Symbolically Computing Most-Precise Abstract
Operations for Shape Analysis

G. Yorsh* T. Reps' M. Sagiv*
September 5, 2003

Abstract

Shape analysis concerns the problem of determining “shape invariants”
for programs that perform destructive updating on dynamically allocated
storage. This paper presents a new algorithm that takes as input a shape
descriptor (describing some set of concrete stores X) and a precondition
p, and computes the most-precise shape descriptor for the stores in X that
satisfy p. This algorithm solves several open problems in shape analysis:
(i) computing the most-precise descriptor of a set of concrete stores rep-
resented by a logical formula; (ii) computing best transformers for atomic
program statements and conditions; (iii) computing best transformers for
loop-free code fragments (i.e., blocks of atomic program statements and
conditions); (iv) performing interprocedural shape analysis using proce-
dure specifications and assume-guarantee reasoning; and (v) computing
the most-precise overapproximation of the meet of two shape descriptors.

The algorithm employs a theorem prover; termination can be assured
by using standard techniques (e.g., having the theorem prover return a
safe answer if a time-out threshold is exceeded) at the cost of losing the
ability to guarantee that a most-precise result is obtained. A prototype
has been implemented in TVLA, using the SPASS theorem prover.

The results indicate that the technique is feasible. We are currently
developing a specialized decision procedure in order to conduct all the
above operations on realistic programs.

1 Introduction

Shape-analysis algorithms (e.g., [11]) are capable of establishing that certain
invariants hold for (imperative) programs that perform destructive updating on
dynamically allocated storage. For example, they have been used to establish
that a program preserves treeness properties, as well as that a program satisfies

*School of Comp. Sci., Tel-Aviv Univ., Tel-Aviv 69978, Israel. E-mail: {gretay, msa-
giv}@post.tau.ac.il.

TComp. Sci. Dept., Univ. of Wisconsin, 1210 W. Dayton St., Madison, WI 53706, USA.
E-mail: reps@cs.wisc.edu.

certain correctness criteria [6]. The TVLA system [7] automatically constructs
shape-analysis algorithms from a description of the operational semantics of a
given programming language, and the shape abstraction to be used.

The methodology of abstract interpretation has been used to show that the
shape-analysis algorithms generated by TVLA are sound (conservative). Tech-
nically, for a given program, TVLA uses a finite set of abstract values L, which
forms a join semi-lattice, and an adjoined pair of functions («,y), which form a
Galois connection [2]. The abstraction function o maps potentially infinite sets
of concrete stores to the most-precise abstract value in L. The concretization
function v maps an abstract value to the set of concrete stores that the abstract
value represents. Thus, soundness means that the set of concrete stores y(a)
represented by the abstract values a computed by TVLA includes all of the
stores that could ever arise, but may also include superfluous stores (which may
produce false alarms).

1.1 Main Results

The overall goal of our work is to improve the precision and scalability of TVLA
by employing theorem provers. In a companion submission [16, 15], we show
that the concretization of a shape descriptor can be expressed using a logical
formula. Specifically, [16, 15] gives an algorithm that converts an abstract value
a into a formula 7(a) that exactly characterizes y(a)—i.e., the set of concrete
stores that a represents '. This is used in this paper to develop algorithms for
the following operations on shape abstractions:

— Computing the most-precise abstract value that represents the (potentially
infinite) set of stores defined by a formula. We call this algorithm &(¢)
because it is a constructive version of the algebraic operation «.

— Computing the operation assume[p](a), which returns the most-precise
abstraction of the set of stores represented by a for which a precondition
¢ holds. Thus, when applied to the most general abstract value T, the
procedure assumne|p] computes a(p). However, when applied to some
other abstract value a, assume|y] refines a according to precondition ¢.
This is perhaps the most exciting application of the method described in
the paper, because it would permit TVLA to be applied to large programs
by using procedure specifications.

— Computing best abstract transformers for atomic program statements and
conditions [2]. The current transformers in TVLA are conservative, but
are not necessarily the best. Technically, the best abstract transformer of
a statement described by a transformer 7 amounts to assume|7](a), where
7 is formula over the input and output states and a is the input abstract
value. The method can also be used to compute best transformers for

L As a convention, a name of an operation marked with a “hat” “denotes the algorithm that
computes that operation.)

assume|@](a)

Figure 1: The assume[y](a) algorithm. The set X = [¢] N7(a) describes all
stores that are represented by a and satisfy .

loop-free code fragments (i.e., blocks of atomic program statements and
conditions).

— Computing the most-precise overapproximation of the meet of two shape
descriptors. Such an operation is useful for combining forward and back-
ward shape analysis to establish temporal properties, and when perform-
ing interprocedural analysis in the Sharir and Pnueli functional style [12].
Technically, the meet of abstract values a; and as is computed by a(J(a1)A

y(az)).

1.1.1 The assume Operation

can be used to perform interprocedural shape analysis using procedure speci-
fications and assume-guarantee reasoning. Here the problem is to interpret a
procedure’s pre- and post-conditions in the most precise way (for a given ab-
straction). For every procedure invocation, we check if the current abstract
value potentially violates the precondition; if it does, a warning is produced.
At the point immediately after the call, we can assume that the post-condition
holds. Similarly, when a procedure is analyzed, the pre-condition is assumed to
hold on entry, and at end of the procedure the post-condition is checked.

The core algorithm assume presented in the paper computes assume[p](a),
the refinement of an abstract value a according to precondition ¢. In the full pa-
per we show that the algorithm is correct, i.e., assume[p|(a) = assume|p](a) =
a([e]Ny(a)). Fig. 1 depicts the idea behind the algorithm. It repeatedly refines
abstract value a by eliminating concrete stores that do not satisfy ¢. It produces
an abstract value that represents the tightest set of stores in y(a) that satisfy
. Of course, because of the inherent loss of information due to abstraction, the
result can also describe stores in which ¢ does not hold. However, the result is
as precise as possible for the given abstraction.

1.1.2 The Use of Decision Procedures

Our algorithms make calls to a theorem prover, to investigate the semantic prop-
erties of abstract values by checking for non-emptiness of sets of concrete stores
described by formulas. However, in general, a theorem prover need not termi-
nate, depending on the decidability of the query formulas passed to a theorem
prover. The query formulas are conjuncts of (i) user-supplied specifications,
such as pre- and post- conditions; (ii) a characteristic formula, that includes
integrity rules; and (iii) the designated formulas that guide the refinement. The
satisfiability queries for formula of type (i) not including the integrity rules, and
for formulas of type (ii) are decidable, because these formulas are expressed us-
ing 3V subset of first-order logic. Thus, the termination depends on decidability
of the logic to express the integrity rules and the specifications. There is a trade-
off between the expressibility of the logic and its decidability. On one hand, the
logic must be expressible enough to allow verification of non-trivial properties.
On the other hand, the logic must be simple enough to allow decidability.

