
Abstraction-Guided Synthesis of Synchronization

Martin Vechev
IBM Research

Eran Yahav
IBM Research

Greta Yorsh
IBM Research

Abstract
We present a novel framework for automatic inference of efficient
synchronization in concurrent programs, a task known to be diffi-
cult and error-prone when done manually.

Our framework is based on abstract interpretation and can infer
synchronization for infinite state programs. Given a program, a
specification, and an abstraction, we infer synchronization that
avoids all (abstract) interleavings that may violate the specification,
but permits as many valid interleavings as possible.

Combined with abstraction refinement, our framework can be
viewed as a new approach for verification where both the program
and the abstraction can be modified on-the-fly during the verifi-
cation process. The ability to modify the program, and not only
the abstraction, allows us to remove program interleavings not only
when they are known to be invalid, but also when they cannot be
verified using the given abstraction.

We implemented a prototype of our approach using numerical
abstractions and applied it to verify several interesting programs.
Categories and Subject Descriptors D.1.3 [Concurrent Pro-
gramming]; D.2.4 [Program Verification]
General Terms Algorithms, Verification
Keywords concurrency, synthesis, abstract interpretation

1. Introduction
We present abstraction-guided synthesis, a novel approach for syn-
thesizing efficient synchronization in concurrent programs. Our ap-
proach turns the one dimensional problem of verification under
abstraction, in which only the abstraction can be modified (typi-
cally via abstraction refinement), into a two-dimensional problem,
in which both the program and the abstraction can be modified un-
til the abstraction is precise enough to verify the program.

Based on abstract interpretation [10], our technique synthe-
sizes a symbolic characterization of safe schedules for concurrent
infinite-state programs. Safe schedules can be realized by modify-
ing the program or the scheduler:
• Concurrent programming: by automatically inferring minimal

atomic sections that prevent unsafe schedules, we assist the pro-
grammer in building correct and efficient concurrent software,
a task known to be difficult and error-prone.

• Benevolent runtime: a scheduler that always keeps the program
execution on a safe schedule makes the runtime system more
reliable and adaptive to ever-changing environment and safety
requirements, without the need to modify the program.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
POPL’10, January 17–23, 2009, Madrid, Spain.
Copyright c© 2009 ACM 978-1-60558-479-9/10/01. . . $5.00

Given a program P , a specification S, and an abstraction func-
tion α, verification determines whether P |=α S, that is, whether
P satisfies the specification S under the abstraction α. When the
answer to this question is negative, it may be the case that the pro-
gram violates the specification, or that the abstraction α is not pre-
cise enough to show that the program satisfies it.

When P 6|=α S, abstraction refinement approaches (e.g., [8, 3])
share the common goal of trying to find a finer abstraction α′ such
that P |=α′ S. In this paper, we investigate a complementary
approach, of finding a program P ′ such that P ′ |=α S under the
original abstraction α and P ′ admits a subset of the behaviors of
P . Furthermore, we combine the two directions — refining the
abstraction, and restricting program behaviors, to yield a novel
abstraction-guided synthesis algorithm.

One of the main challenges in our approach is to devise an al-
gorithm for obtaining such P ′ from the initial program P . In this
paper, we focus on concurrent programs, and consider changes to
P that correspond to restricting interleavings by adding synchro-
nization.

Although it is possible to apply our techniques to other settings,
concurrent programs are a natural fit. Concurrent programs are of-
ten correct on most interleavings and only miss synchronization in
a few corner cases, which can be then avoided by synthesizing ad-
ditional synchronization. Furthermore, in many cases, constraining
the permitted interleavings reduces the set of reachable (abstract)
states, possibly enabling verification via a coarser abstraction and
avoiding state-space explosion.

The AGS algorithm, presented in Section 4, iteratively elimi-
nates invalid interleavings until the abstraction is precise enough
to verify the program. Some of the (abstract) invalid interleavings
it observes may correspond to concrete invalid interleavings, while
others may be artifacts of the abstraction. Whenever the algorithm
observes an (abstract) invalid interleaving, the algorithm tries to
eliminate it by either (i) modifying the program, or (ii) refining the
abstraction.

To refine the abstraction, the algorithm can use any stan-
dard technique (e.g.,[8, 3]). These include moving through a pre-
determined series of domains with increasing precision (and typi-
cally increasing cost), or refining within the same abstract domain
by changing its parameters (e.g., [4]).

To modify the program, we provide a novel algorithm that gen-
erates and solves atomicity constraints. Atomicity constraints de-
fine which statements have to be executed atomically, without an
intermediate context switch, to eliminate the invalid interleavings.
This corresponds to limiting the non-deterministic choices avail-
able to the scheduler. A solution of the atomicity constraints can be
implemented by adding atomic sections to the program.

Our approach separates the process of identifying the space of
solutions (generating the atomicity constraints) from the process of
choosing between the possible solutions, which can be based on
a quantitative criterion. As we discuss in Section 6, our approach
provides a solution to a quantitative synthesis problem [5], as it

T1 {
1: x += z
2: x += z
}

T2 {
1: z++
2: z++
}

T3 {
1: y1 = f(x)
2: y2 = x
3: assert

(y1 6= y2)
}

f(x) {
if (x==1)
return 3;
else if (x==2)
return 6;
else return 5;
}

Figure 1. Simple example computing values of y1 and y2.

can compute a minimally atomic safe schedule for a program, a
schedule that poses minimal atomicity constraints on interleavings,
and does not restrict interleavings unnecessarily.

Furthermore, our approach can be instantiated with different
methods for: (i) modifying the program to eliminate invalid inter-
leavings (ii) refining the abstraction (iii) choosing optimal solutions
(quantitative criterion) (iv) implementing the resulting solution.

The problem we address in this paper is closely related to the
ones addressed by program repair [14, 12] and controller synthe-
sis [20]. However, in contrast to these, our approach focuses on
concurrent programs, uses abstract interpretation, and is able to
handle infinite-state programs.

1.1 Main Contributions
The contributions of this paper can be summarized as follows:

• We provide a novel algorithm for inferring correct and efficient
synchronization in concurrent programs. The algorithm infers
minimal atomic sections that can be verified under a given
abstraction.

• We advocate a new approach to verification where both the
program and the abstraction can be modified on the fly during
the verification process. This enables verification of a restricted
program where verification of the original program fails.

• We implemented our approach in a prototype tool called
GUARDIAN and applied it to synthesize synchronization for sev-
eral interesting programs using numerical abstractions.

1.2 Limitations
Our focus in this paper is on the AGS algorithm (Sec. 4) and on an
algorithm for eliminating invalid interleaving by adding atomic
sections. While our approach can be instantiated with various
abstraction-refinement algorithms and abstract domains, our cur-
rent realization is quite modest:

• The abstraction-refinement approach we use in the paper is
rather simplistic. Using more sophisticated refinement ap-
proaches is a topic of future work.

• We only implement a number of simple numerical abstract
domains, which enable us to handle infinite-state numerical
programs. To make the approach more widely applicable, we
intend to integrate additional abstract domains in the future.

2. Overview
In this section, we demonstrate our technique on a simple illus-
trative example. The discussion in this section is mostly informal,
additional formal details are provided in Section 4. Additional ex-
amples, inspired by real applications, are described in Section 7.

2.1 Example Program
Consider the example shown in Fig. 1. In this example, the pro-
gram executes three processes in parallel: T1||T2||T3. Different
interleavings of the statements executed by these processes lead to
different values being assigned to y1 and y2. In every execution of

the program there is a single value assigned to y1 and a single value
assigned to y2. The assertion in T3 requires that the values of y1
and y2 are not equal. Initially, the value of all variables are 0.

For example, y1 gets the value 6, and y2 gets the value 2 in the
interleaving z++;x+=z;x+=z;y1=f(x);y2=x;z++;assert. In
the interleaving x+=z;x+=z;y1=f(x);y2=x;z++;z++;assert,
y1 gets the value 5, and y2 gets the value 0.

Fig. 2 (I) shows the possible values of y1 and y2 that can arise
during all possible program executions, assuming that the macro f
executes atomically. Note that in some interleavings y1 and y2 may
be evaluated for different values of x (i.e., x can be incremented be-
tween the assignment to y1 and the assignment to y2). The point
y1 = y2 = 3 (marked in red in Fig. 2 (I)) corresponds to values
that violate the assertion. These values arise in the following inter-
leaving: z++; x+=z; y1=f(x); z++; x+=z; y2=x;assert.

Our goal is to add efficient synchronization to the program such
that the assertion in T3 is not violated in any execution.

The AGS algorithm iteratively eliminates invalid interleavings
(under an abstraction) by either modifying the program or the ab-
straction. Fig. 2 shows how the algorithm operates on the program
of Fig. 1, and how it can move on both dimensions, choosing to
modify either the program, or the abstraction, on every step. Be-
fore we explain Fig. 2, we explain how the algorithm modifies the
program to eliminate invalid iterleavings without any abstraction.

2.2 Inferring Synchronization under Full Information
We begin by considering the example program without abstraction.
Since this is an illustrative finite-state program, we can focus on the
aspects of the algorithm related to generating atomicity constraints.

The algorithm accumulates atomicity constraints by iteratively
eliminating invalid interleavings. Every invalid interleaving yields
an atomicity constraint that describes all possible ways to eliminate
that interleaving, by disabling context-switches that appear in it.

