg L (77, ... 7#), where fori = 1,...,n,
7 2 (B(0y),p, B(0})). (In what follows, we omit the /3
subscript when £ is clear from the context.)

A transition 7% = (0% p,o'#) is in T if and only if
there exist 0,0’ € ¥ such that B(0) = o7, B(0') = o'#
and o’ = [p] (o).

Note that we cannot compare read (or write) sets of con-
crete and abstract traces, because these sets refer to different
domains of memory locations, L and L# (unless abstrac-
tion « has some special properties, which we do not require
here). However, dependencies are comparable, because there
is a one-to-one correspondence between the transitions in a
given trace and its abstraction (when we ignore cm annota-

tions of memory locations on dependencies).

6. Representation Functions

The abstractions presented in Sections 5.2-5.3 provide the
basis for defining and utilizing ADTSs, which is the focus of
this section. To this end, we introduce a simple notion of
representation allowing the programmer to define a logical
view for a concrete store [18], as illustrated in Fig. 8.

A key question in the representation of data structures is
what type of encapsulation to enforce on them to guaran-
tee representation independence. Another question is how to
express representation functions (or relations). In this paper,
we employ a restrictive definition of a representation func-
tion based on the notion of ownership as domination [29].
Considering concrete trace ¢t and ADT a with set ops of op-
erations, we assume our ability to interpret invocation state-
ments in (transitions in) ¢ as operations from ops. We fur-
ther assume that the concrete implementation of an ADT is
rooted at some base object. The internal state of the ADT
implementation is only accessible via the root object. For
example, in call m.put (k,v) corresponding to the put op-
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eration of the Map ADT, argument m points to the root of the
Map implementation.

A representation function for ADT a, rep,, operates on a
concrete state o by replacing certain concrete memory loca-
tions by a set of abstract locations. Intuitively, the removed
locations comprise the concrete state of data structures im-
plementing a, and the abstract locations introduced in their
stead represent the abstract state of these data structures ac-
cording to a. rep, operates only on heap locations. rep, may
operate on heap location m = (o, f) defined in o only if it
is owned by the root r of some implementation of a, where
ownership is equated with domination: Every heap path in o
(consisting of zero or more edges) reaching o goes through
r. For simplicity, we assume that ADT operations do not ac-
cess heap locations outside the ADT.

We note that more permissive definitions of a represen-
tation function can be used at the cost of complicating the
formal discussion [10]. For our needs, the above definition
suffices. It is also compatible with the ADTs we defined for
our evaluation (described in Section 7), at least with regard
to the traces we considered.

6.1 Abstraction via Representation Functions

Based on the specifications of ADTs ay, ..., a, we would
like to define a state abstraction function 5: ¥ — X#.
For this, we assume that for all ¢ # j, a; and a; operate
on distinct memory locations and produce disjoint sets of
abstract memory locations. We can thus define 3 as follows:

B=XeX.(o)\ Lﬂ rem(repq,,o)) U E—J add(rep,,, o)),

1<i<k 1<i<k

(10)

where rem(rep,, o) denotes the set of concrete locations

defined by o that are abstracted away by rep,, and add(rep,, o)

the set of abstract locations introduced by rep,.

Parallelization with ADT's Information collected about de-
pendencies between ADT operations is actionable for paral-
lelization assuming that the following two properties hold:

1. Encapsulation. If the client treats the ADT as such, and
is unaware of its implementation details, then the exist-
ing ADT implementation can be replaced with relative
ease. This amounts to the requirement that the memory
locations the representation function operates on are not
manipulated outside of ADT operations. (That is, these
locations are neither read nor written by transitions not
corresponding to operations of the ADT.) This can easily
be verified for a single trace (or finitely many traces).

2. Atomicity. As discussed in Section 3, we assume an in-
terleaving semantics of concurrency. The trace I(¢) af-
ter method-based segments abstraction according to ADT
operations represents (long) sequences of concrete in-
structions as single ADT invocations. Reasoning about
interleavings at the level of ADT invocations (i.e., entire
segments), and not their constituent instructions, assumes

Basic Computation of Abstract Read and Write Sets

Inputs:
{{a1,repa,), ..., (ak,Tepaq, ) }: representation functions
7 = (0, p,0’): transition in I[az, ..., ax](t)
[r, w]: read and write sets

ABSREADWRITE:
7# = ABS(T)
return READWRITE(77)

ABS(T):
foreach a; € {a1,...,ax}
if7 € Ta,,; return (B[repa;] (o), p, B[Tepai](UI»
return 7

READWRITE(7%):
if 7 € T return (args(7%) U abs(F%), write(77))
else return (r(77), w(7%))

Figure 9. Basic algorithm for computing abstract read and
write sets using representation functions

that the invoked operations execute without interruption.