1.1.3 Prototype Implementation

To study the feasibility of our method, we have implemented a prototype of
the assume algorithm using the first-order theorem prover SPASS [14]. Because
SPASS does not support transitive closure, the prototype implementation is
applicable to shape analysis algorithms that do not use transitive closure [5, 3,
13]. The termination of the algorithm depends on the termination of SPASS,
which in turn depends on the decidability of the query formulas passed to a
SPASS. The decidability issues, including transitive closure, are handled in a
subsequent paper [4].

So far, we tried three simple examples: (i) assume of a precondition (x->n
== y) & (y !'= null), which is the running example of the paper, (ii) assume
of a precondition (x != null) && (y != null) on the abstract value T, and
(iit) the best transformer for y = x->n on the abstract value T. On all queries
posed by these examples, the theorem prover terminated. The number of calls
in the running example is 158, and the overall running time was approximately
27 seconds.

1.2 Outline of the Rest of the Paper

Section 2 presents the framework (its formal definition is in [11]) and the novel
assume algorithm at a semi-formal level. Section 3 presents the formal de-
scription of the assume algorithm. Section 4 describes the three algorithms
for computing basic operations used in shape analysis (best transformer, most-
precise abstraction and meet), that employ assume as a subroutine. Section 5
discusses related work. Section A provides the correctness proofs for assume.

Predicate | Intended Meaning

x(v) Does pointer variable x point to element v?
y(v) Does pointer variable y point to element v?
n(vy,ve) Does the n field of v point to vy?
eq(v1,v2) | Do vy and ve denote the same element?
is(v) Is v pointed to by more than one field ?

Table 1: The set of predicates for representing the stores manipulated by pro-
grams that use the List data-type from Fig. 2(a) and two pointer variables x,

y.

2 Overview

This section provides an overview of the framework and the results reported in
the paper. The formal description of the assume algorithm appears in Section 3.

As an example, consider the precondition, syntactically written using C
notations: (x -> n == y) && (y != null) (which will be abbreviated in this
section as p), where x and y are program variables of the linked-list data-type
defined in Fig. 2(a). The precondition p can be defined by a closed formula g <
Juyvg : x(v1) An(vy,v2) Ay(ve) in first-order logic. The operation assume[p(a)
enforces a precondition p on an abstract value a. Typically, a represents a set
of concrete stores that may arise at the program point in which p is evaluated.
The abstract value a used in the running example is depicted by the graph
in Fig. 2(S). This graph is an abstraction of all concrete stores that contain a
non-empty linked list pointed to by x, as explained below.

2.1 3-Valued Structures

In this paper, abstract values that are used to represent concrete stores are
sets of 3-valued logical structures over a vocabulary P of predicate symbols.
Each structure has a universe U of individuals and a mapping ¢ from k-tuples of
individuals in U to values 1,0, or 1/2 for each k-ary predicate in P. We say that
the values 0 and 1 are definite values and that 1/2 is an indefinite value,
meaning “either 0 or 1 possible”; a value [y is consistent with I3 when |1 =[5
orls =1/2.

A 3-valued structure provides a representation of stores: individuals are ab-
stractions of heap-allocated objects; unary predicates represent pointer variables
that point from the stack into the heap; binary predicates represent pointer-
valued fields of data structures; and additional predicates in P describe certain
properties of the heap. A special predicate eq has the intended meaning of
equality between locations. When the value of eq is 1/2 on the pair (u,u) for
some node u, then u is called a “summary” node and it may represent more
than one linked-list element. Table 1 describes the predicates required for a pro-
gram with pointer variables x and y, that manipulates a linked-list data-type,

defined in Fig. 2(a). 3-valued structures are depicted as directed graphs, with
individuals as graph nodes. A predicate with value 1 is represented by a solid
arrow; with value 1/2 by a dotted arrow; and with value 0 by the absence of an
arrow.

In Fig. 2(S), the solid arrow from z to the node u; indicates that predicate x
has the value 1 for the individual u in the 3-valued structure S. This means that
any concrete store represented by S contains a linked-list element pointed to by
program variable x. Moreover, it must contain additional elements (represented
by the summary node us, drawn as a dotted circle), some of which may be
reachable from the head of the linked-list (as indicated by the dotted arrow
from w; to ug, that corresponds to the value 1/2 of predicate n(ui,uz)), and
some of which may be linked to others (as indicated by the dotted self-arrow
on uy). The dotted arrows from y to u; and wus indicate that program variable
y may point to any linked-list element. The absence of an arrow from wus to
up means that there is no n-pointer to the head of the list. Also, the unary
predicate is is 0 on all nodes and thus not shown in the graph, indicating that
every element of a concrete store represented by this structure may be pointed
to by at most one n-field.

Any concrete store represented by the 3-valued structure in Fig. 2(S) includes
a heap with at least one linked-list element (represented by w;) that is pointed
to by x. Moreover, the heap must contain additional elements (represented by
uz), some of which are linked to others, and some of which are reachable from
the head of the linked-list.

We next introduce the subclass of bounded structures [10]. Towards this
end, we define abstraction predicates to be a designated subset of unary
predicates, denoted by A. In the running example, all unary predicates are
defined as abstraction predicates. A bounded structure is a 3-valued structure
in which for every pair of distinct nodes w1, us, there exists an abstraction
predicate ¢ such that ¢ evaluates to different definite values for u; and us. All
3-valued structures used throughout the paper are bounded structures, which
are the structures used in shape analysis to guarantee that the analysis is carried
out w.r.t. a finite set of abstract structures, and hence would always terminate.

2.2 Embedding Order on 3-Valued Structures

3-valued structures are ordered by the embedding order (C), defined below.
S C S’ guarantees that the set of concrete stores represented by S is a subset
of those represented by S’. Let S and S’ be two 3-valued structures, and let f
be a surjective function that maps nodes of S onto nodes of S’. We say that f
embeds S in S’ (denoted by S Ty S') if for every predicate g € P of arity k
and all k-tuples (uq,...,ux) in S, the value of ¢ over (uy,...,u) is consistent
with, but may be more specific than the value of q over (f(u1),..., f(ur)). We
say that S can be embedded into S’ (denoted by S T S’) if there exists a
function f such that S Tf S’

In fact, the requirement of assume[p](a) can be rephrased using embedding;:
generate the most-precise abstract value a’ that embeds all concrete stores that

/* list.h */
typedef struct node {

struct node *n;

int data;
} *#List; z
(a) ()

PO |90 | P00 Q0 -
z Y Y z Y Y

(S0) (51) (S2) (S3)
PO - |00 OB §O
T Y Y T Y T)

(54) (S5) (Ss) (S57)

Figure 2: (a) A declaration of a linked-list data-type in C. (S) The input abstract
value a = {S} represents all concrete stores that contain a non-empty linked list
pointed to by the program variable x, where the program variable y may point
to some element. (Sp—S7) The result of computing assume[p](a): the abstract

value o’ = {Sp, ..