Under full information, the program of Fig. 1 has a single in-
valid interleaving z++; x+=z; y1=f(x); z++; x+=z; y2=x;
assert. This interleaving can be eliminated by disabling either of
the context switches that appear in this interleaving: the context
switch between x+=z and x+=z in T1, between z++ and z++ in
T2, and between y1=f(x) and y2=x in T3. This corresponds to the
following atomicity constraint, generated by AGS algorithm:

[y1=f(x),y2=x] ∨ [x+=z,x+=z] ∨ [z++,z++]

This constraint is a disjunction of three atomicity predicates, of the
form [s1,s2], where s1 and s2 are consecutive statements in the
program. Each atomicity predicate represents a context-switch that
can eliminate the invalid interleaving, and the disjunction repre-
sents the fact that we can choose either one of these three to elim-
inate the invalid interleaving. For this program, there are no addi-
tional constraints, and any satisfying assignment to this constraint
yields a correct program. For example, adding an atomic section
around z++ and z++ in T2 yields a correct program.

Since we can obtain multiple solutions, it is natural to define
a quantitative criterion for choosing among them. This criterion
can be based on the number of atomic sections, their length, etc.
Our approach separates the process of identifying the space of
solutions (generating the atomicity constraints) from the process
of choosing between the possible solutions, which can be based on
a quantitative criterion. In this example, each of the three possible
solutions only requires a single atomic section of two statements.

Next, we illustrate how AGS operates under abstraction. In this
example, we use simple numerical domains: parity, intervals, and
octagon. In Section 7, we show refinement by increasing the set of
variables for which the abstraction tracks correlations.

� � ���� � � �
�

� �
	

�
(I)

� � � ������ �
� 8

x+=z;
x+=z
z++;
z++;

y1=f(x)
y2=x
assert

y1!= y2

T1

T2

T3

interval

(II)

� � ������ �
	

�

�

� � � ������ �

	

� � � ������ �
	

parity

interval

octagon

� � � ������ �
	 � � � ������ �

	

� � � ������ �
	

� � � ������ �
	

8 9

8

8

9

9

8

(a) (b) (c)

(d) (e)

(f) (g)

parity parity

interval

octagon

x+=z;
x+=z
z++;
z++;

y1=f(x)
y2=x
assert

y1!= y2

T1

T2

T3

x+=z;
x+=z
z++;
z++;

y1=f(x)
y2=x
assert

y1!= y2

T1

T2

T3

x+=z;
x+=z
z++;
z++;

y1=f(x)
y2=x
assert

y1!= y2

T1

T2

T3

x+=z;
x+=z
z++;
z++;

y1=f(x)
y2=x
assert

y1!= y2

T1

T2

T3

x+=z;
x+=z
z++;
z++;

y1=f(x)
y2=x
assert

y1!= y2

T1

T2

T3

x+=z;
x+=z
z++;
z++;

y1=f(x)
y2=x
assert

y1!= y2

T1

T2

T3

x+=z;
x+=z
z++;
z++;

y1=f(x)
y2=x
assert

y1!= y2

T1

T2

T3

Figure 2. (I) Values of y1 and y2 that arise in the program of Fig. 1; (II) Atomic section around the assignments to y1 and y2 under interval
abstraction; (a-g) Possible steps of the AGS algorithm: on each step, the algorithm can choose between refining the abstraction (down arrows)
and modifying the program by avoiding certain interleavings (right arrows).

2.3 Inferring Synchronization under Parity Abstraction
We first show how the algorithm works using the parity abstraction
over y1 and y2. The parity abstraction represents the actual value
of a variable by its parity, and only observes whether the value
is even or odd. Variables y1 and y2 take abstract values from
{⊥, E, O,>}, with the standard meaning.

The starting point, parity abstraction of the original program,
is shown in Fig. 2 (a). It shows the concrete values of y1 and
y2 that can arise during program execution, and their abstraction.
The concrete values are shown as full circles and are the same as
in Fig. 2 (I). Black circles denote the concrete values that satisfy
the assertion, and red circle values that violate the assertion. The
shaded area denotes the concretization of the abstract values com-
puted for y1 and y2. The abstract values for both y1 and y2 are
>. As a result, the concretization (the shaded area) covers the en-
tire plane. In particular, it covers concrete values that violate the
assertion. Values that cannot arise in any concrete execution of the
program (false alarms) are shown as hollow red circles in the figure.

The AGS algorithm performs abstract interpretation of the pro-
gram from Fig. 1 using parity abstraction. In Fig. 3 we show part
of the abstract transition system constructed by AGS. Fig. 3 only
shows abstract states that can reach an error state. Error states are
shown as dashed red line circles in the figure. The values of vari-
ables in a state are shown as a tuple 〈pc1, pc2, pc3, x, z, y1, y2〉,
where variables y1 and y2 take an abstract value from the parity
domain. This transition system is very simple and in particular con-
tains no cycles; however, this is only for illustrative purposes and
the AGS algorithm handles all forms of abstract transition systems.

Under parity abstraction, there are several invalid interleavings.
The choice which of them to eliminate first is important, as dis-
cussed in Section 5. The AGS algorithm first chooses to elimi-
nate the invalid interleaving: π1 = z++; x+=z; x+=z; z++;
y1=f(x); y2=x; assert. This interleaving is shown in Fig. 3
by emphasizing its edges (the right emphasized path in the figure).

Under this interleaving, and under the parity abstraction, y1 = >
and y2 = > (due to joins in the abstract transition system).

The AGS algorithm can now choose whether to try and elimi-
nate this by either adding atomicity, or by refining the abstraction.
Fig. 2 shows these alternatives, which we explain in detail in the
rest of this section.
Eliminate π1 by atomicity constraint: To eliminate this interleav-
ing, the following constraint is generated: [z++,z++]. This step is
shown as the step from Fig. 2 (a) to Fig. 2 (b). Note that the pro-
gram in Fig. 2 (b) has an atomic section around the statements z++
and z++ in T2. This limits the concrete values that y1 and y2 can
take, as shown by the full circles in Fig. 2 (b), compared to those
on Fig. 2 (a). In particular, it eliminates the error state in which y1
and y2 both have the value 3 (no red full circle in the figure).

However, parity abstraction is not yet precise enough to verify
the correctness of the resulting program, as shown by the shaded
area in Fig. 2 (b). During abstract interpretation of the program, y1
takes both the values E and O, and thus goes to>. The concretiza-
tion (the shared area) therefore spans all possible concrete values
of y1. The abstract value of y2 remains E, therefore the concretiza-
tion (the shaded area) only contains even values of y2. The abstract
values represent three points that violate the assertion, shown as
hollow red circles in Fig. 2 (b).

After eliminating π1 by adding the constraint [z++,z++],
the following (abstract) interleaving may violate the assertion:
π2 = x+=z;z++;z++;x+=z;y1=f(x); y2=x; assert. This
interleaving yields the abstract values y1 = > and y2 = > (due
to joins), which may violate the assertion. The interleaving π2 is
shown in Fig. 3 as the left emphasized path in the figure.
Eliminate π2 by atomicity constraint: To eliminate this interleav-
ing, the following constraint is generated: [x+=z,x+=z]. This step
is shown as the step from Fig. 2 (b) to Fig. 2 (c). The resulting
overall constraint is: [x+=z,x+=z] ∧ [z++,z++]

< 1,1,1,
 0,0,E,E >

< 2,1,1,
 0,0,E,E >

x+=z

< 1,2,1,
 0,1,E,E >

 z++

< 1,1,2,
 0,0,O,E >

y1=f1(x)

< 2,1,2,
 0,0,O,E >

y1=f1(x)

< 2,2,1,
 0,1,E,E >

 z++

< 1,2,2,
 0,1,O,E >

y1=f1(x)

< 2,2,1,
 1,1,E,E >

 x+=zx+=z z++

< 1,1,3,
 0,0,O,E >

y2=f2(x)

< 2,1,3,
 0,0,O,E >

y2=f2(x)

< 2,2,2,
 0,1,O,E >

z++

< 1,2,3,
 0,1,O,E >

y2=f2(x)

< 2,2,2,
 1,1,O,E >

 x+=zx+=z z++

< 2,2,3,
 0,1,O,E >

z++

< 2,2,3,
 1,1,O,T >

x+=z

< 2,3,3,
 0,2,O,E >

z++

< 3,3,3,
 2,2,T,T >

x+=z

y2=f2(x)

< 3,2,2,
 2,1,T,E >

x+=z

< 3,2,3,
 2,1,T,T >

x+=z

y2=f2(x)

< 2,3,2,
 0,2,O,E >

z++

y2=f2(x)

< 3,3,2,
 2,2,T,E >

x+=z

y1=f1(x)

< 3,2,1,
 2,1,E,E >

 x+=z

< 3,3,1,
 2,2,E,E >

 z++ y1=f1(x)

 y1=f1(x) z++ y2=f2(x)

 y2=f2(x) z++

< 3,2,4,
 2,1,T,T >

 assert (y1 != y2)

< 3,3,4,
 2,2,T,T >

 assert (y1 != y2)

y1=f1(x)

< 2,3,1,
 0,2,E,E >

 z++

y1=f1(x) x+=z

Figure 3. Partial abstract transition system for the program of
Fig. 1. Only abstract states that can reach an error state are shown.