For a transformation based on this to be valid, the ADT

operations must be atomic. This guarantee can be pro-

vided by a linearizable [17] implementation of the ADT.
Given that these two requirements are met, Lemma 4.2 holds
for I(t).

6.2 Computing Dependencies

To compute dependencies in a sound manner relative to (4)
and (3), we must introduce a tractable approximation of (4),
which is not computable in general (e.g., if £7 is infinite).
Assuming encapsulation, as well as disjointness between
the operations of distinct ADTSs, we can use the algorithm
in Fig. 9 for computing the abstract read and write sets of
a transition, where (i) T, is the set of (segment) transitions
corresponding to ADT a and T = (Ji_, T.., (ii) S[repa]
denotes the state abstraction function obtained according
to (10) by using (only) rep,, (iii) args is an auxiliary func-
tion returning the set of all environment locations used and
defined by the statement in its argument transition, and (iv)
abs returns the set of abstract locations defined by the entry
(abstract) state of its argument transition.

Importantly, the algorithm in Fig. 9 uses rep,, and not
T€Day s - - -, T€Pq,, for abstracting the states of a transition
corresponding to an operation of ADT a, and does not ap-
ply abstraction at all to compute the read and write sets of
concrete transitions. The following claim asserts that no de-
pendencies are lost.

Lemma 6.1. Let Rep = {repq,,...,repa,} be repre-
sentation functions for ADTs ai,...,ar, and r,w read
and write sets that agree with ABSREADWRITE, instanti-
ated with Rep, on the transitions in segments abstraction
Ifay,...,ax)(t) of concrete trace t. Then if we assume that
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(i) all ADTs are encapsulated, and (ii) there is no sharing
between ADTs in terms of their operations, then

Dlread, write](I[ay, ..., ax](t)*) C

Dilr,w](Iay, ..., ax](t)),
where I[ay, ..., ay|(t)* is obtained by applying B[ai, . . ., ay]
to Iay, ..., a(t).
Proof. See Appendix C. O

A primary source of imprecision in ABSREADWRITE is
its conservative resolution of the read set of an ADT opera-
tion as the entire state of the ADT at the entry state, which
consists of all the abstract locations introduced by the ADT’s
reprsentation function. Another concern, related to perfor-
mance, is that computing the write set can be expensive, as
it entails exhaustive comparison between the abstract states
before and after an operation. We now address these con-
cerns.

6.2.1 Exploiting the Concrete Frame

Consider abstract transition 7 = (o, p, 0’} € I[a1, ..., ax](t)
corresponding to ADT a; and its respective read and write
sets according to (9), (7) and w(7T). We rewrite the entry
and exit states of T as follows:

o =o\{{l,o()) |1 € dom(a) \ (r(T) Uw(T))}
o' =o' \ {{l,o'(1)) | L € dom(o") \ (r(T) Uw(T))}

That is, we omit the frame of 7 from the entry and exit
states, which yields entry and exit states o and o’ that are
by definition indistinguishable from o and o”, respectively,
from the perspective of 7. B

Applying rep,, to 7 = (7, p, '), and not to 7, is prefer-
able since portions of t}le concrete implementation(s) of a
are absent from o and o’. This suggests a smaller abstract
read set, as well as more efficient computation of the abstract
write set.

While reliance on concrete memory accesses may im-
prove the accuracy of the analysis, it comes at the cost of
tracking concrete reads and writes during the execution of
ADT operations. Moreover, there is still the threat that the
implementation of an ADT operation is naive in that its foot-
print is much larger than the best read and write sets.

Consider for example an implementation of the Map ADT
where the get operation performs linear traversal of all the
keys stored in the map until a match is found. In the worst
case, the concrete read set of the get implementation may
translate into an abstract read set consisting of the entire state
of the Map, which is not much of an improvement compared
to the read set prescribed by ABSREADWRITE. This can be
remedied by capturing the frame of the get operation at a
more abstract level.