., S7} represents all concrete stores that contain a linked-list of

length 2 or more that is pointed to by x, in which the second element is pointed

to by y.

(i) can be embedded into a, and (ii) satisfy the precondition p.

Indeed, the result of assume[p](a), shown in Fig. 2(S¢—S7), consists of 8
structures, each of which can be embedded into the input structure Fig. 2(S).
The embedding function maps u; in the output structure to the same node
u1 in the input structure. Each one of the output structures Sy—Sg contains
nodes u, and ug, both of which are mapped by the embedding to us in S.
Thus, concrete elements represented by u, and ug in the output structures are
represented by a single summary node wuy in the input structure. We say that
node u, is “materialized” from node us. As will shall see, this is the only new
node required to guarantee the most-precise result, relative to the abstraction.

For each of Sy, ..., S7, the embedding function described above is consistent
with the values of the predicates. The value of z on u; is 1 in .S; and S structures.
Indefinite values of predicates in .S impose no restriction on the corresponding
values in the output structures. For instance, the value of y is 1/2 on all nodes
in S, which is consistent with its value 0 on nodes u; and us and the value 1
on uy in each of Sp,...,Ss. The absence of an n-edge from wuy back to u; in
S implies that there must be no edge from u, to u; and from ug to u; in the
output structures, i.e., the values of the predicate n on these pairs must be 0.

2.3 Integrity Rules

A 2-valued structure is a special case of a 3-valued structure, in which predicate
values are only 0 and 1. Because not all 2-valued structures represent valid
stores, we use a designated set of integrity rules, to exclude impossible stores.
The integrity rules are fixed for each particular analysis and defined by a con-
junction of closed formulas over the vocabulary P, that must be satisfied by
all concrete structures. For the linked-list data-type in Fig. 2(a), the following
conditions define the admissible stores: (i) each program variable can point to
at most one heap node, (ii) the n-field of an element can point to at most one
element, (iii) ¢s(v) holds if and only if there exist two distinct elements with n-
fields pointing to v. Finally, eq is given the interpretation of equality: eq(vy,vs)
holds if and only if v; and vy denote the same element.

2.4 Canonical Abstraction

The abstraction we use throughout this paper is canonical abstraction, as
defined in [10]. The function 3 takes a 2-valued structure and returns a 3-
valued structure with the following properties:

— (8 maps concrete nodes into abstract nodes according to canonical names
of the nodes, constructed from the values of the abstraction predicates.

— (1is a tight embedding [11], i.e., the value of the predicate ¢ on an abstract
node-tuple is 1/2 when there exist two corresponding concrete node-tuples
with different values. Intuitively, § is the embedding function that mini-
mizes the information loss when multiple nodes of the 2-valued structure
are mapped to the same abstract node.

(a) (b)

Figure 3: Concrete stores represented by the structure S; from Fig. 2. (a)
The concrete nodes u3 and u3 are mapped to the abstract node us. (b) The
concrete nodes u3, u3 and u3 are mapped to the abstract node uz. More concrete
structures can be generated in the same manner, by adding more isolated nodes
that map to the summary node us.

A 3-valued structure S is an ICA (Image of Canonical Abstraction) if there
exists a 2-valued structure S% such that S = 5(S%). Note that every ICA is a
bounded structure.

For example, all structures in Fig. 2(Sy—S7) produced by assume[p](a) op-
eration are ICAs, and the structure in Fig. 2(S) is not an ICA. The structure in
Fig. 2(S1) is a canonical abstraction of the concrete structure in Fig. 3(a) and
also in Fig. 3(b).

The (§ function of canonical abstraction serves as a representation function
[8] to define our abstract domain. The abstract domain is a powerset of 3-
valued structures, where the order relation on sets of structures is a Hoare order
w.r.t. the embedding order on structures. The concrete domain is a powerset
of all 2-valued structures that satisfy the integrity rules. Concrete and abstract
domains are related by a Galois connection, in which the abstraction function
a is defined by extending 3 pointwise, i.e., «(W) = | Jgscy B(S%) where W is a
set of 2-valued structures. The concretization function 7 takes a set of 3-valued
structures W and returns a potentially infinite set of 2-valued structures such
that S% € (W) iff S? satisfies the integrity rules and 3(S%) C W:

(X) = S| S is 2-valued structure that satisfies the integrity rules
M= and B(S) C X
(1)

The requirement of assume[p](a) to produce the most-precise abstract value
amounts to producing a(X) where X is the set of concrete structures that embed
into a and satisfy p. Indeed, the result of assume[p|(a) in Fig. 2(So—S7) satisfies
this requirement, because Sy—S7 are the canonical abstractions of all structures
in X.

For example, structure S; from Fig. 2 is a canonical abstraction of each
of the structures in Fig. 3. However, S; is not a canonical abstraction of S
from Fig. 2,2 because the value 1/2 of n for (u,,us2) requires that a concrete
structure abstracted by S; have two pairs of nodes with the same canonical
names as (u,,u2) and with different values of n. This requirement does not

285 is a 2-valued structure, and is a canonical abstraction of itself.

hold in So, because it contains only one pair (u1,us) with the same canonical
names. Without Ss, the result would not include the canonical abstractions of
all concrete structures in X, but it would be semantically equivalent (because
Sy can be embedded into S7). The version of the assume[p](a) algorithm that
we describe does include Ss in the output. It is straightforward to generalize
the algorithm to produce the smallest semantically equivalent set of structures.

It is non-trivial to produce the most-precise result for assume[p|(a). For
instance, in Sp—S¢ there is no back-edge from uy to u, even though both nodes
embed into the node uy of the input structure, which has a self-loop with n
evaluating to 1/2. It is a consequence of the integrity rules that no back-edge can
exist from any uj to u, in any concrete structure that satisfies p: precondition
p implies the existence of an n-pointer from u; to u,, but u, cannot have a
second incoming n-edge (because the value of the predicate is on u, is 0).