With this atomicity constraint, under the parity abstraction,
there are no further invalid interleavings. This constraint is sat-
isfied by a program that has the statements x+=z and x+=z of T1
execute atomically, and the statements z++ and z++ of T2 execute
atomically. In this program, the abstract values are y1 = O and
y2 = E. These abstract values guarantee that the assertion is not
violated, as shown in Fig. 2 (c).
Eliminate π2 by abstraction refinement: After eliminating the
interleaving π1, all remaining concrete interleavings satisfy the
assertion, but we could not prove it under parity abstraction. Instead
of eliminating interleaving π2 by adding atomicity constraints, as
described above, we can choose to refine the abstraction from parity
to interval, moving from Fig. 2 (b) to Fig. 2 (e). Interval abstraction
is precise enough to prove this program.

2.4 Inferring Synchronization under Interval Abstraction
Instead of eliminating interleaving π1 by adding an atomicity con-
straint, the algorithm can choose to try and eliminate π1 by refining
the abstraction from parity to interval. This corresponds to the step
from Fig. 2 (a) to Fig. 2 (d). Under interval abstraction, the abstract
values are y1 = [3, 6] and y2 = [0, 4], representing two points that
may violate the assertion, as shown in figure Fig. 2 (d).

The algorithm can again choose to eliminate invalid interleav-
ings by adding an atomicity constraint (step from Fig. 2 (d) to
Fig. 2 (e)) or by abstraction refinement (step from Fig. 2 (d) to
Fig. 2 (f)). In the former case, AGS produces the overall constraint:

([x+=z,x+=z] ∨ [z++,z++])
∧ ([y1=f(x),y2=x] ∨ [x+=z,x+=z] ∨ [z++,z++])

This constraint requires only one of T1 and T2 to execute
atomically. Fig. 2 (e) shows a program corresponding to one of the
solutions, in which T2 is atomic.

As apparent from the constraint above, [y1=f(x),y2=x] is not
sufficient for showing the correctness of the program under the in-
terval abstraction. The result of applying interval abstraction to the
program implemented from this constraint is shown in Fig. 2 (II).

2.5 Inferring Synchronization under Octagon Abstraction
Finally, the octagon abstract domain [18], maintains enough infor-
mation to only require atomicity as in the case with full informa-
tion. In particular, it is sufficient to make y1=f(x) and y2=x ex-
ecute atomically for the program to be successfully verified under
Octagon abstraction, as shown in Fig. 2 (g).

3. Preliminaries
Transition System A transition system ts is a tuple 〈Σ, T, Init〉
where Σ is a set of states, T ⊆ Σ×Σ is a set of transitions between
states, and Init ⊆ Σ are the initial states. For a transition t ∈ T , we
use src(t) to denote the source state of t, and dst(t) to denote its
destination state.

For a transition system ts, a trace π is a (possibly infinite)
sequence of transitions π0, π1, . . . such that for every i > 0,
πi ∈ T and dst(πi−1) = src(πi). For a finite trace π, |π| denotes
its length (number of transitions). We use t.π to denote the trace
created by concatenation of a transition t and a trace π, when
dst(t) = src(π0).

A complete trace π is a trace that starts from an initial state:
src(π0) ∈ Init. We use [[ts]] to denote the (prefix-closed) set of
complete traces of transition system ts.

Program Syntax We consider programs written in a simple pro-
gramming language with assignment, non-deterministic choice,
conditional goto, sequential composition, parallel composition,
and atomic sections. The language forbids dynamic allocation of
threads, nested atomic sections, and parallel composition inside
an atomic section. Note that a program can be statically associated
with the maximal number of threads it may create in any execution.
Assignments and conditional goto statements are executed atomi-
cally. All statements have unique labels. For a program label l, we
use stmt(l) to denote the unique statement at label l.

We use Var to denote the set of (shared) program variables. To
simplify the exposition, we do not include local variables in defi-
nitions, although we do use local variables in examples. There is
nothing in our approach that prevents us from using local variables,
but having local variables makes the formal definitions cumber-
some. We assume that all program variables have integer values,
initialized to 0.

Program Semantics Let P be a program with variables Var. Let
k be the maximal number of threads in P , with thread identifiers
1, . . . , k. A state s is a triplet 〈vals, pcs〉 where vals : Var → Int
is a valuation of the variables, and pcs : {1, . . . , k} → Int is the
program counter of each thread, which ranges over program labels
in the code executed by the thread.

We define a transition system for a program P to be
〈ΣP , TP , InitP 〉, where transitions TP are labeled by program
statements. For a transition t ∈ TP , we use stmt(t) to denote
the corresponding statement. We use lbl(t) and tid(t) to denote
(unique) program label and thread identifier that correspond to
stmt(t), respectively.

A transition t is in TP if all of the following conditions hold:
(a) the program counter of the thread tid(t) in state src(t) is at

program label lbl(t),
(b) the execution of the statement stmt(t) from state src(t) by

thread tid(t) results in state dst(t),
(c) no other thread is inside an atomic section in state src(t).
We use [[P]] to denote the set of traces of P , i.e., [[P]] = [[ts]] where
ts = 〈ΣP , TP , InitP 〉.

Abstraction Our method is based on abstract interpretation [10].
In this section, we quickly review relevant terminology that will be
used throughout the paper.

An abstract domain is a complete join semilattice A =
〈A,v,t,⊥〉, i.e., a set A equipped with partial order v, such that
for every subset X of A, A contains a least upper bound (or join),
denoted tX . The bottom element ⊥ ∈ A is t ∅. We use x t y as
a shorthand for t{x, y}.

In this paper, we assume that the abstract domain A is a pow-
erset of abstract states, with (partially) disjunctive join. An abstract
state s is ranging over an abstract domain B = 〈B,vB ,tB ,⊥B〉.

For X ⊆ ΣP , the abstraction function α is defined by α(X)
def
=

t{β(s) | s ∈ X}, where β is the abstraction function for the un-
derlying domain of abstract states. For a given β, the abstraction α
can vary anywhere on the range between “relational” and “carte-
sian”, depending on the definition of join.

An abstract transformer for a program statement st is denoted
by [[st]]α : A → A. For a ∈ A, the abstract transformer is defined
pointwise: [[st]]α(a)

def
= t{[[st]]β(σ) | σ ∈ a}, where [[st]]β is the

abstract transformer for the underlying domain of abstract states.
We abuse the notation slightly and use α to collectively name

all the components of an abstract interpreter: its abstract domain,
including the underlying domain of abstract states, abstract trans-
formers, and widening operator, if defined.

We define an abstract transition system for P and α to be
〈Σ\

P , T\
P , Init\P 〉, where Init\P = α(InitP), and a transition (σ, σ′)

labeled by a program statement st is in T\
P if and only if

[[st]]β(σ) vB σ′.
We use [[P]]α to denote the set of abstract traces of P , i.e.,

[[P]]α = [[ts]] where ts is the abstract transition system for P and
α, in which Σ\

P is the result of abstract interpretation, i.e., the set
of abstract states at fixed point.

Specification The user can specify a state property S, which
describes a set of program states. This property can refer to program
variables and to the program counter of each thread (e.g., to model
local assertions). Our approach can be extended to handle any
temporal safety specifications, expressed as a property automaton,
by computing the synchronous product of program’s transition
system and the property automaton [9].

Given a (concrete or abstract) state s, we use s |= S to denote
that the state s satisfies the specification S. We lift it to traces as
follows. A trace π satisfies S, denoted by π |= S, if and only if
src(π0) |= S and for all i ≥ 0, dst(πi) |= S. A set Π of (concrete
or abstract) traces satisfies S, denoted by Π |= S if and only if all
traces in it satisfy S.

4. Computing a Safe Schedule Under Abstraction
Algorithm 1 provides a declarative description of abstraction-
guided synthesis. The algorithm takes an input program, a spec-
ification, and an abstraction, and produces a (possibly modified)
program that satisfies the specification.

The main loop of the algorithm selects an abstract trace π of
the program P such that π satisfies the atomicity formula ϕ, but
does not satisfy the specification S. Then, the algorithm attempts
to eliminate this invalid interleaving π by either:
• adding atomicity constraints: the procedure avoid generates

atomicity constraints that disable π. The constraints generated
by avoid for π are accumulated by AGS in the formula ϕ.

• refining the abstraction: using a standard abstraction refinement
approach (e.g., [8, 3]) to refine the abstraction.

On every iteration, the loop condition takes into account the up-
dated ϕ and α when choosing an invalid interleaving π.

Some of the (abstract) invalid interleavings may correspond to
concrete invalid interleavings, while others may be artifacts of the
abstraction. The choice of whether to eliminate an interleaving
via abstraction refinement, or by adding atomic sections, is left as
non-deterministic choice (denoted by * in the algorithm). In this
section, we assume that it makes the right choices (for example,
only picks refinement when it is indeed possible to eliminate π
using refinement). In Section 5, we discuss how to implement it.

When all invalid interleavings have been eliminated, AGS calls
the procedure implement to find a solution for the constraints
accumulated in ϕ.