6.2.2 Exploiting the Abstract Frame

The semantics of ADT operation op may enable partition-
ing the abstract state immediately preceding its invocation
into two disjoint areas corresponding to (a safe approxima-
tion of) the frame and the footprint of op, where the abstract
locations in op’s frame are not needed to establish a sound
commutativity specification. This is exemplified by the par-
tial specification in Fig. 7 provided for the Map ADT.

Importantly, the Map spcification in Fig. 7 relies on a
prohibitive representation of the state of a Map where a Map
instance m contains a field & for every allocated object k,
and not only for stored keys. This allows, e.g., a sound yet
precise read set for containsKey even if the queried key is
not stored in the concrete Map instance. A sound read set can
also be obtained using a more concise description of a Map,
but it would be less precise than the one in Fig. 7 in terms of
its corresponding commutativity specification.

Knowledge of ADT semantics enables specialization of
the representation function by taking into account the per-
formed operation along with its arguments. In practice, this
translates into specialization of the representation function
based on the call statements in the trace in the context of
their entry state.

Since at each point we need only represent the abstract
footprint of an operation, we can implicitly define an abstract
state whose explicit representation is prohibitive by referring
only to parts of it when describing the footprint of an opera-
tion, as is done in Fig. 7. Even when explicit representation
of the abstract state is possible, there is still an important
gain by considering only a (small) portion of it for the rea-
sons mentioned in Section 6.2.1; namely, a smaller read set,
as well as more efficient computation of the write set.

6.2.3 Advanced Version of ABSREADWRITE

An overload of ABSREADWRITE incorporating the en-
hancements described above is presented in Fig. 10. Note
that conceptually, CONCFILTER and SPECTIALIZE commute.
We can either start by removing the concrete frame of the
transition, and then build an abstraction of the entry and
exit states that also takes into account the abstract frame of
the transition (as shown in Fig. 10), or vice versa. This is
because the concrete implementation is known to comply
with the ADT’s semantics, and so the concrete footprint al-
ready enables a safe approximation of the abstract locations
needed toward sound commutativity constraints.

Further note that both CONCFILTER and SPECIALIZE are
optional, and moreover, any combination of these enhance-
ments is valid. By letting r(7) = L and w(7) = L', we ef-
fectively disable the concrete-frame heuristic. Analogously,
by letting v(7) = rep, where T corresponds to an operation
of ADT a and rep, is the generic representation function of
a, we skip the abstract-frame representation.
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Enhanced Computation of Abstract Read and Write Sets

Inputs:
7 = (o, p,0’): transition in I[a1, ..., ax](t)
v = [7 — rep= | T € T): specialized representations
[r, w]: read and write sets

ABSREADWRITE:
if 7 ¢ dom(v) return (r(7), w(7))
7 = CONCFILTER(T)

7 = SPECIALIZE(F)
~# ~# =
return (args(T" ) Uabs(T" ), write(T"))

CONCFILTER(T):
g =o\{{l,o()) | I € dom(a) \ (r(T) Uw(T))}
o' =o' \{{l,o'(1)) | L € dom(c") \ (r(7) Uw(7))}

return (o, p, o’)

SPECIALIZE(T):

return (B[v(7)](0), p, Blv(T)](0))

Figure 10. Advanced version of the algorithm for comput-
ing abstract read and write sets using representation func-
tions

7. Implementation and Evaluation

In this section, we first provide details about the implemen-
tation of HAWKEYE (Section 7.1). We then describe two sets
of experiments we conducted to evaluate HAWKEYE’s util-
ity. In the first experiment (Section 7.3), we measure the re-
duction in reported dependencies due to semantic conflict
detection. The second experiment (Section 7.4) goes beyond
these raw numbers to assess the value of HAWKEYE as an
aid in end-to-end parallelization.

7.1 Implementation Details

HAWKEYE is implemented atop Chord [1], an extensible
static and dynamic program-analysis framework for Java
bytecode based on the Joeq compiler infrastructure [37] and
the Javassist bytecode-instrumentation library [12]. HAWK-
EYE accepts as input (i) a program description in the form of
a Chord properties file, which includes the program’s class
files, main entry point, and input data for one or more runs
of the program, (ii) a (dynamic) parallelization scope where
dependencies should be tracked (e.g., a loop, a method-stack
configuration, etc), and (iii) a specification for one or more
ADTs.