Consequently, to determine predicate values in the output structure, each
concrete structure that it represents must be accounted for. Because the number
of such concrete structures is potentially infinite, they cannot be examined ex-
plicitly. The algorithm described in this paper uses a theorem prover to perform
this task symbolically.

Towards this end, the algorithm uses a symbolic representation of concrete
stores as a logical formula, called a characteristic formula. This provides a
uniform way for expressing set of stores, program conditions and statements and
procedure pre- and post-conditions, using logical formula. The characteristic
formula for an abstract value a is denoted by 7(a); it is satisfied by a 2-valued
structure S if and only if S* € y(a). The 7 formula for shape analysis is defined
in [15] for bounded structures, and it includes the integrity rules.

In addition, the necessary requirement for the output of assume to be a
set of ICAs is imposed by the formula g 4, ... u,, explicitly defined in Eq. (2);
it is used to check whether the value of a predicate ¢ can be 1/2 on a node-
tuple (uq,...,uk) in a structure S. Intuitively, the formula is satisfiable when
there exists a concrete structure represented by S that contains two tuples of
nodes, both mapped to the abstract tuple (uq,...,ug), such that ¢ evaluates
to different values on these tuples. If the formula is not satisfiable, S is not a
result of canonical abstraction, because the value of g on (uy,...,ux) is not as
precise as possible, compared to the value of ¢ on the corresponding concrete
nodes.

2.5 The assume Algorithm

The algorithm shown in Fig. 5 operates in two phases. The first phase causes
“materialization” of nodes from summary nodes, until the manipulated struc-
tures have the same canonical names as the concrete stores that satisfy ¢ and
embed into a. The second phase refines the structures by lowering predicate
values from 1/2 to 0 and 1, and throws away structures with predicate value
1/2 for an (abstract) tuple that do not represent a concrete structure that has
two corresponding tuples with different values of that predicate. at least one
corresponding tuples with value 0 and at least one corresponding tuple with

bif(y,u,)

bif(y,u,)

n(uy, uy)

eq(uy, u),)

eq(u,, uy)

n(uy, u,)

n(uy, u)v)

Figure 4: A computation tree for assume[p](a) for a shown in Fig. 2(a).
value 1.

3 The assume Algorithm

The assume algorithm is shown in Fig. 5. Section 3.1 explains the role of
the theorem prover and the queries posed by our algorithm. The algorithm
is explained in Section 3.2 (phase 1) and Section 3.3 (phase 2). Finally, the
properties of the algorithm are discussed in Section 3.4.

Fig. 4 shows a computation tree of the algorithm on our running example.
A node in the tree is labelled by a 3-valued structure, sketched by showing its
nodes. Its children are labelled by the result of refining the 3-valued structure
w.r.t. the predicate and the node-tuple on the right, by the values shown on
the outgoing edges. The order in which predicate values are examined affects
the number of calls to a theorem prover and the maximal number of explored
structures, but it does not affect the result. The order in Fig. 4 was chosen
for convenience of presentation. The root of the tree contains the sketch of the
input structure S from Fig. 2(S); u; is the left circle and ug is the right circle.

3.1 The Use of the Theorem Prover

The formula Pq,ui,...,u, Suarantees that a concrete structure must contain two
tuples of nodes, both mapped to the abstract tuple (uq,...,ux), on which ¢

procedure assume(p: Formula, a: a set of bounded structures): Set of ICA

result :=a

// Phase 1

result := bif(p, result)

// Phase 2

while there exists S € result,q € P of arity k, and uy,...,u, € U such that

13(q)(uy, - .. ,up) = 1/2 and done(S, q,u1,...,us) = false do

done(S,q,u,...,ux) = true
if H(S) Ao A @g ... u, i Dot satisfiable then result := result \ {S}
So = S[Q(ula v 7uk) = 0]
if 4(So) A ¢ is satisfiable then result := result U {Sp}
Sl = S[q(ul, N 7uk) — 1]
if 7(S1) A ¢ is satisfiable then result := result U {S1}

return result

Figure 5: The assume procedure takes a formula ¢ over the vocabulary Pand
computes the set of ICA structures result. 7 includes the integrity rules in
order to eliminate infeasible concrete structures. The formula @g 4, ... 4, is de-
fined in Eq. (2). The procedure bif (¢,result) is shown in Fig. 6. The flag
done(S, q,u1,...,ur) marks processed values; initially, done is false for all pred-
icate tuples.)

evaluates to different values. This is captured by the formula

def 1 1,,2 2. Ak S 1 k S/ 2
Caur,..ow, = WY, o Wi, W5 -, wi s A\j_y nodey (w;) A A node; (wy7)

A= /\f:1 eq(w}, w?) Aqwi,...,wi) A=qwi,... wi) o)
2
Pqoui,...ux Uses the node formula, also defined in [15], which uniquely identifies
the mapping of concrete nodes into abstract nodes. For a bounded structure
S and an abstract node u in S, nodef(v) simply asserts that v and v agree on
all abstraction predicates. Formally, the formula nodef(v) is satisfied by a 2-
valued structure S? and a concrete node u? in S? if and only if S is the canonical
abstraction of S% (3(S%) = S) and v is mapped by canonical abstraction to u.
The function isSatisfiable(v) invokes a theorem prover which returns true
when 1) is satisfiable, i.e., the set of 2-valued structures which satisfies v is non-
empty. This function guides the refinement of predicate values. In particular,
checking the satisfiability of ¢ is used to make the following decisions:

— Discard a 3-valued structure S that does not represent any concrete store
in X by taking ¥ = ¢ AJ(9).
— Materialize a new node from the node u w.r.t. the value of ¢ € A in S

(phase 1) by taking 1 oA A(S) A @qu-

— Retain indefinite value of a predicate ¢ for node-tuple (uq,...,ux) in S (in
phase 2) by taking 1 = ¢ AF(S) A Qg ur-

procedure bif (¢: Formula, W: Set of bounded structures): Set of bounded structures
forall S e W
if ¥(S) A p is not satisfiable then W := W \ {S}
while there exists S € W, q € A and u € U® such that ¢(q)(u)= 1/2
W =W\ {5}
S’ = S[u— u.0,u.1][g(u.0) — 0,q(u.l) — 1] if 7(S) A @ A g, is satisfiable then W := W U {5’}
So = S[g(u) — 0]
if 4(So) A ¢ is satisfiable then W := W U {Sy}
Sy = S[g(u) — 1]
if 4(S1) A p is satisfiable then W := W U {S;}
return W

Figure 6: The procedure takes a set of structures and a formula ¢ over the
vocabulary P, and computes the bifurcation of each structure in the input set,
w.r.t. the input formula. Note that the procedure has a precondition, reinforced
at the beginning, that each structure in the input set represents at least one
concrete structure that satisfies ¢. The formula ¢ ,, is defined in Eq. (2). The
operation S[u +— 1.0, u.1] performs a bifurcation of the node u in S, setting the
values of all predicates except ¢ on u.0 and u.1 to the values they had on wu.