Algorithm 1: Abstraction-Guided Synthesis.
Input: Program P , Specification S, Abstraction α
Output: Program satisfying S under α
ϕ = true1
while true do2

Π = {π | π ∈ [[P]]α ∩ [[ϕ]], π 6|= S}3
if Π is empty then return implement(P ,ϕ)4
π = select trace from Π5
if shouldAvoid(π, α) then6

ψ = avoid(π)7
if ψ 6= false then ϕ = ϕ ∧ ψ8
else abort9

else10
α′ = refine(α, π)11
if α′ 6= α then α = α′12
else abort13

end14
end15

Function avoid(π)
Input: Trace π
Output: Atomicity constraint for avoiding π
ρ = false
foreach i = 0, . . . , |π| do

if exists j > i + 1 such that tid(πi) = tid(πj) and
for all l such that i < l < j, tid(πi) 6= tid(πl)
then ρ = ρ ∨ [lbl(πi), lbl(πj)]

end
return ρ

Function implement(P, ϕ)

Input: Program P , atomicity formula ϕ
Output: Program with atomic sections satisfying ϕ
Find a minimal satisfying assignment Γ |= ϕ
P ′ = P with adding atomic sections in atomize(Γ)
return P ′

4.1 Generating Atomicity Constraints
The procedure avoid takes a trace π as input, and generates an
atomicity constraint that describes all context switches in π, and
thus describes all possible ways to eliminate π by adding atomic
sections to the original program.

The atomicity constraint generated by avoid is a disjunction
of atomicity predicates. An atomicity predicate requires that a pair
of consecutive program statements execute atomically, without in-
terleaving execution of other threads between them.

Formally, given a program P , and a pair of program labels l and
l′, we use [l, l′] to denote an atomicity predicate. In our examples,
we write [stmt(l), stmt(l′)] instead of [l, l′]. An atomicity formula
is a conjunction of disjunctions of atomicity predicates.

Let π be a trace in a (concrete or abstract) transition system of
P . We say that π satisfies [l, l′], denoted by π |= [l, l′], if and only
if for all 0 ≤ i, if lbl(ti) = l and i + 1 < |π|, then lbl(ti+1) = l′

and tid(ti) = tid(ti+1).

A set of traces Π satisfies an atomicity predicate p, denoted by
Π |= p, if and only if all the traces in Π satisfy p. Similarly, we
interpret conjunctions and disjunctions of atomicity predicates as
intersection and union of sets of traces. The set of traces that satisfy
an atomicity formula ϕ is denoted by [[ϕ]].

The procedure avoid only generates atomicity predicates for
neighboring locations (locations that appear in the same thread,
where one location immediately follows the other), with the intu-
itive meaning that no operation is allowed to interleave between the
execution of these neighboring locations.

The algorithm identifies all context switches in π as follows. A
context switch after transition πi occurs if there is another transition
πj by the same thread later in the trace, but not immediately after
πi. Then, if the transition πj is the first such transition after πi, we
generate the atomicity predicate [lbl(πi), lbl(πj)].

In the case of an invalid sequential interleaving, an interleaving
in which each thread runs to completion before it context-switches
to another thread, it is (obviously) impossible to avoid the inter-
leaving by adding atomic sections. In such cases, avoid returns
false and AGS aborts.

4.2 Implementing Atomicity Constraints
The procedure implement takes a program P and an atomicity
formula ϕ as input. An atomicity formula can be seen as a formula
in propositional-logic, where the atomicity predicates are treated as
propositional (boolean) variables. Note that the atomicity formula
is in positive CNF, and thus it is always satisfiable.

The procedure constructs a program P ′ by finding a minimal
satisfying assignment for ϕ, i.e., a satisfying assignment with the
smallest number of propositional variables set to true. The atom-
icity predicates assigned to true in that assignment are then imple-
mented as atomic sections in the program.

Our approach separates the characterization of valid solutions
from their implementation. The atomicity formula ϕ maintained in
the algorithm provides a symbolic description of possible solutions.
In this paper, we choose to realize these by changing the program
and adding atomic sections. However, these could be realized using
other synchronization mechanisms, as well as by controlling the
scheduler of the runtime environment (if such scheduler exists).

In general, there could be multiple satisfying assignments for
ϕ, corresponding to different additions of atomic sections to the
input program P . Usually, we are interested in minimal satisfying
assignments, as they represent solutions that do not impose redun-
dant atomic sections.

To realize a satisfying assignment Γ |= ϕ as atomic sections,
we define atomize(Γ) to extract the minimal (contiguous) atomic
sections from the assignment. Towards this end, we construct the
set of program labels in which context switches are not permit-
ted by Γ: L = {l′ | [l, l′] ∈ Γ}. For every maximally-connected
component of L in the control-flow-graph of the original program,
we find the immediate dominator and postdominator, and add (be-
gin and end) atomic section at these labels, respectively. This may
cause extra statements included in an atomic section, eliminating
additional interleavings. This situation is sometimes unavoidable
when implementing atomicity constraints using atomic sections.

It is possible that implementing an assignment Γ results in
eliminating additional interleavings even when there are no extra
statements in the atomic section. Consider the example of Fig. 4.
In this example, T2 cannot interleave with the first iteration of the
loop in T1. But once the first iteration is over, it can interleave
with any other iteration. However, since we require implementation
via atomic sections, the only implementable solution is to add an
atomic section around the statements x++ and x++ inside the loop,
forcing every iteration of the loop to be executed atomically.

4.3 Abstraction Refinement
The procedure refine takes an interleaving π as input and at-
tempts to refine the abstraction in order to avoid π. For that to be
possible, π has to be an artifact of the abstraction, and not cor-
respond to a concrete invalid interleaving. AGS tries to refine the
abstraction by calling refine, but if the abstraction cannot be re-
fined, and refine returns the same abstraction, AGS aborts.

In this paper, we focus on the procedure for restricting invalid
interleavings, and can leverage any standard refinement scheme
(e.g., [8, 3, 4, 22]). In the examples, we use two kinds of simple
refinements: one that moves to another abstract domain (Section 2),
and one that varies the set of variables that are abstracted relation-
ally (Section 7).

4.4 Choosing Interleaving π to Eliminate
Since our program modifications consist of adding atomic sections,
we cannot eliminate sequential executions (which have no context
switches). It is therefore required that we can verify the correctness
of the sequential runs of the program under the given abstraction.

In fact, for verifying the correctness of interleavings that involve
fewer context-switches, less precise abstractions can be sufficient.

Generally, it is natural to consider interleavings in an increasing
order of the number of context switches. Atomicity constraints
obtained for interleavings with a lower number of context switches
restrict the space that needs to be explored for interleavings with
higher number of context switches.

4.5 Program Modification vs. Abstraction Refinement
When an invalid interleaving π is detected, a choice has to be
made between refining the abstraction and adding an atomicity
constraint that eliminates π. This choice is denoted by the condition
shouldAvoid(π, α) in the algorithm. Apart from clear boundary
conditions outlined below, this choice depends on the particular
abstractions with which the algorithm is used.

When π is a sequential interleaving, and avoid is realized as
the addition of atomic sections, it is impossible to add atomicity
constraints to avoid π. Therefore, in this case, the only choice
is to refine the abstraction (if possible). Hence, the condition
shouldAvoid(π, α) is set to return false when π is a sequential
interleaving.

Similarly, depending on the refinement framework used, it may
be impossible to further refine the abstraction α. For example, when
using a fixed sequence of abstraction with increasing precision (as
in Section 2), upon reaching the most precise abstraction in the se-
quence, there’s no way to further refine the abstraction. Therefore,
in this case, the only choice is trying to avoid the interleaving π, and
the condition shouldAvoid(π, α) returns true when it is known a
priori that α cannot be refined anymore.

For refinement schemes that use symbolic backwards execu-
tion to find a concrete counterexample (e.g., [8, 3]), the condition
shouldAvoid(π, α) can be based on the result of the symbolic exe-
cution. When the refinement scheme is able to find a concrete coun-
terexample, shouldAvoid(π, α) can choose to repair, using the
concrete counterexample as basis. If the refinement scheme fails
to find a concrete counterexample, but also fails to find a spuri-
ous path for abstraction refinement, shouldAvoid(π, α) can again
choose to repair, as refinement cannot be applied.

Attempting verification with a refined abstraction may fail due
to state explosion. In most cases there is no way to check for such
failure a priori in the condition shouldAvoid(π, α). Practically, it
is useful to invoke the verification procedure as a separate task, and
implement a backtracking mechanism for the refinement when ver-
ification fails to terminate after a certain time. Backtracking the re-
finement may enable successful verification of a more constrained
variant of the program.

T1 {
while (*) {
x++
x++
}
}

T2 {
if (x==1) {
assert false
}

}

Figure 4. Limitations of implementability. Correctness only re-
quires the first iteration of the loop in T1 be executed atomically.
Implementability forces every iteration to be executed atomically.

5. Abstraction Guided Synthesis
In the previous section, we described the AGS algorithm in a
declarative manner, and omitted some details that we now address:
• how do we compute [[P]]α?
• how do we obtain an interleaving π ∈ [[P]]α ∩ [[ϕ]] and π 6|= S?
• how do we choose, on every step of the algorithm, whether to

add atomicity constraints or to refine the abstraction?
To realize Algorithm 1, we first use standard abstract interpreta-

tion to compute the set of abstract states Σ\
P reachable from Init\P

under abstraction α. Then, we explore the invalid interleavings and
eliminate them. The algorithm is amenable to several optimiza-
tions, and we describe them later in this section.