The algorithm implemented by HAWKEYE is illustrated
in Fig. 11. For clarity, the algorithm in Fig. 11 is a slightly
simplified version of the actual HAWKEYE algorithm, where
the parallelization scope is a single loop executing at most
once. This suffices for the experiments described in this
section. The dependencies computed by the analysis are at
the granularity of ADT operations (and not loop iterations):
Each of the transitions involved in a dependency is either an
ADT operation or a concrete transition. The loop-based seg-

Computation of Loop-carried Dependencies

Inputs:
t: concrete trace
{ai,...,ar}: ADT specifications
l: loop identifier
[r, w]: read and write sets

DEPENDENCIES:
(tm,t1) = SEGMENTS(t, {a1,...,ar},1)
G(tm) = DEPGRAPH(M (1), [rr, w])
G(t;) = DEPGRAPH(L(M (t)), [r, w])
return
{{(r1,72) € Ec(t,) | (T1,73) € Et,)- 11 € T1 AT2 € T3}

SEGMENTS(t, {a1,...,ar},1):
M(t) = METHODSEGMENTS(t, {a1,...,ar})
L(M(t)) = LOOPSEGMENTS(M (t),1)
return (M (t), L(M(t)))

DEPGRAPH(t, [r, w]):
V={ret}
E = {(11,72) € D[r,w](t)}
return (V, E)

Figure 11. Algorithm for computing loop-carried depen-
dencies

ments abstraction is used to eliminate dependencies where
both transitions map to the same loop iteration.

7.2 Experimental Setup

We performed our experiments with the IBM J9 V1.6.0 VM
running on 32-bit Linux atop a Lenovo X201 laptop with
4GB of RAM. ADTs from the Java Collections Framework,
as well as the graph ADTs in JGraphT and Boruvka, were
specified using the abstract-frame enhancement. We man-
ually specified the abstract footprint of operations exposed
by these ADTs, as depicted in Fig. 7. For all the remain-
ing ADTs (and benchmarks), a single representation func-
tion was defined, and the analysis inferred a refined read set
according to the concrete-frame heuristic described in Sec-
tion 6.2.1.

7.3 Number of Reported Dependencies

The purpose of the first experiment was to gain a quantita-
tive measure of the decrease in the number of reported de-
pendencies under abstraction. Our research hypotheses were
the following:

1. Importance of abstraction. There is a significant gap
between the number of dependencies reported with and
without abstraction.

2. Important of user ADTs. Use of user-provided repre-
sentation functions is significant in dependency reduc-
tion compared to the baseline analysis that relies solely
on built-in representations for library ADTs.
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Name [ Ver. [ Description Trace Len.

Boruvka 2.1 Solver for the minimum 813,382
spanning tree problem

PMD 4.2 Java source code analyzer | 2,190,213

JGraphT [4] 0.8.1 | Graph library 710,580

JFileSync [3] 2.2 | Utility for synchronizing 1,733,552
pairs of directories

Weka [6] 3.6.4 | Machine-learning library 17,945,255
for data-mining tasks

Cobertura [2] 1.9 Java code coverage 2,629,457

(rc2) | analysis

WebLech [5] | 0.0.3 | Web-site download and 4,840,544

mirror tool

Figure 12. Benchmark characteristics

To test these hypotheses, we implemented a variant of
HAWKEYE, which we dubbed MOLEYE, that differs from
HAWKEYE only in the value it assigns to [r,w]: Where
HAWKEYE uses abstract read and write sets according to
ADT semantics, MOLEYE relies on (9), which amounts to
“localizing” concrete dependencies within ADT calls to their
corresponding call sites.

We then ran both analyses on seven real-world bench-
marks. The benchmarks’ details appear in Fig. 12. From
each benchmark, we selected a single loop as the analysis’
parallelization target, as follows: We first defined the bench-
mark’s entry point (either its main method or a unit test ex-
ercising its core functionality). We then ran a profiling anal-
ysis several times, each time with a different input. Loops
whose number of iterations was not a function of the input
(e.g., initialization loops) were discarded. Of the surviving
loops, we chose the one with the highest average number of
instructions per iteration.

The analyses were ran in two configurations:

1. The “Collections Only” (CO) configuration treats only

Java collections (such as Set, Map and List) as ADTs.
2. The “Collections and User Types” (CU) configuration

subsumes the CO configuration by also treating certain

interfaces and classes in user code as ADTs. These ADTs
are benchmark specific.