3.2 Materialization

Phase 1 of the algorithm performs node “materialization” by invoking the pro-
cedure bif . The name bif comes from it’s main purpose: whenever a structure
has an indefinite value of an abstraction predicate on some node, it bifurcates
to a pair of structures for which the node has values 0 and 1, respectively, on
that predicate. It produces a set of 3-valued structures that have the same
set of canonical names as the concrete stores that satisfy ¢ and embed into a.
The bif procedure first filters out potentially unsatisfiable structures, and then
iterates over all structures S € W with an indefinite value of an abstraction
predicate ¢ € A on some node u. It replaces S by other structures. As a result
of this phase, all abstraction predicates have definite values for all nodes in each
of the structures. In addition, because the output structures are bounded struc-
tures, the number of different structures that can be produced is finite, which
guarantees termination of bif procedure.

In the body of the loop, we check if there exists a concrete structure repre-
sented by S that satisfies ¢ in which ¢ has different values on concrete nodes
represented by u (the query is performed using the formula ¢,). In this case,
a new structure S’ is added to W, created from S by duplicating the node u in
S into two instances and setting the value of ¢ to 0 for one node instance, and
to 1 for another instance. All other predicate values on the new node instances
are the same as their values on w.

In addition, two copies of S are created with 0,(and 1) value for g(u). To
guarantee that each copy represents a concrete structure in X an appropriate
query is posed to a theorem prover. Omitting this query will produce a sound,

but potentially overly-conservative result.

Fig. 4 shows the steps performed by bif on the input {S} in Fig. 2. bif examines
the abstraction predicate y, with indefinite values on the nodes uw; and us. The
algorithm attempts to replace S by S’, S1 and Sy, shown as the children of S in
Fig. 4. The structures S’ and S; are discarded because all concrete structures
they represent violate the integrity rule (i) for x (Section 2.3) and the precon-
dition (g, respectively. The remaining structure Sy is further modified w.r.t.
y(uz). However, setting y(uz2) to 0 results in a structure that does not satisfy
o, and hence is discarded.

3.3 Refining Predicate Values

The second phase of the assume algorithm refines the structures by lowering
predicate values from 1/2 to 0 and 1, and throwing away structure with value
1/2 of some predicate for a tuple that do not represent any 2-valued structure
that has two corresponding tuples with different value of that predicate.

For each structure and an indefinite value of a predicate ¢ € P on an abstract
node tuple, we eliminate structures in which the predicate has the same values
on all corresponding tuples in all concrete structures that are represented by S
and satisfy ¢ (the query is performed using the formula in Eq. (2)). In addition,
two copies of S are created with 0,(and 1) value for q. To guarantee that each
copy represents a concrete structure in X, an appropriate query is posed to a
theorem prover. The done flag is used to guarantee that each predicate tuple is
processed only once.

Fig. 4 shows the refinement of each predicate value in the running example.
Phase 2 starts with two structures, S} and S%, of size 2 and 3, produced by bif .
Consider the refinement of S5 w.r.t. n(ui,u,), where u; is pointed to by x and
u, is pointed to by y (same node names as in Fig. 2).

The predicate n(u1, u,) cannot be set to 1/2, because it requires the existence
of a concrete structure with two different pairs of nodes mapped to (u1,uy),
but the integrity rule (i) in Section 2.3 implies that there is exactly one node
represented by w; and exactly one node represented by u,. Intuitively, this
stems from the fact that the concrete nodes represented by ui(uy) is pointed
to by x(y). The predicate n(u;,u,) cannot be set to 0, because it violates the
precondition g, according to which the element pointed to by y (represented
by u,) must also be pointed to by n-field from the element pointed to by x
(represented by w;). Guided by the computation tree in Fig. 4, the reader can
verify that the structures in Fig. 2(S¢—S7) are generated by assume[p](a) (read
out the leaves).

3.4 Properties of the Algorithm
3.4.1 Timeout of a Theorem Prover

The termination of the function isSatisfiable can be assured by using standard
techniques (e.g., having the theorem prover return a safe answer if a time-out

threshold is exceeded) at the cost of losing the ability to guarantee that a most-
precise result is obtained.

If the timeout occurs in the first call to a theorem prover made by phase 2,
the structure S is not removed from result. If a timeout occurs in any other call
made by bif or by phase 2, the structure examined by this call is added to the
output set. Using this technique the methods always terminate while producing
sound results.

3.4.2 Termination

Assuming that all calls to the theorem prover terminate, the algorithm always
terminates. The first phase (bif) terminates, because in each iteration the
number of indefinite values per structure is reduced. The reason is that in each
iteration a structure can be replaced by at most 3 structures, each of which
contains a smaller number of indefinite values. The bif algorithm terminates
when the working set W does not contain abstraction predicates with indefinite
values.

Similar arguments show that the second phase terminates, as follows. If the
algorithm retains an indefinite value of a predicate, this value is marked by done
flag and not changed in subsequent iterations. In each iteration, a structure in
result can be replaced by at most 3 structures, each of which contains smaller
number of indefinite values, that are not marked with done. The algorithm
terminates when no unmarked indefinite values remain in result.

3.4.3 Complexity

We determine the complexity of the algorithm in terms of (i) the number of
nodes in each structure, (ii) the number of structures, and (iii) the number of
the calls to a theorem prover. The complexity in terms of (ii) and (iii) is linear
in the height of the abstract domain of all sets of ICA defined over P, which
is doubly-exponential in the size of P. Nevertheless, it is exponentially more
efficient than the naive enumerate-and-eliminate algorithm over the abstract
domain. The reason is that the algorithm described in this paper examines only
one descending chain in this abstract domain, as shown in Fig. 1.

To be more precise, at the end of bif , all abstraction predicates are def-
inite, which allows at most 2/4l different canonical names. Thus, number of
structures with different canonical names that can possible be generated by
bif is bounded by 22" For each of these structures, each predicate has 3
possible values for each node-tuple. As mentioned earlier, the order in which
predicate values are examined effects the number of calls to a theorem prover.
In the worst case, number of calls in bif is bounded by 23" and in phase 2
by (270 + 3|P1‘X2‘A‘+|P2|X(2‘A‘)2) x 22" where |A] is the number of abstraction
predicates in P, and P; is the number of non-abstraction predicates of size 7 in
P, assuming that the maximal arity of a predicate in P is 2.