In the pseudocode of Algorithm 1, we replace the declarative
expression in Line 3 with a call to function Traces:

Π = Traces(Init\P , Bad\
P , Σ\

P , ϕ)

in Algorithm 1, where Bad\
P is the set of reachable error states:

{σ ∈ Σ\
P | σ 6|= S}.

Function Traces(X, Y, V, ϕ)

Input: Set of abstract states X, Y, V , Atomicity Formula ϕ
Output: Set of traces from X to Y passing in V , satisfying ϕ
workset = {t | src(t) ∈ V \X, dst(t) ∈ Y }
result = {t | src(t) ∈ X, dst(t) ∈ Y }
while workset is not empty do

π = select and remove interleaving from workset
foreach Statement st and state σ ∈ V such that
[[st]]β(σ) vB src(π0) do

t = transition (σ, src(π0)) labeled with st
π′ = t.π
if π′ |= ϕ and π′ is acyclic then

if σ ∈ X then result = result ∪ {π′}
else workset = workset ∪ {π′}

end
end

end
return result

The function Traces(X, Y, V, ϕ) enumerates all traces that
start in a state in X ⊆ V , end in a state in Y ⊆ V , go only
through states in V and satisfy the atomicity constraint ϕ. It works
by performing a backward exploration starting from states in Y
and extending interleaving suffixes backwards. A suffix is further
extended only as long as it satisfies ϕ. Thus, the algorithm lever-
ages the constraints that are already accumulated in the atomicity
formula ϕ to prune the interleavings that have to be explored. The
use of ϕ is critical for the practicality of the approach, as shown
experimentally in Section 7.

Exploring ϕ-enabled statements We say that statement st is ϕ-
enabled in state σ when executing st from σ does not contradict ϕ.
Formally, given a set of states V , the condition enabled(st, σ, ϕ, V)
holds if and only if for every pair of transitions t and t′ such that
src(t) ∈ V , dst(t′) ∈ V , dst(t) = src(t′) = σ ∈ V and
stmt(t′) = st, the partial trace t.t′ satisfies ϕ.

V st

a b

c

For example, if ϕ is [a,c] then st is not ϕ-
enabled in σ, in the partial state space shown on
the right. However, if ϕ is [a,c]∨ [b,c], then
st is ϕ-enabled in σ.

Algorithm 2: Abstraction-Guided Synthesis.
Input: Program P , Specification S, Abstraction α
Output: Program satisfying S under α

states = workset = Init\P1
ϕ = true2
while workset is not empty do3

σ = select and remove state from workset4
foreach Statement st do5

if enabled(st, σ, ϕ, states) then6
σ′ = [[st]]β(σ)7
if σ′ 6|= S then8

select9

π ∈ Traces(Init\P , {σ′}, states\workset, ϕ)

if shouldAvoid(π, α) then10
ψ = avoid(π)11
if ψ 6= false then12

ϕ = ϕ ∧ ψ13

states = workset = Init\P14
disabled = ∅15

else abort16
else17

// refine(π)18
end19

else20
if {σ′} 6v states then21

states = states t {σ′}22
X = {σ′′ ∈ states | σ′ vB σ′′}23
workset = workset tX24

end25
end26

end27
end28

end29
return implement(P ,ϕ)30

Forward Pruning using ϕ Algorithm 2 is an optimized version
of Algorithm 1. In the optimized algorithm, we focus on the explo-
ration code, and on the code for avoiding an interleaving (Lines 11-
16), the code for refinement is similar and is abbreviated to a com-
ment in Line 18. The algorithm combines (forward) abstract inter-
pretation of the program, with (backward) exploration of invalid in-
terleavings. The main idea of the algorithm is to use the constraints
accumulated in ϕ to restrict the space that has to be explored both
forward and backward. In particular, this optimization avoids con-
structing the entire (unrestricted) transition system upfront.

The abstract interpretation part of the algorithm is standard, and
uses a workset to maintain abstract states that should be explored.
Once the workset is empty we know a fixed point is reached.

At every point, forward exploration of new states is restricted by
the current constraints accumulated in ϕ (Line 6). For every invalid
interleaving π, the formula ϕ represents all the possible ways to
eliminate π. This means that the algorithm only restricts further
exploration when the next exploration step contradicts all possible
ways to eliminate existing invalid interleavings.

In the algorithm, we use the join operator of the abstract do-
main to add new states to the set states of explored abstract states
(Line 24). More generally, the algorithm can use a widening op-
erator [10] when required. To determine whether a state should be
added to the set of states, we check whether the state is already
represented in states (Line 21).

Rebuilding Parts of the Transition System Instead of rebuild-
ing the whole transition system whenever we add a constraint to
ϕ (Line 14), or whenever we refine the abstraction, we can rebuild
only the parts of the transition system that depend on the modifica-
tion. Following approaches such as [13], we can invalidate only the
parts of the abstract transition system that may be affected by the
refinement, and avoid recomputation of other parts.

Lazy Abstraction Algorithm 2 need not maintain the same ab-
straction across different interleavings. The algorithm can be
adapted to use lazy abstraction refinement as in [13]. Instead of
maintaining a single homogenous abstraction α for the entire pro-
gram, we can maintain different abstractions for different parts of
the program, and perform lazy refinement.

Simplification of ϕ Rather than taking the conjunction of con-
straints as they are accumulated in ϕ, we preform (propositional)
simplification of ϕ on-the-fly. This is required in practice, as the
number of terms added to ϕ may be large even for small programs.

Multiple Solutions The algorithm as described here only yields
a single minimal solution. In practice (and in our implementation,
described in Section 7), it is often desirable to present the user with
a range of possible solutions and let the user make her own choice.

6. Correctness and Minimality
In this section, we show that Algorithm 1 computes a correct
program with smallest atomic sections, assuming the abstraction
is fixed. At the end, we discuss the effect of abstraction refinement,
and correctness of Algorithm 2.

6.1 Correctness
In this section, we assume that the abstraction is fixed, i.e.,
shouldAvoid in Algorithm 1 always returns true. The follow-
ing theorem says that a run of the AGS algorithm terminates with
either an abort or a valid program.

THEOREM 6.1 (Correctness). A run of the AGS algorithm termi-
nates with either an abort or returns a program P ′ such that
(1) P ′ satisfies S under α, i.e., [[P ′]]α |= S, and
(2) P ′ admits a subset of interleavings of the original program P ,

i.e., [[P ′]]α ⊆ [[P]]α.
Sketch of Proof: In every iteration, the AGS algorithm eliminates
at least one simple path to error state from the abstract transition
system. As a result, the abstract transition system may be modified
to take into account the updated atomicity formula ϕ. However, the
abstract transition system is always modified in a way that does not
introduce any new paths, in particular it has no new paths to error
states.

Because the number of simple paths is finite, the while loop in
the AGS algorithm terminates either by eliminating all simple paths
to error, or finding a path to error that has no context switches and
thus it cannot be eliminated by our method. In the latter case, the
algorithm aborts. In the former case, the set of traces Π is empty.
That is, any execution of P that respects the atomicity formula ϕ
satisfies S under the abstraction α. Let P ′ be the program returned
by implement(P,ϕ) in this case. The interleavings of P ′ is a
subset of those of P permitted by ϕ under α: [[P ′]]α ⊆ [[P]]α∩ [[ϕ]].
Therefore, P ′ satisfies S under α and AGS algorithm returns P ′.

The AGS algorithm cannot fix a program whose sequential
executions do not satisfy S under α. Otherwise, if there is a way
to add atomic sections to P such that the result satisfies S under α,
then there exists a run of the AGS algorithm that does not abort, and
computes a result. In the worst case, it makes the program always
execute sequentially.

T1 {
0: if (y==0)

goto L
1: x++
2: L:
}

T2 {
0: y=2
1: x+=1
2: assert x6=y
}

������������ ������������ ������������������������
����	
�����������

�� �������������
(a) (b)

Figure 5. Example demonstrating the effect of join and the choice
of different abstract traces to eliminate.

THEOREM 6.2. If the sequential executions of P satisfy S under α,
then there exists a run of AGS algorithm that does not abort.

In Algorithm 2, at Line 9, we always choose from Traces a trace
π that has context switches, if there is one. It guarantees that no run
of AGS algorithm aborts if the sequential version of P is valid.

The toy example in Fig. 5(a) has a single invalid interleaving:
y=2;if(y==0);x++;x+=1;assert, as shown on Fig. 5(b). How-
ever, under parity abstraction, there are two invalid interleavings,
due to join (shaded area). One of them is the abstraction of the
concrete invalid interleaving, denoted by π1. The other one is a se-
quential interleaving, denoted by π2, in which T1 executes first,
and then T2. If the AGS algorithm first chooses to eliminate π2, it
will abort, because there are no context switches to disable. How-
ever, if we chose π1 first, avoid will return the atomicity constraint
[y=2,x+=1], and the program will be successfully verified under
this constraint, using parity abstraction. Similarly, we can construct
an example in which a wrong choice leads to larger atomic sections
than necessary.