Results Table 1 summarizes the results. For each configu-
ration, we provide the results by both analyses according to
two counts: The “All Dep.s” count is the total number of
dependencies reported by the analysis according to the al-
gorithm in Fig. 11. “ADT Dep.s” considers the subset of all
dependencies where both the source and the target transi-
tions occurred during ADT operations. Dependencies out-
side ADT operations, such as those involving the induction
variable, are not included in the “ADT Dep.s” count. Fig. 13
visualizes the differences between the CO (blue) and CU
(blue and red) configurations in trace coverage.

1.0
0.8 - e
0.6 - — @ AIll Events
04 1 B Collections and
02 - User Types
[ Collections Only
0.0 T
NGO PSR RN GG
o‘é & ké\ $0 95& &
& (9 <(\ (}50 $®

Figure 13. Visualization of the proportion of ADT opera-
tions in the subject loops

7.4 End-to-end Parallelization using HAWKEYE

The second experiment was designed to provide qualitative
insight into the value of HAWKEYE as a user aid in end-to-
end parallelization. For this, we selected three of the seven
benchmarks used for the first experiment.

We then applied the following parallelization methodol-
ogy:

1. Run HAWKEYE on several representative execution traces.

2. Perform shallow review of the reported dependencies to
decide whether additional (user) ADTs should be speci-
fied. If further ADTs are required, then augment the spec-
ification and return to the first step.

3. Perform in-depth review of the surviving dependencies,
and — if needed — transform the code to address these
dependencies. If the program was changed, then return
to the first step using execution traces of the transformed
program.

4. Manually verify the correctness of the transformed pro-
gram.

PMD PMD is part of the DaCapo suite [9]. It accepts a
set of Java classes as input, and analyzes them for a range
of source-code problems. PMD has both a sequential and a
parallel version. In the concurrent version of PMD, different
classes are analyzed in parallel to each other.

Our first run of HAWKEYE on PMD yielded close to
300 dependencies. Many of these dependencies involved
the Report and BenchmarkResult classes, which moti-
vated treatment of these types as ADTs. Rerunning the
analysis with the augmented specification yielded many
fewer depedencies, of which five were due to operations
of BenchmarkResult and Report. These five dependen-
cies turned out to be important (e.g., conflicting updates to
global counters maintained by BenchmarkResult, such as
the total time spent in each rule and the number of AST
nodes it visited).

We addressed these dependencies by privatizing shared
data and merging between its different copies at the end of
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Collections Only Collections and User Types
Benchmark
HAWKEYE MOLEYE HAWKEYE MOLEYE
All Dep.s [ ADT Dep.s | All Dep.s [ ADT Dep.s | All Dep.s [ ADT Dep.s | All Dep.s [ ADT Dep.s

Boruvka 227 90 414 277 51 30 289 268
PMD 289 3 307 21 88 5 103 20
JGraphT 58 3 106 51 40 0 66 26
JFileSync 155 5 178 28 19 13 42 36
Weka 11,859 0 11,859 0 21 0 103 82
Cobertura 448 0 496 48 15 0 18 3
WebLech 48 5 63 20 44 6 58 20

Table 1. Benchmark statistics according to the algorithm in Fig. 11

the parallel loop. We then repeated all steps of the paral-
lelization process, and confirmed that the important depen-
dencies are no longer present and no more code changes are
required. Comparison to the parallel version of PMD showed
that our transformed program was correct (though the de-
velopers of PMD chose to use lock-based synchronization,
instead of privatization, for some of the shared data).

JFileSync JFileSync is a utility for comparing and synchro-
nizing pairs of directories. The JFileSync code makes heavy
use of design patterns, and in particular, the singleton pat-
tern, which forces sharing.

Running HAWKEYE on JFileSync with only collection
representations yielded a rather noisy report containing
160 candidate impediments to parallelization. The vast ma-
jority of reported dependencies were traceable to classes
JFSProgress and JFSComparisonMonitor. This led us
to add a specification for these classes. With the augmented
specification in place, many fewer dependencies were re-
ported. Of the 19 remaining findings, 13 were still due to
JFSProgress and JFSComparisonMonitor. All these de-
pendencies were found to be real, and stemmed from use of
these classes as singletons.

To resolve the discovered impediments, we applied priva-
tization transformations that exploded the singleton objects
into multiple copies and then, after the main loop, again re-
duced the separate copies into a single object. We verified
that the found dependencies were absent from the resulting
program by running the parallelization process from scratch
on it. We then manually confirmed that the resulting program
was correct by (i) exercising it on various test inputs and (ii)
carefully reviewing its code.