3.4.4 Correctness

The algorithm assume[p](a) computes the operation assume[p](a), defined by
def

a(X), where X = [p]N~y(a). To show the correctness of the assume algorithm,
i.e. result = a(X), it is sufficient to establish the following properties:

1. result J a(X). This requirement ensures that the result is sound, i.e.,
result contains canonical abstractions of all concrete structures in X. In
other words, for all S% € X there exists S € result such that 3(S%) C S.
Because S is a bounded structure it is sufficient to show that S% = S. This
is a global invariant throughout the algorithm, proved using induction, as
shown in Lemma A.1

2. result C «a(X). This requirement ensures that all 3-valued structures in
result are ICAs of a concrete structure in X. This holds only upon the
termination of the algorithm. From Lemma A.3 it follows that for each
S € result there exists a concrete structure S? € X that is embedded into
S. Lemma A.5 shows that the embedding is tight, i.e., 8(S%) = S.

Because the algorithm uses 4 operation, defined only for bounded structure,
Lemma A.6 shows that all the structures explored by the algorithm are bounded
structures.

4 Applications

This section shows how assume can be used to implement algorithms for com-
puting the best transformer (Section 4.1), the abstraction of potentially infinite
set of stores a (Section 4.2) and the meet of two abstract values (Section 4.3).

4.1 Computing the Best Transformer

The best transformer algorithm BT (7, a) takes a set of bounded structures a
over a vocabulary P, and a transformer formula 7 over the two-store vocabulary
P UP'. It returns a set of ICA structures over the two-store vocabulary, that
is the canonical abstraction of all pairs of concrete structures (Sf, Sg) such that
Sg is the result of applying the transformer 7 to Si. BT(7,a) is computed
by assume(r, extend(a)) that operates over the two-store vocabulary, where
extend(a) extends each structure in S € a into two-store vocabulary by setting
the values of all primed predicates to 1/2.

The BT algorithm manipulates the two-store vocabulary P U P’, which in-
cludes two copies of each predicate — the original, unprimed and the primed
version of the predicate. The original version of the predicate contains the val-
ues before the transformer is applied, and the primed version contains the new
values. This allows us to maintain the relationship between the values of the
predicates before and after the transformer. Note that the set A contains both
unprimed and primed versions of the abstraction predicates, and the integrity
rules contain multiple copies of each rule — for primed and unprimed versions

of all predicates used in a rule. Also, 7 is an arbitrary formula over the two-store
vocabulary; in particular, it may contain a precondition, that involves unprimed
version of the predicates, together with primed predicates in the “update” part.
The result of the transformer can be obtained from the primed version of the
predicates in the output, while the procedure refines both primed and unprimed
predicates. If the values of the unprimed (original) predicates are not impor-
tant to the subsequent analysis, primed non-abstraction predicates need not be
refined. This sound optimization may be significant when unprimed predicate
values become definite as a result of a precondition, for example.

4.2 Computing o for Shape Analysis

Given a specification of concrete stores as a logical formula ¢, we can compute
a([¢]), denoted by @(p) by simply calling assume[](T).

The abstract value T describes all concrete stores, i.e., for all 2-valued struc-
ture S% that satisfies the integrity rules, S% € ~(T). Therefore, the result
of assume|p]|(a) defined by a([¢] N v(T)) is exactly a([¢]). Operationally,
T = {Semptys Ssummary t» Where Sempiy 1S a structure with an empty universe
and all nullary predicates set to 1/2, and Ssymmary 1S a structure with exactly
one summary node, and all predicate values are 1/2.

4.3 Computing Meet for Shape Analysis

A meet operation takes two abstract values and returns the canonical abstrac-
tion of concrete stores represented by the both inputs. It can be computed using
~ and @. Given two sets of bounded structures a; and as over the vocabulary P,
generate the characteristic formula for each of the sets and use & procedure as
a subroutine. The definition of 7 guarantees that the result of @(J(a1) A7(as2))
is a(vy(a1) Ny(az)) as required.

5 Related Work and Conclusions

In a companion submission, we present a different technique to compute best
transformers [9] in a more general setting of finite height, but possibly infi-
nite size lattices. The technique presented in [9] handles infinite domains by
requiring that a theorem prover produces a concrete counter-example for in-
valid formulas, which is not required in the present paper. The present paper
presents techniques that apply to canonical-abstraction domains. In contrast,
[9] is not restricted to canonical-abstraction domains; for instance, it applies
to some abstract domains of infinite size (although they still must be of finite
height).

Compared to [9], an advantage of the approach taken in the present paper
is that it iterates from above: it always holds a legitimate value (although not
the best). If the logic is undecidable, a timeout can be used to terminate the
computation and return the current value. Because the technique described in

[9] starts from L, an intermediate result cannot be used as a safe approximation
of the desired answer. For this reason, the procedures discussed in [9] must be
based on decision procedures. Another potential advantage of the approach in
this paper is that the size of formulas in the algorithm reported here is linear
in the size of structures (counting 0 and 1 values), and does not depend on the
height of the domain.

This paper is also closely related to past work on predicate abstraction,
which also uses decision procedures to implement most-precise versions of the
basic abstract-interpretation operations. Predicate abstraction is a special case
of canonical abstraction, when only nullary predicates are used. Interestingly,
when applied to a vocabulary with only nullary predicates, the algorithm in
Fig. 5 is similar to the algorithm used in SLAM [1]. It starts with 1/2 for all of
the nullary predicates and then repeatedly refines instances of 1/2 into 0 and 1.
The more general setting of canonical abstraction requires us to use the formula
Pg,ur,us,....u, b0 identify the appropriate values of non-nullary predicates. Also,
we need the first phase (procedure bif) to identify what node materialization
needs to be carried out.

This paper was inspired by the Focus® operation in TVLA, which similar
in spirit to the assume operation. The input of Focus is a set of 3-valued
structures and a formula ¢. Focus returns a semantically equivalent set of 3-
valued structures in which ¢ evaluates to a definite value, according to the
Kleene semantics for 3-valued logic [11]. The assume algorithm reported in
this paper has the following advantages: (i) it guarantees that the number
of resultant structures is finite. The Focus algorithm in TVLA generates an
exception when this cannot be achieved. This make Focus a partial function,
which was sometimes criticized by the TVLA user community. (ii) The number
of structures generated by assume is optimal in the sense that it never returns
a 3-valued structure unless it is a canonical abstraction of some required store.
The latter property is achieved by using a theorem prover, which in the current
implementation makes assume slower than Focus. In the future, we plan to
develop specialized theorem provers that will give us the benefits of assume
while maintaining the efficiency of Focus on those formulas for which Focus is
defined.