6.2 Minimality
Next, we define the notion of a minimally-atomic program, and
show how to use the AGS algorithm to compute all minimally-
atomic programs for a given input program, specification and ab-
straction.

Let Γ be a set of atomic predicates that refer to a program P .
In AGS algorithm, we obtain Γ as a satisfying assignment to the
atomicity formula ϕ. Recall from Section 4.2 that there is a unique
way to realize Γ by adding atomic sections to P . Let us denote the
resulting program by P |Γ.

Let P ′ be obtained from P by adding atomic sections. We
use Γ(P, P ′) to denote the (unique) set of atomic predicates that
corresponds to these atomic sections.

Minimally Atomic Programs A valid program is minimally-
atomic when removing or shrinking any atomic section in it makes
it invalid.

DEFINITION 6.3 (Minimally Atomic). Consider a program P
and an abstraction α. Let P ′ be a program obtained from P by
adding atomic sections. P ′ is minimally-atomic with respect to α
if and only if [[P ′]]α |= S and for every program P ′′ obtained
from P by adding atomic sections, if Γ(P, P ′′) ⊂ Γ(P, P ′), then
[[P ′′]]α 66|= S.

The condition Γ(P, P ′′) ⊂ Γ(P, P ′) means that the atomic sec-
tions of P ′′ is a (strict) subset of those of P ′.

We use MA(P, α) to denote the set of all minimally-atomic
programs with respect to α that can be obtained from P . The

programs in MA(P, α) have incomparable sets of atomic sections,
i.e., for every pair P ′, P ′′ ∈ MA(P, α), Γ(P, P ′) 6⊂ Γ(P, P ′′).
However, they may have the same set of traces under α (and even
concrete traces). When the abstraction α is not precise enough to
prove that all sequential executions of P satisfy S, MA(P, α) is
empty. In the rest of this section, we show that every minimally-
atomic program can be implemented by AGS algorithm.

THEOREM 6.4 (Minimality). For every minimally-atomic pro-
gram P ′ ∈ MA(P, α), there exists a run of the AGS algorithm
that returns P ′.
Sketch of Proof: Let P ′ ∈ MA(P, α) and let Γ = Γ(P, P ′). We
show that Γ is a satisfying assignment to ϕ computed in some run
of AGS algorithm, i.e., for some sequence of invalid interleavings
picked by AGS to be eliminated.

Let Γ′ be a maximal subset of Γ such that P |Γ′ 6= P ′. Because
P ′ is a minimally-atomic program w.r.t. α, [[P |Γ′]]α 6|= S. There
exists an atomicity predicate p such that [[P |Γ′∪{p}]]α |= S. Thus,
there is an invalid interleaving π in [[P |Γ′]]α that is eliminated by
p. Note that the atomicity predicates in Γ\ (Γ′∪{p}) are the result
of atomize. That is, P ′ = P |Γ= P |Γ′∪{p}, because P ′ is the
result of implement(P,ϕ) which chooses Γ′∪{p} as the minimal
assignment it implements.

Assume that the invalid interleaving π is picked by AGS in the
last iteration. Atomicity constraint ψ generated by avoid(π) will
include p as one of its disjuncts. Suppose that there exist a run of
AGS that produces ϕ′ such that Γ′ is a minimal satisfying assign-
ment for ϕ′. Then, Γ′ ∪ {p} is a minimal satisfying assignment to
ϕ = ϕ′ ∧ ψ and ϕ is produced in the last iteration of AGS.

Similarly, we can continue subtracting atomicity predicates
from Γ′, constructing the sequence of invalid interleavings back-
wards, until we run out of atomicity predicates.

The following proposition is much stronger than Theorem 6.4,
as it requires that a single run of the AGS algorithm yield all
minimally-atomic programs. Moreover, the minimally-atomic pro-
grams exactly correspond to all minimal satisfying assignments of
the atomicity formula ϕ computed by that run.

PROPOSITION 6.5 (Minimality-Strong). If the sequential execu-
tions of P satisfy S under α, then there exists a run of the AGS
algorithm that yields atomicity formula ϕ such that
• for every minimal satisfying assignment A to ϕ, the program
implement(P, A) ∈ MA(P, α),

• for every P ′ ∈ MA(P, α), there exists a minimal satisfying
assignment A for ϕ, such that implement(P, A) returns P ′.

Correctness and Minimality of Algorithm 2 Correctness of the
operational version of the AGS algorithm, given in Algorithm 2,
follows from the fact that an invalid interleaving eliminated by Al-
gorithm 2 from a partial transition system is also an invalid inter-
leaving that can be chosen by an iteration of Algorithm 1 from the
corresponding full transition system. Minimality follows from the
fact that the order of (forward) exploration in Algorithm 2 can be
chosen to discover error states in a way that exhibits any sequence
of minimal invalid interleavings.

Abstraction Refinement If refinement is not guaranteed to termi-
nate, then AGS algorithm is not guaranteed to terminate. The rea-
son is that every refinement step may produce new simple invalid
interleavings. When the refinement is guaranteed to be monotonic,
i.e., abstraction is more precise in every step (e.g., parity to inter-
vals is not monotonic), we can attain minimality under abstraction
refinement, by discarding the atomicity constraints ϕ after each re-
finement step. When the refinement is not monotonic, we can define
a minimally-atomic program to respect any of the explored abstrac-

Program Refinement Steps Avoid Steps
Double Buffering 1 2
Defragmentation 1 8
3D Update 2 23

Array Removal 1 17
Array Init 1 56

Table 1. Experimental Results.

tions. In the case of lazy abstraction, which refines only part of the
state-space, the definition of minimality is even more involved.

Finding a minimally-atomic program requires backtracking and
it is at least exponential in the size of the abstract transition system
of the input program, inline with the known complexity bounds
for game-based synthesis [14]. Thus, it is more valuable to invest
into a good heuristic. The simple heuristics that we use in the AGS
algorithm produce reasonable, and often minimal, synchronization
in practice, as we show in the next section.

7. Experience
We built a prototype tool named GUARDIAN based on the AGS algo-
rithm of Section 5. We applied GUARDIAN to several interesting pro-
grams, inspired by real applications, which we describe next. The
abstractions we used are variants of parity and interval domains,
where the abstractions differ in what variables are kept relational.

Table 1 summarizes our experimental results. Note that all of
our example programs are infinite state, and hence require abstrac-
tion for full verification. In our experiments, we were interested in
exploring the space of fixes under several abstractions. Even when
GUARDIAN found a solution with the original abstraction, we still
let it explore solutions with finer abstractions. For every program
in the table, we report the number of refinement steps, and number
of avoid steps performed by the algorithm. In Table 2, we report
the atomicity constraints found by GUARDIAN for programs whose
code is shown in the paper (atomicity constraints refer to the code).

When using ϕ-pruning, all experiments ran in less than 10
minutes. Without using ϕ to restrict exploration, most programs
went out of memory exploring a hopelessly large (and redundant)
space of interleavings. To enumerate minimal assignments for the
atomicity constraints constructed by our algorithm, GUARDIAN uses
a model enumerator [1]. In the rest of this section, we describe some
of our examples in more detail.

7.1 Abstract Domain
In our examples, the abstract domain is a powerset of abstract
states. An abstract state s is a tuple 〈val\s, pcs〉, where val\ maps
program variables to their abstract values, ranging over an abstract
domain such as parity, sign or interval.

For X ⊆ ΣP , the abstraction function α is defined as follows:

α(X)
def
= t{〈θ(vals), pcs〉 | s ∈ X}

where θ maps concrete values of program variables to their abstract
values. We use t θ and vθ to denote the join and order of abstract
values. The values of program counters are preserved.

We use the following join and partial order, parametric on the
variables tracked relationally. Let V ⊆ Var be a subset of variables.
The join t for the abstract domain A is defined using a relational
join over a subset of variables in V and cartesian join over the rest
of the variables:

s1t s2
def
=

{s1, s2} if pcs1 6= pcs2 or
exists v ∈ V s.t. val\s1(v) 6= val\s2(v)

{〈val\s1 t θ val\s2 , pcs1〉} otherwise

For V = Var this defines relational join. For V = ∅ this defines
cartesian join. Most of our examples vary the abstraction by varying

Program Abstraction (set of tracked variables V) Solution (atomicity constraints)
DBuffer ∅ [fill:L1,fill:L2]) ∨ ([render:L1,render:L2]

{Fill, Render} true
Defrag {Barrier, Region, F1, F2, empty} [D:L1,D:L2] ∧ [U:L1,U:L2] ∧ [U:L2,U:L3] ∧ [U:L3,U:L4]

{Barrier, Region, F1, F2, empty, i, j} [D:L1,D:L2] ∧ [U:L1,U:L2]
3D update {x2, x3, y3, z1, z3} [P1:L2,P1:L3] ∧ [P2:L2,P2:L3] ∧ [P1:L8,P1:L9]

{x2, x3, y3, z1, z3, y2, z2} [P1:L2,P1:L3] ∧ [P2:L2,P2:L3])
{x2, x3, y3, z1, z3, y2, z2, x1, y1} true

Table 2. Abstraction and solutions for some of the example programs

int Fill = 1;
int Render = 0;
int i = j = 0;
fill() {
L1:if (i < N) {
L2: Im[Fill][i] = read();
L3: i += 1;
L4: goto L1;
}

L5: Fill ˆ= 1;
L6: Render ˆ= 1;
L7: i = 0;
L8: goto L1;
}

render() {
L1:if (j < N) {
L2: write(Im[Render][j]);
L3: j += 1;
L4: goto L1;
}

L5: j = 0;
L6: goto 1;
}
main() {
fill() || render();
}

Figure 6. Double Buffering

the relationality in the join. Because the join is parametric on the
set V , in the presentation of our examples, we only vary the value
of V . The value of V for each example is shown in Table 2. The
partial order v on A is defined as follows: for all Y, Y ′ ⊆ A,
Y v Y ′ if and only if for all s1 ∈ Y there exists s2 ∈ Y ′ such that
pcs1 = pcs2 , and val\s1 vθ val\s2 .