WebLech WebLech is a website download and mirror tool
that emulates standard web-browser behavior. WebLech sup-
ports multithreaded execution, but can also be run sequen-
tially. For our experiment, we disabled all forms of synchro-
nization in WebLech, so that it could be treated as a gen-
uinely sequential application.

The results from running HAWKEYE on WebLech mo-
tivated consideration of the Spider class as an ADT. This
yielded negligible reduction in the number of reported de-
pdendencies, but those were relatively few to begin with

(< 50). Manual review of the ADT-related dependencies
showed them to be real impediments to parallelization due
to dependent accesses to internal Spider data structures
that must occur atomically (e.g., checking whether a URL
is scheduled for download via a contains call on the set
of scheduled URLs, and attempting to add the URL to the
download queue only if the answer is negative).

We transformed WebLech by unifying dependent calls
into linearizable Spider operations, and then reran the par-
allelization process on the transformed program. This con-
firmed that the impediments were no longer present and no
further code changes were required. Comparison to the orig-
inal code of WebLech indicated that the program we have
arrived at was correct.

7.5 Discussion

The numbers in Table 1 provide strong confirmation our hy-
pothesis on the importance of abstraction: The overall num-
ber of ADT-related dependencies reported with abstraction
is 106 in the CO configuration and 54 in the CU configu-
ration, compared to 445 and 455, respectively, without ab-
straction. With only collection ADTs, 77% of the ADT-
related dependencies are suppressed, and if user types are
also treated as ADTs, then 89% of the original dependen-
cies are omitted leaving the developer with an average of 7.7
dependencies to review (30 being the maximum).

As for the value of user ADTs, naive interpretation of the
results is misleading. User ADTs yield a more abstract trace
(with fewer abstract transitions that represent more concrete
transitions) compared to using collection ADTs alone, and
so the number of dependencies is bound to decrease regard-
less of whether user ADTs actually improve matters. Still,
the results on JGraphT, Weka and Cobertura are an encour-
aging indication that this extra specification effort is worth-
while. In the first case, the addition of user ADTs annihi-
lated all ADT-related depedencies, and in the second and
third cases, the overall number of dependencies decreased
by a considerable factor (of 582 in Weka and 30 in Cober-
tura) without introducing a single ADT-related dependency.
In terms of raw coverage, Fig. 13 indicates that the gap be-
tween the CO and CU configurations is nonnegligible with
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an average difference of 32% between the two configura-
tions.

Our qualitative study on end-to-end parallelization also
supports our hypothesis on user ADTs. Augmenting the
specification with user types proved to be key to arriving
at a manageable report that can be processed manually, and
simultaneously also removing large sources of noise. More
generally, we found the methodology used for the second
experiment to be highly effective. It required few iterations,
allowed us to quickly converge on the real impediments to
parallelization, and led us in all three cases to acceptable
programs that are amenable to parallelization.

For the transformations we performed — which either
reduced sharing via privatization or encapsulated accesses
to shared data in ADT operations — we could also verify
that the impediments found in the original program were
absent from the transformed program. We note, however,
that this may not be the case in general. For example, a
synchronization transformation that governs unsafe accesses
to shared data by locks is likely to preseve dependencies, in
which case HAWKEYE may still report (some of) the original
dependencies on the transformed program.

8. Related Work

In this section, we survey closely related research on soft-
ware parallelization. For other studies where abstraction
is applied during dynamic analysis, the reader is referred
to [24, 25] and references therein. Research on program
slicing, where accurate tracking of data dependencies is a
key challenge, is discussed in [19, 36] and works they cite.

Parallelizing Compilers Compile-time code parallelization
is a long-standing research problem that dates back to the
early days of the Fortran compiler, which exploited Fortran’s
strong aliasing guarantees to prove the safety of its trans-
formations. The SUIF [14] compiler framework is designed
to study parallelization in shared-memory and distributed-
shared-memory machines, and has been the basis of several
parallelization techniques, including affine partitions [26]
and linear inequalities [7].

A survey of compiler optimizations of imperative pro-
grams for parallel architectures, which typically rely on
tracking the properties of arrays using loop dependence anal-
ysis, is provided in [8]. [34] describes how to compute the
transitive reduction of the data-dependence relation, an opti-
mization we use in our dynamic analysis.

Commutativity analysis, a parallelization technique that
exploits commutativity between operations on objects to un-
cover parallelization opportunities, is introduced in [30-32].
This technique was implemented in a compilation system as
a set of automatic analysis algorithms. Our approach follows
a similar motivation, though it bases commutativity judg-
ments on ADT semantics rather than automated analysis of
implementation code. Moreover, the instantiation of our ap-
proach as a dynamic analysis entails different challenges in

performance and accuracy, and consequently also different
algorithms.