To summarize, for problems that can be addressed via first-order shape anal-
ysis, the methods described in this paper are more automatic and more precise
than the ones used in TVLA, although they are currently much slower. This
provides a nice example of how abstract-interpretation techniques can exploit
theorem provers. Methods to speed up these techniques are the subject of on-
going work.

References

[1] SLAM toolkit. Available at “http://research.microsoft.com/slam/”.

3In Russian, Focus means “trick” like “Hocus Pocus”.

2]

P. Cousot and R. Cousot. Systematic design of program analysis frame-
works. In Symp. on Princ. of Prog. Lang., pages 269—282, New York, NY,
1979. ACM Press.

S. Horwitz, P. Pfeiffer, and T. Reps. Dependence analysis for pointer vari-
ables. In SIGPLAN Conf. on Prog. Lang. Design and Impl., pages 28-40,
New York, NY, 1989. ACM Press.

N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yorsh. Decidable
logics for expressing heap connectivity. In preparation, 2003.

N.D. Jones and S.S. Muchnick. Flow analysis and optimization of Lisp-
like structures. In S.S. Muchnick and N.D. Jones, editors, Program Flow
Analysis: Theory and Applications, chapter 4, pages 102-131. Prentice-
Hall, Englewood Cliffs, NJ, 1981.

T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static analysis to
work for verification: A case study. In Proc. of the Int. Symp. on Software
Testing and Analysis, pages 2638, 2000.

T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static anal-
yses. In Static Analysis Symp., pages 280-301, 2000.

F. Nielson, H.R. Nielson, and C. Hankin. Principles of Program Analysis.
Springer-Verlag, 1999.

T. Reps, M. Sagiv, and G. Yorsh. Symbolic implementation of
the best transformer. Tech. Rep. TR-1468, Comp. Sci. Dept.,
Univ. of Wisconsin, Madison, WI, January 2003. Available at
“http:/ /www.cs.wisc.edu/wpis/papers/tr1468.ps”.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. In Symp. on Princ. of Prog. Lang., pages 105-118, New York, NY,
January 1999. ACM Press.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis via 3-valued
logic. Trans. on Prog. Lang. and Syst., 2002.

M. Sharir and A. Pnueli. Two approaches to interprocedural data flow
analysis. In S.S. Muchnick and N.D. Jones, editors, Program Flow Anal-
ysis: Theory and Applications, chapter 7, pages 189-234. Prentice-Hall,
Englewood Cliffs, NJ, 1981.

E. Y.-B. Wang. Analysis of Recursive Types in an Imperative Language.
PhD thesis, Univ. of Calif., Berkeley, CA, 1994.

C. Weidenbach. SPASS: An automated theorem prover for first-order logic
with equality. Available at “http://spass.mpi-sb.mpg.de/index.html”.

[15] G. Yorsh. Logical characterizations of heap abstractions. Mas-
ter’s thesis, Tel-Aviv University, Tel-Aviv, Israel, 2003. Available at
“http://www.math.tau.ac.il/~ gretay”.

[16] G. Yorsh, T. Reps, M. Sagiv, and R. Wilhelm. Logical characterization of
heap abstractions. Submitted for publication, 2003.

A Correctness Proofs

Lemma A.1 At each step of assuie, the following holds. If S* € X then there
exists S € result such that SY C S.
Proof: Use induction on the value of result at each step of assume.

The base case: after the initialization phase resulty = a, therefore it repre-
sents all concrete stores in «y(a), in particular all those that satisfy .

The induction step: Let S? be a concrete structure such that S% € X. Assume
that after ¢ steps of the procedure, the hypothesis holds: there exists S; € result;
such that S* C S;. Show that after step i+ 1, there exists S;;1 € result;;1 such
that Sh E Si+1.

If step i + 1 is the call to the procedure bif(result), the conclusion is ob-
tained from Lemma A.2, because all concrete structures satisfying ¢ that are
represented by an abstract structure, are also represented by a bifurcation of
the abstract structure — there is no loss of “important” structures during bi-
furcation.

Otherwise, step 7 + 1 is an operation performed during the inner loop of
phase 2. Suppose that it operates with a structure S, predicate ¢ of arity k and
node tuple (uy,...,ur) in S. The only structure that could be removed from
result in this step is S.

Recall that S; denotes the structure in result; that, by assumption, repre-
sents S%. If the structure S, that can be removed from result, is not S;, the
hypothesis holds for i+ 1 and S; is the structure that represents S% in result;,,
ie., Siy1 is S;. Otherwise, S and S; is the same structure, thus there exists an
embedding function ¢ such that S* C, S. We shall prove that if S is removed
from result, then one of the structures Sy or S; represents S% and it is added
to result.

According to the algorithm, S is removed when all concrete structures rep-
resented by S that satisfy ¢ have the same value for all node tuples mapped to
(u1,...,u;) by the embedding. In particular, this holds for S% Without loss of
generality, assume that the value is 0 and show that S is embedded in Sy. The
embedding function f such that S° Cr Sp is g: (i) because S and Sy have the
same universe, f is well-defined and surjective; (ii) we only have to show that
f preserves values of q over (uy,...,ux), because the values of other predicates
are the same in S and Sp. The value of ¢ over all tuples mapped to (uq,...,ug)
is 0 by assumption, and ¢%°(q)(u1, ..., ux) is 0 by the construction of Sp.

To complete the proof, we have to show that Sy is added to result, that is
the if-condition that guards the statement result := result U {Sp} is true. We
have to show that there exists a concrete structure that satisfies the formula
7(So) A . Indeed, S* satisfies the condition: S% satisfies 7(Sp) because it is
embedded into Sy as shown above; also, by assumption, S satisfies .

Lemma A.2 Consider an iteration of the while-loop in bif procedure. Let S €
W, q be an abstract predicate and u € U® handled in that iteration. Let S* be a
concrete structure such that S% € X and S% is embedded into S. S is embedded
into one of the structures {S’, So, S1}, denote it by S”.

Proof: By assumption, there exists embedding function f such that S% C § S
Show that there exists S” € {S’, Sy, 51} such that S% is embedded into S” by
constructing an embedding function f’: S% — S”, based on f.

— If S% = 9(S) A ¢ A @g. then S contains two nodes, denoted by ug and
u1, such that the value of ¢ on ug is 0 and the value of ¢ on u; is 1. In
this case, S is embedded into S’ using the following embedding function:

1.0 if f(u?) =u and Lsh(q)(u) =0
F@h) =< w1 if Fuf) = and 5 (q)(u) = 1
f(u?) otherwise

" is well-formed because f is and (5" (¢)(u) cannot be 0 and 1 simultane-
ously. f’ is surjective: its image includes .0 and u.1, because f’(ug) = u.0
and f'(u1) = u.1 as follows for the denotations above; other elements of
S’ are images of f’, because f’ is the same as f and f is surjective, by
assumption.