7.2 Double Buffering
This example is motivated by the mechanism of double buffering.
Variants of this mechanism are used in a variety of settings, from
computer graphics to device drivers. This scheme is illustrated in
Fig. 6. There are two buffers of images (Im) of length N . The filler
process fills the buffer indexed by the variable Fill, while at the
same time the rendering process consumes the buffer indexed by
variable Render. When the filling completes, the values of the two
variables are swaped and the filling restarts. The rendering process
simply renders the image indexed by variable Render. To avoid
clutter, we assume that rendering is at least twice as fast as filling
and hence before Render is changed, the value of its buffer has
been written to the screen at least once (writing to the screen is
idempotent and hence can be repeated).
Specification: We would like to prove that the filler and renderer
processes never access the same location simultaneously. Formally:

pc(fill) = L2 ∧ pc(render) = L2 ⇒ ¬(Fill = Render ∧ i = j)

Result: Our first solution is obtained with a cartesian parity abstrac-
tion. This abstraction loses relationship between variables Fill,
Render, i and j when states are joined. Formally, the set V of
tracked variables is empty (V = ∅). Recall that the program coun-
ters are always kept relational.

With a more refined abstraction, GUARDIAN proves the correct-
ness of the original program. The key reason why we succeeded
in this case is that this abstraction maintains the relationship be-
tween the values Fill and Render on each iteration of the loop
and can show that these two variables are never equal. In this ex-
ample, refining the abstraction led to proving the program without
any necessary fixes. Further refining the abstraction (e.g. inserting
variable i or j in the set V) is not necessary.

7.3 Concurrent Defragmentation
This example is inspired by the problem of defragmentation. De-
fragmentation algorithms are used in various storage management
scenarios (e.g., memory, disk storage) to increase space utilization.
In many cases, defragmentation takes place concurrently with an
executing application.

In Fig. 7, we show a simplified system where one process
called Defragment performs memory compaction concurrently
with another process called Update which allocates new entries
in memory. The memory is organized as an array of entries called
Pages. The size of the array N is unknown a-priori. Each entry
in the array is either occupied (set to true) or free (set to false).
In practice, an entry may correspond to a heap object or a file on a
disk drive. Typically, each entry will also contain various other data
fields, which we have omitted here for simplicity.

To avoid synchronization on each entry, the two processes
should always work on disjoint regions of memory. To ensure that,
at the start of their operation, the two processes handshake and
then each picks a separate region to work with (labels L1-L2 in
each process). Note that the handshake is not deterministic, and
processes could select different regions on different handshakes.
In our case, there are two regions, with the first region contain-
ing memory locations with an even index and the second region
containing memory locations with an odd index.

Defragment works by iterating over the array and moving all
used entries to one side of the page. Update works by selecting a
memory location and updating it if some condition holds.

Specification: The processes should always access disjoint mem-
ory locations when at the program points accessing shared memory
locations. (We omit the specification as it is long and tedious).
Result: The resulting constraints are shown in Table 2. The names
of the processes have been abbreviated using their first letter. Note
that the original program is incorrect (variable Region is incre-
mented without any synchronization), and with this more refined
abstraction, the inferred correction is not a false positive (e.g. it is
not due to an imprecision of the abstraction). However, the con-
straint [U:L2,U:L3] ∧ [U:L3,U:L4] inferred with the coarser
cartesian abstraction is due to the imprecision of the abstraction.

7.4 3D Grid Computation
Consider a concurrent program that updates values in a 3 dimen-
sional grid. The program is shown in Fig. 8. Processes P1 and P2
should always access disjoint memory locations and hence no syn-
chronization between the processes should be required. P1 starts by
reading a value from the input and then begins a loop which adds
this value to the locations on the diagonal of the 2D matrix. We it-
erate over the diagonal of the 2D (x,y) plane as the value of variable
z1 is fixed to 1 and only x1 and y1 change. The loop comprises the
statements at labels L2 and L6 in P1. After the plane is updated, P1
updates a value in another plane (L7-L9). For clarity we have only
shown the update of a single location, but this can also be extended
to update the diagonal. Similarly, process P2 updates the diagonal

Barrier = F1 = F2 = 0;
Region = 2;
Defragment() {
/* Pick a Region */
L1: i = Region;
L2: Region = i - 1;
L3: empty = i - 2;
L4: if (i >= N) goto L14;
/* has free entry? */
L5: b = Pages[i];
L6: if (!b && empty <= 0)
L7: empty = i;
/* Copy Entry */
L8: if (b && empty > 0) {
L9: Pages[empty] = true;
L10: empty += 2;
L11: Pages[i] = false;
}

L12: i += 2;
L13: goto L4;
/* Barrier Synch */
L14: Barrier += 1; F1 = 0;
L15: if (F1 == 1)

goto L16;
if (Barrier == 2) {
Barrier = 0; F2 = 1;
Region = 2;
goto L16;
}
goto L15;

L16: goto L1;
}

Update() {
/* Pick a Region */
L1: j = Region;
L2: Region = j - 1;
L3: b = Pages[j];
/* Update the Page */
L4: if (!b)

Pages[j] = true;
/* Barrier Sync */
L5: Barrier += 1; F2 = 0;
L6: if (F2 == 1)

goto L7;
if (Barrier == 2) {
Barrier = 0; F1 = 1;
Region = 2;
goto L7;
}
goto L6;

L7:
}

main() {
Defragment() || Update();

}

Figure 7. Concurrent Defragmentation

x1 = 0; y1 = 0; z1 = 1;
x2 = 0; y2 = 1; z2 = 1;
x3 = 0; y3 = 1; z3 = 0;

P1()
L1: v = read();
L2: r = A[x1][y1][z1];
L3: A[x1][y1][z1] = r + v;
L4: x1 += 1;
L5: y1 += 1;
L6: if (x1 < N)

goto L2;

L7: v = read();
L8: r = A[x3][y3][z3];
L9: A[x3][y3][z3] = r + v;

P2()
L1: v = read();
L2: r = A[x2][y2][z2];
L3: A[x2][y2][z2] = r + v;
L4: y2 += 1;
L5: z2 += 1;
L6: if (y2 < N)

goto L2;

main()
P1() || P2()

Figure 8. Concurrent 3D Updating

of a 2D plane but this time in the (z,y) dimension. That is, the value
of x2 is fixed and only y2 and z2 are updated.
Specification: The two processes should never access the same
locations simultaneously. That is, if process P1 is reading or writing
shared data (e.g. at labels L2, L3, L8, L9), P2 should not be writing
simultaneously (e.g. be at L3), and vice versa for P2, where the
indices of the array being accessed are equal for both processes.
Result: As shown in Table 2, refining the abstraction leads to
weaker atomicity constraints. In this example, we have 3 layers of
abstractions, each leading to finer-grained solutions.

8. Related Work
Synthesis from Temporal Specifications: Early work by Emerson
and Clarke [7] uses temporal specifications to generate a synchro-
nization skeleton. This has been extended by Attie and Emerson to
synthesize programs with finer grained atomic sections [2]. Early
work by Manna and Wolper [16] synthesizes CSP programs. Pnueli

and Rosner [20] consider the problem of synthesizing a reactive
module based on an LTL specification. They discuss the problem
of implementability in this setting, and define necessary and suffi-
cient conditions for the implementability of a given specification.
Our work focuses on concurrent programs for shared memory and
is based on abstract interpretation, handling infinite-state systems.
Program Repair and Game-Based Synthesis: Jobstmann et. al.
[14] consider the problem of program repair as a game. In their
approach, a game is constructed from (a modified version of) the
program to be repaired, and an LTL specification of the correctness
property. The problem of repair boils down to finding a winning
strategy in that game. This approach has been later extended to
provide fault localization and fixing [27, 15]. The approach has
also been extended to work with predicate abstraction in [12]. In
contrast to these, we focus on concurrent programs, use abstract
interpretation, and solve the quantitative problem of computing a
minimally constrained program.

In our previous work [30], we focused on inference of CCR
guards in finite-state concurrent programs, where the atomic blocks
were not modified. This work can be viewed as the next general step
and addresses the more general problem of infinite-state systems,
employs abstract interpretation, and infers atomicity constraints (as
opposed to only inferring guards).
Dynamic Approaches: The problem of restricting the program to
valid executions can be addressed by monitoring the program at
runtime and forcing it to avoid executions that violate the speci-
fication. However, restricting the executions of a program at run-
time requires a recovery mechanism in case the program already
performed a step that violates the specification, and/or a predictive
mechanism to check whether future steps lead to a violation.