Transactional Memory Transactional boosting [16, 20] is
a methodology developed to avoid redundant conflicts in
traditional software transactional memory (STM) systems,
which synchornize on the basis of read/write conflicts. In-
stead of checking for competing memory accesses, transac-
tional boosting promotes the notion of abstract locks: Each
invocation of a boosted object (which is assumed to be lin-
earizable) is associated with an abstract lock; two abstract
locks conflict if their corresponding invocations do not com-
mute.

The Galois system [23] facilitates parallelization of ir-
regular applications, which manipulate pointer-based data
structures like trees and graphs. Galois provides syntactic
constructs for expressing optimistic parallelism, as well as a
runtime scheme for detecting potentially unsafe accesses to
shared memory and performing recovery. Similar to transac-
tional boosting and our approach, Galois bases conflict de-
tection on semantic rather than concrete commutativity be-
tween operations, which depends on ADT semantics.

A framework for reasoning about conflict-detection schemes

expressed as commutativity conditions is presented in [22].
Different commutativity specifications for the same ADT,
which are each phrased as a set of predicates associated with
pairs of operations, are mapped into a unified representa-
tion, the commutativity lattice. The commutativity lattice
orders the specifications by the amount of parallelism they
permit. [22] also shows ways of systematically constructing
commutativity checkers based on commutativity specifica-
tions from the lattice.

Our analysis also tracks dependencies at the semantic
level (and can thus be used to uncover STM-based paral-
lelization opportunities, as shown for Boruvka), but is not
specific to transactional memory. Also, representation func-
tions are a different way of expressing commutativity than
the specifications of [22] and the abstract locks of [16].

Profiling The critical path, defined as the longest path
whose instruction instances must be executed sequentially,
is used by [15] as an optimistic measure of available par-
allelism. Their tool operates on concrete traces, and com-
putes the ratio 3 between trace length (n) and the length
of the critical path (k) for several sequential benchmarks
from the DaCapo suite [9]. Loops L exhibiting good paral-
lelization potential are reported as promising parallelization
candidates, where a loop’s potential is defined as the ratio
%, where L; is an instance of L, and [(L;) and |L;|
denote the length of L;’s critical path and the overall number
of instructions it executed, respectively.

ParaMeter [21] produces parallelism profiles for irregu-
lar programs iterating over worklists using Galois set itera-
tors [23]. These profiles show how many worklist items can
be executed concurrently at each step of the algorithm as-
suming an idealized execution model. ParaMeter also com-
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putes the parallelism intensity of an algorithm by dividing
the amount of work executed in each round by the total
amount of work available for execution at that time, i.e., the
size of the worklist.

Determinism The guarantees made by our analysis regard-
ing the parallel execution of a sequential trace relate to an
extensive body of research on finding and preventing un-
wanted behaviors in parallel programs due to nondetermin-
istic thread interleavings. [11] proposes an assertion frame-
work for specifying that regions of a parallel program behave
deterministically despite arbitrary thread interleavings. The
framework allows a programmer to specify that if block P
of parallel code is executed twice (with potentially differ-
ent schedules), from initial states s and s, satisfying user-
provided precondition Pre, then the respective final states s
and s’ must satisfy user-provided postcondition Post.

SingleTrack [35] is a dynamic analysis that verifies a
stronger form of determinism, where the parallel compu-
tation must be free of both external interference (external
serializability) and race conditions due to communication
between threads (conflict freedom). These conditions ensure
that every schedule produces bitwise identical results.

The notion of equivalence employed by our analysis
(cf: Section 3) can be expressed in terms of the Pre and
Post predicates of [11], where Pre enforces equality of the
entry states and Post demands that the final states modulo
the ADT implementations be identical, and the ADT imple-
mentations have identical abstract states.