Show that f’ preserves predicate values. The values of all predicates on
all tuples in S’, are the same as in S, except the value of ¢ on the new
nodes u.0 and u.1. f’ preserves these values, because f does and f’ is
the same as f for the relevant nodes (these are the concrete nodes in S*
that are not mapped to the new nodes of S’). Let u’ € S% such that
f(u®) = u. Without loss of generality, let LS (q)(u?) = 0. By definition of
f', f'(u?) = u.0. By definition of S’, the value of ¢ on u.0 is 0, that is the
same as the value of ¢ on u?. It shows that f’ preserves the values of q.
The case where ¢5° (q)(uf) = 1 is symmetric.

— If S* does not satisfy 7(S) A ¢ A 4., then the value of ¢ on all nodes in
S that are mapped to u by the embedding is the same. If this value is 0,
S is embedded into Sy, otherwise — into S;. These cases are symmetric,
therefore we consider only the former. Note that S and Sy have the same
universe, and differ only in the value of ¢ on u. Hence, the embedding
function f’: S% — Sy is the same as f. f’ is well-formed and surjective
because f is. For all predicate values, except the value of ¢ on u, f’
preserves the values of the predicates, because these values are the same
in S and S’. The value of g on u in Sy is 0, by construction of Sy. The value

of ¢ on all nodes in S that are mapped to u by f’ is 0, by assumption.
Therefore, the value of ¢ is preserved by f.

Lemma A.3 At each step of assume, the following holds. For each structure
S € result there is a concrete structure S% € X that embeds into S.
Proof: By induction on the steps of assume procedure.

The base case: After checking the precondition, each structure retained in
W represents at least one concrete store that satisfies ¢, because 7(S) A ¢ is
satisfiable. Thus, the claim holds for all structures in W.

The induction step:

First, show that the claim holds on each iteration of bif procedure. Consider
an iteration that operates on some structure S € W. By inductive assumption
that holds at the beginning of this iteration, there exists a concrete structure
S% € X such that S* C S. There are three cases in which a structure might be
added to W.

Suppose that S’ is added to W. In this case, there exists a concrete structure
that satisfies 7(S) A ¢ A 4., denote it by S%. Consequently, S satisfies ¢ and
embeds into S. Using Lemma A.2, S? is embedded into S’, proving the claim.

Suppose that Sp is added to W in statement W := WU{Sp}. This statement
is executed when the if-condition that guards it is true, i.e, there exists a concrete
structure that satisfies 7(Sp) A . In particular, this concrete structure satisfies
0 and embeds into Sy, and thus embeds into the input a of assume, as follows
from Lemma A.4, proving the claim. The third case, in which S; is added to
X, is symmetric to this case.

Show that in phase 2 of assume, the claim holds in each iteration of the loop.
A structure Sy (S1) can be inserted into result only when the if-condition that
guards the insertion statement is true. The if-condition requires that there exists
a concrete structure S that satisfies ¢ and embeds into Sy (S;). According to
the algorithm, So C S (S; C S). By Lemma A.4, {S} C a. To summarize,
{S%} C {So} C {a} and S% |= ¢, hence S% € X, which proves this lemma.

Lemma A.4 At each step of assume, the following holds. If S € result then
there exists S’ € a such that ST S’.
Proof: By induction on the steps of the algorithm.

The base case: After initialization, result equals to a.

The induction step: Show that after each step of the algorithm, the hypoth-
esis holds.

In phase 1, let S be the structure removed from W in some iteration of bif ,
that operates over a predicate ¢ and node u in .S. By the inductive assumption,
{S} Ca. If Sy (S1) is added to W, then the hypothesis holds, because Sy C S
(S1 C S) trivially using and identity function. If S’ is added to W, hypothesis
also holds, because S’ C S using the embedding function f”:

/

von . Ju o ifu =wulorv =ul
Filu) = { u otherwise

In phase 2 of assume, let S be a structure examined in some iteration of the
loop. By the inductive assumption, {S} C a. The only structures that might
be added to result are Sp and S;. According to the algorithm, Sy (S7) differs
from S by a one predicate value, that is 0 (1) in Sy and 1/2 in S. Therefore
So C S (81 C S) using the identity embedding function, which completes the
proof.

Lemma A.5 Consider the content of the set result at the end of assume. If
S € result then there exists S* such that S* € X and 5(S%) = S.
Proof: For the sake of argument, assume that there exists S € result such that
for all concrete structures S% € X that embed into S, 3(S%) # S.

Recall that at the end of bif procedure, all abstraction predicates have defi-
nite values in S. During phase 2, predicate values can only be lowered, meaning
that the abstraction predicates remain definite. According to Lemma A.3, there
exists a concrete structure S? such that S C S. Because embedding preserves
canonical names and all abstract predicates in S are definite, the embedding
is possible only if the set of canonical names in S% and S is the same. Con-
sequently, 3(S%) embeds into S using an identity function. Therefore, the
assumption 5(S h) = S implies that there is a predicate with an indefinite value
in S, but with a definite value in 3(S?).

Formally, for each concrete structure in X that embeds into S, there exists
a predicate ¢ with an indefinite value on some tuple of nodes (u1,...,ug) in S,
such that the value of ¢ on all tuples of nodes in the concrete structure S? that
are mapped to (uj,...,ug) by the embedding, is the same. This assumption
means that in phase 2 of assume, when the value of ¢ on (u1,...,u) in S is
examined, the first if-condition is true, because the formula Y(S)A@AQq uy.... uy-
Therefore, the statement guarded by this if-condition is executed, removing the
structure S from result set. Therefore, a contradiction is obtained.

Lemma A.6 Every step of assume algorithm, the result is a bounded structure,
given that the input is a bounded structure. This property is a precondition for
the use of 5.
Proof: Assume that the input of each operation considered below is a bounded
structure. Then, to violate this “boundedness” property, the operation must
change a definite value of some abstraction predicate, according to the definition
of a bounded structure. (from 1 to 0 or 1/2 and from 0 tol or 1/2).

The procedure bif either (i) lowers a value of a predicate from 1/2 to 1 or
0, or (ii) duplicates a node and sets an abstraction predicate ¢ with indefinite
value to definite values on the two copies of the node. Both operations do not
violate “boundedness” property. Also, phase 2 of the algorithm by its definition
can only lower predicate values, therefore it cannot violate the “boundedness”

property.