Existing approaches using recovery mechanisms typically re-
quire user annotations to define a corrective action to be taken when
the specification is violated. For example, software transactional
memory [23] is a special case of a recovery mechanism in which the
user provides atomicity annotations defining atomic sections. The
system then requires the absence of read/write conflicts, and if this
property is violated, the execution of an atomic section is restarted.
Other examples include Tolerace [19] which creates local copies
of variables to detect and recover from races, and ISOLATOR [21]
which can recover from violations of isolation.
Search-based Synthesis: In previous work [29, 28], we used a
semi-automated approach for exploring a space concurrent garbage
collectors and linearizable data-structures. The work used a search
procedure and an abstraction specifically geared towards the safety
property required for the specific domain.

In sketching [26, 25], the user provides a reference program
of the desired implementation and some sketches which partially
specify certain optimized functions. The sketching compiler auto-
matically fills in the missing low-level details to create an optimized
implementation. Sketching has been used for bounded programs
and in special cases of unbounded domains [24]. In [25], finding
a candidate solution is done using a counterexample-guided in-
ductive synthesis (CEGIS) algorithm that uses a backing bounded-
checking procedure. Candidates are generated iteratively and run
through the checker. Counterexamples are used to limit the next
candidates to be generated. In contrast, rather than generating can-
didates and checking them, in our approach, the synthesizer is part
of the verification procedure and is based on abstract interpretation.
Further, in contrast to sketching, which aims to find some solution
for the sketch, we are interested in finding a solution with minimal
synchronization.
Locks for Atomicity: There have been several works on inferring
locks for atomic sections. In the work by McCloskey et. al. [17], a
tool called Autolocker is presented. The tool takes as input a pro-

gram that has been manually annotated with (i) atomic sections and
(ii) a mapping between locks and memory locations protected by
these locks. Autolocker produces a program that implements the
atomic sections in (i) with the locks in (ii). Further work by Emmi
et. al. [11] proposed a technique to automate part (ii) above. The
actual assignment of locations to locks is solved as an optimization
problem where the goal is to minimize the total number of locks
while still achieving minimum interference between the computed
locks. The latest work of Cherem et. al. [6] proposes another alter-
native to automate (ii) while also computing actual lock placement
in the code. Our work is complementary to these approaches, as our
focus is not on optimizing the implementation of atomic sections,
but on inferring minimally atomic synchronization.

9. Conclusions and Future Work
In this paper, we presented a novel algorithm for the automatic
synthesis of efficient synchronization in concurrent infinite-state
programs (AGS). The synchronization can be realized by modify-
ing either the program or the scheduler. Our algorithm is based on
abstract interpretation and thus applies to concurrent infinite-state
programs.

The AGS algorithm leads to a new verification approach: it
allows for both the abstraction and the program to be modified
simultaneously until the abstraction is precise enough to verify the
(modified) program. This enables verification of a program in cases
where it would have otherwise failed.

We implemented the AGS approach in a prototype tool named
GUARDIAN, and successfully applied it to several small but interest-
ing concurrent programs. GUARDIAN works with various numerical
abstractions. In the future, we intend to investigate its use with finer
abstract domains, such as the trace partitioning domain [22], which
is a natural fit for our setting, as it allows to abstract interleavings
with varying degrees of precision.

We demonstrated our approach using atomic sections as the syn-
chronization primitive, but avoid and implement can be real-
ized using other synchronization primitives. In the future, we intend
to explore extensions of AGS to other synchronization primitives.

The AGS algorithm described in this paper can also be applied
in a dynamic setting, where invalid interleavings are obtained by
running the program driven by test-cases. In such a setting, the
constraints obtained from dynamic executions can be used to give
the user partial program corrections, or used to limit the space that
has to be explored statically.

Acknowledgement
The authors wish to thank Mooly Sagiv for many insightful com-
ments on an earlier version of this work.

References
[1] The SAT4J SAT solver. available at http://www.sat4j.org/.

[2] ATTIE, P., AND EMERSON, E. Synthesis of concurrent systems for
an atomic read/atomic write model of computation. In PODC ’96
(1996), ACM, pp. 111–120.

[3] BALL, T., AND RAJAMANI, S. K. Automatically validating temporal
safety properties of interfaces. In SPIN (2001), pp. 103–122.

[4] BLANCHET, B., COUSOT, P., COUSOT, R., FERET, J., MAUBORGNE,
L., MINÉ, A., MONNIAUX, D., AND RIVAL, X. A static analyzer
for large safety-critical software. In PLDI (2003), pp. 196–207.

[5] BLOEM, R., CHATTERJEE, K., HENZINGER, T., AND JOBSTMANN,
B. Better quality in synthesis through quantitative objectives. In CAV
(2009), pp. 140–156.

[6] CHEREM, S., CHILIMBI, T., AND GULWANI, S. Inferring locks for
atomic sections. In PLDI (2008), pp. 304–315.

[7] CLARKE, E., AND EMERSON, E. Design and synthesis of
synchronization skeletons using branching-time temporal logic. In
Logic of Programs, Workshop (1982), pp. 52–71.

[8] CLARKE, E. M., GRUMBERG, O., JHA, S., LU, Y., AND VEITH,
H. Counterexample-guided abstraction refinement. In CAV (2000),
pp. 154–169.

[9] CLARKE, JR., E., GRUMBERG, O., AND PELED, D. Model
Checking. The MIT Press, 1999.

[10] COUSOT, P., AND COUSOT, R. Abstract interpretation: A unified
lattice model for static analysis of programs by construction of
approximation of fixed points. In POPL (1977), pp. 238–252.

[11] EMMI, M., FISCHER, J. S., JHALA, R., AND MAJUMDAR, R. Lock
allocation. In POPL (2007), pp. 291–296.

[12] GRIESMAYER, A., BLOEM, R. P., AND COOK, B. Repair of boolean
programs with an application to C. In CAV (2006), pp. 358–371.

[13] HENZINGER, T. A., JHALA, R., MAJUMDAR, R., AND SUTRE, G.
Lazy abstraction. In POPL (2002), pp. 58–70.

[14] JOBSTMANN, B., GRIESMAYER, A., AND BLOEM, R. Program
repair as a game. In CAV (2005), pp. 226–238.

[15] JOBSTMANN, B., STABER, S., GRIESMAYER, A., AND BLOEM, R.
Finding and fixing faults. Journal of Computer and System Sciences
(JCSS) (2008).

[16] MANNA, Z., AND WOLPER, P. Synthesis of communicating
processes from temporal logic specifications. ACM Trans. Program.
Lang. Syst. (TOPLAS) 6, 1 (1984), 68–93.

[17] MCCLOSKEY, B., ZHOU, F., GAY, D., AND BREWER, E. Au-
tolocker: synchronization inference for atomic sections. In POPL
(2006), pp. 346–358.

[18] MINÉ, A. The octagon abstract domain. Higher Order Symbol.
Comput. 19, 1 (2006), 31–100.

[19] NAGPALY, R., PATTABIRAMANZ, K., KIROVSKI, D., AND ZORN,
B. Tolerace: Tolerating and detecting races. In STMCS: Second
Workshop on Software Tools for Multi-Core Systems (2007).

[20] PNUELI, A., AND ROSNER, R. On the synthesis of a reactive module.
In POPL ’89 (New York, NY, USA, 1989), ACM, pp. 179–190.

[21] RAJAMANI, S., RAMALINGAM, G., RANGANATH, V.-P., AND
VASWANI, K. Controlling non-determinism for semantic guarantees.
In Exploiting Concurrency Efficiently and Correctly – (EC)2 (2008).

[22] RIVAL, X., AND MAUBORGNE, L. The trace partitioning abstract
domain. ACM Trans. Program. Lang. Syst. 29, 5 (2007), 26.

[23] SHAVIT, N., AND TOUITOU, D. Software transactional memory. In
PODC ’95 (New York, NY, USA, 1995), ACM, pp. 204–213.

[24] SOLAR-LEZAMA, A., ARNOLD, G., TANCAU, L., BODÍK, R.,
SARASWAT, V. A., AND SESHIA, S. A. Sketching stencils. In PLDI
(2007), pp. 167–178.

[25] SOLAR-LEZAMA, A., JONES, C. G., AND BODIK, R. Sketching
concurrent data structures. In PLDI (2008), pp. 136–148.

[26] SOLAR-LEZAMA, A., RABBAH, R. M., BODÍK, R., AND
EBCIOGLU, K. Programming by Sketching for Bit-Streaming
Programs. In PLDI (2005), pp. 281–294.

[27] STABER, S., JOBSTMANN, B., AND BLOEM, R. Finding and fixing
faults. In CHARME (2005), pp. 35–49.

[28] VECHEV, M., AND YAHAV, E. Deriving linearizable fine-grained
concurrent objects. In PLDI (2008), pp. 125–135.

[29] VECHEV, M. T., YAHAV, E., BACON, D. F., AND RINETZKY, N.
Cgcexplorer: a semi-automated search procedure for provably correct
concurrent collectors. In PLDI (2007), pp. 456–467.

[30] VECHEV, M. T., YAHAV, E., AND YORSH, G. Inferring synchro-
nization under limited observability. In TACAS (2009), pp. 139–154.