9. Conclusion

Dependence analysis provides useful information for paral-
lelization, but its value is often impaired by conservative re-
porting of dependencies. We have investigated the benefit of
leveraging ADT semantics toward more accurate reporting
of dynamic dependencies. Experiments we have conducted
on seven real-world benchmarks show that a significant por-
tion of the execution (86%) is spent in ADT operations, and
more importantly, the vast majority of concrete dependen-
cies (89%) reported between ADT operations are annihilated
when ADT semantics are taken into account, and the remain-
ing dependencies are largely real. Our tool, HAWKEYE, was
further demonstrated to be effective as a parallelization aid.
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A. Proof of Lemma 4.1

Let r,w and 7/, w’ be two pairs of read and write sets satis-
fying that for all 7 € T, r(7) C 7/(7) Uw'(7) and w(7) C

w'(7), and consider trace ¢t. Assume that (7,7) € D[r, w|(t).
Then by (6) and (7), at least one of the following is true:
w(T) Nw(T) # &, w(r)Nr(T) # @, orr(r) Nw(T) £ .

If w(T)Nw(T) # &, then necessarily v’ (7)Nw'(T) # &.
As for the option that w(7) Nr(7) # @, letl € w(T)Nr(T).
Then either [ € w'(7) N7/(7) or I € w'(7) Nw' (7). In
both cases, (7,7) € D[r’,w’](t). The third and final option
is handled symetrically.

B. Proof of Lemma 4.2

The first part of the claim follows from the observation that
given transition 7, = (0, p;, 0}), piy1 cannot distinguish
between o; and o/, since all the memory locations it accesses
in o} = 0,41 are also defined in o; and have the same value
there. The same reasoning applies to p;.

We prove the second part of the claim by induction on
the length n of a shortest sequence of adjacent transpositions
required to bring § (the permutation transforming P (t) into
]3(?)) into order. (Such a sequence is guaranteed to exist.)
We further argue that the natural number m satisfying ¢ =,,,
t is n. For the base case where n = 1, we can use the
first claim proved above, since the transposed statements are
adjacent, and their corresponding transitions (in t) are not
dependent. Commutativity between the statements implies
that traces ¢ and ¢ have the same final state, and thus ¢ =, 7.

For the induction step, we assume that a shortest sequence
of adjacent transpositions transforming § into the identity
permutation is of length n 4+ 1. We rely on the fact that
we can choose a shortest sequence where at the k-th step,
transposition 7, = (4,7 + 1) operates on a descent of § as
modified so far (i.e., 5 (7) > 0 (7 + 1), where 61 = § and
Om+1 = Tm(dm)). Let S be such a sequence and m; =
(i,i+ 1) the first transposition in S. Applying 71 to P(%)
removes descent i. Observe that for all (7, 7;) € D[r, w](t),
om1(i) < dm1(j), since the application of 71 to J merely
removes an inversion. Thus, by the induction hypothesis, if
we consider the trace ¢ corresponding to schedule f’(tA)m
run from starting state oy, then t =, t. Since t = t, we
conclude thatt =, 1, which completes our proof.

C. Proof of Lemma 6.1

We show that if memory location [ is in the read set of
7% = (o#,p,0'#), then it is either in the read set or the
write set computed by ABSREADWRITE for 7 = (o, p, 0’),
and if [ is in the write set of 7#, then it is in the write set
computed by ABSREADWRITE for 7. We split our proof
into four cases:

Case 1: | is an environment location, and T is a non-
ADT transition. Since ABSREADWRITE does not apply
abstraction and uses conservative read and write sets, [ is
treated conservatively.

Case 2: | is an environment location, and T is an ADT
transition. [ is preserved by the relevant abstraction function,
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Blrepa,], since rep,, only operates on heap locations. If [ is
read by 77, then it must be an argument of p (or the result,
if the value of the defined variable remains unchanged), in
which case it is also in the read set assigned to 7. If [ is
written by 77, then this is because its value has changed
between the entry and exit states. ABSREADWRITE also
uses write, and thus [ is guaranteed to also be in the write
set of 7.

Case 3: lis a heap location, and 7 is a non-ADT transition.
By our assumption of encapsulation, [ is a concrete heap lo-
cation. ABSREADWRITE treats [ conservatively in refrain-
ing from applying abstraction and using conservative read
and write sets.
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Case 4: | is a heap location, and 7 is an ADT transition.
By our (simplifying) assumption that ADT operations do not
manipulate heap locations outside the ADT, we conclude
that [ is part of the state of some ADT a. By our assump-
tions regarding encapsulation and disjointness of ADT op-
erations, we know that it suffices to base S only on rep,
to observe accesses to [ in transition 77. If [ is read by
77 then it is also read under ABSREADWRITE since the
entire state of a is considered read. If [ is written by 77,
then ABSREADWRITE also marks it as read since it applies

write to Srep,|(o) and Blrepq](o’).





