Logical Characterizations of Heap Abstractions

G. Yorsht*, T. Repé, M. SagiV, and R. Wilhelni

! School of Comp. Sci., Tel-Aviv Universityigretay, msagiy@post.tau.ac.il
2 Comp. Sci. Dept., University of Wisconsin; reps@cs.wisc.edu
3 Informatik, Univ. des Saarlandes; wilhelm@cs.uni-sb.de

Abstract. Shape analysis concerns the problem of determining “shape invarfan{g’o-
grams that perform destructive updating on dynamically allocated stohagecent work,
we have shown how shape analysis can be performed using an almtgiretation based
on 3-valued first-order logic. In that work, concrete stores are fi2wtalued logical struc-
tures, and the sets of stores that can possibly arise during executi@peesented (conser-
vatively) using a certain family of finit8-valued logical structures. In this paper, we show
how 3-valued structures that arise in shape analysis can be characterizgdaumulas in
first-order logic with transitive closure. We also define a non-standampérvaluational”)
semantics foB-valued first-order logic that is more precise than a conventidnallued
semantics, and demonstrate that the supervaluational semantics capldraaemed using
existing theorem provers.

1 Introduction

Abstraction and abstract interpretation [9] are key tools dutomatically verifying
properties of systems, both for hardware systems [7, 10kaftdare systems [44]. In
abstract interpretation, sets of concrete stores aregepted in a conservative manner
by abstract values (as explained below). Each transitidheofystem is given an inter-
pretation over abstract values that is conservative wipeet to its interpretation over
corresponding sets of concrete stores; that is, the reSldkecuting” a transition must
be an abstract value that describes a superset of the cestoets that actually arise.
This methodology guarantees that the results of abstrerpiretation overapproximate
the sets of concrete stores that actually arise at eachipdim system.

One issue that arises when abstraction is employed contterexpressiveness
the abstraction method: “What collections of concrete statan be expressed exactly
using the given abstraction method?” A second issue theésrivhen abstraction is
employed is how t@xtract informationfrom an abstract value. For instance, this is a
fundamental problem for clients of abstract interpretatisuch as verification tools,
program optimizers, program-understanding tools, ethichvneed to be able to inter-
pret what an abstract value means. An abstract vategresents a set of concrete stores
X; ideally, a queryp should return an answer that summarizes the result of pgsing
against each concrete stdfec X':

— If pis true for eachs, the summary answer should be “true”.

— If s false for eactt, the summary answer should be “false”.

— If pistrue for somes € X but false for somé’ € X, the summary answer should
be “unknown”.

This paper presents results on both of these questionscfassof abstractions that
originally arose in work on the problem of shape analysis $281]. Shape analysis

* This research was supported by THE ISRAEL SCIENCE FOUNDATI@uit No 304/03).

concerns the problem of finding “shape descriptors” thatattarize the shapes of
the data structures that a program’s pointer variablestgoinShape analysis is one
of the most challenging problems in abstract interpretatiecause it generally deals
with programs written in languages like C, C++, and Javactiallow (i) dynamic
allocation and deallocation of cells from the heap, (ii)tdestive updating of structure
fields, and, in the case of Java, (iii) dynamic creation arsfrdetion of threads. This
combination of features creates considerable difficufoesiny abstract-interpretation
method.

The motivation for the present paper was to understand theessiveness of the
shape abstractions defined in [51]. In that work, concretestare finite-valued log-
ical structures, and the sets of stores that can possitdg drtiring execution are rep-
resented (conservatively) using a certain family of fiditealued logical structures. In
this setting, an abstract value is a se8ofalued logical structures.

Because the notion of abstraction used in [51] is based dndbstructures, our
results are actually more broadly applicable than shapésis problems. For example,
it was applied to verification of sorting algorithms [37]os¥ing absence of concurrent
modification exception [47]; correct usage of JDBC, I/O atns, Java collections and
iterators [59]; correctness of concurrent queue algostfo]; modelling concurrency
in Java programs, which contain dynamic creation of obgetsthreads [58]; analyzing
processes in ambient calculus [45]; and reducing spaceiogt®n of Java programs
via compile-time memory management, with application t@@ard programs [52].

In fact, our results apply to any abstraction in which cotetates of a system
are represented by finitevalue logical structure and abstraction is performed hé t
mechanisms described in Sections 2 and 3. The approach itaktka paper should
also be relevant for addressing expressibility issues fairaber of other abstractions
that are related to [51], including [40, 31,17, 24,7, 6], adlvas for theallocation-
site abstraction—often used in points-to analysis [1, 54, 535%5]11, 18]—in which
all objects allocated at a single statement are represémtedsingle “abstract mem-
ory object” [29, 5]. Throughout the paper, however, we usgpshanalysis examples to
illustrate the concepts discussed.

The paper investigates the expressiveness of fiitalued structures by giving a
logical characterization of these structures; that is, xe&réne the question

For a given3-valued structureS, under what circumstances is it possible to
create a formulg(S), such thatS* satisfies)(S) exactly whenS® is a2-valued
structure thatS represents? 1.eS* = 3(S) iff S represents®.

This paper presents two results concerning this question:

— It is not possible to give a formuka(.S) written in first-order logic with transitive
closure for an arbitrary structure (unlessNL = NP, see Section 3). However,
it is always possible for a well-defined class $¥alued structures. (This class
includes all the3-valued structures that have been shown to be useful foreshap
analysis [51].)

— Moreover, it is always possible to gives@.S) in general, using a more powerful
formalism, namely, monadic second-order formulas.

The ability to write a formuldy(.S) that exactly captures whéatrepresents provides
a fundamental tool for improving TVLA [38] by the use of syntlsamethods. The

current TVLA system performs iterative fixed-point compigas and yields at every
program point a set of-valued structures, which represent a superset of all plessi
stores that can arise at this point in any execution. How&wét A suffers from two
limitations: (i) it is not always as precise as possible ¢gdaned below); (i) it does not
scale to handle large programs, because the worst-casdecatypf the algorithm is
doubly-exponential in certain parameters (typically, tiaenber of program variables).

The contributions of this paper lay the required groundwiarkusing symbolic
techniques to address both of these limitations. The gphdittharacterize 8-valued
structureS by a formulay(S) is a key step toward harnessing a stand@rdaued)
theorem prover to aid in abstract interpretation:

— Computing the effect of a program statement on an abstrdge va the most-
precise way possible for a given shape-analysis abstractio

— Developing a modular shape-analysis by usaisgume-guaranteasoning. The
idea is to allow arbitrary first-order formulas to be usedxpress pre- and post-
conditions, thereby enabling the code of each procedure emblyzed once for all
potential contexts. This allows to use shape analysis fpliagions in which not
all the source code is available. This becomes specificatlfitpble for recursive
procedures since it saves the need to iterate shape analysis

These methods are the subject of [62, 34].

Another contribution of this paper directly addresses tts¢ dif the aforementioned
limitations of TVLAs current technique. We give a procedtior extracting information
from a3-valued logical structuré in the most-precise way possible. That is, we give a
nonstandard way to check if a formuteholds inS:

— If 3(S) = pisvalid, i.e., holds in al-valued structures, we know thatevaluates
to 1 in all the2-valued structures represented.$y

— If ¥(S) = —¢is valid, we know thaty evaluates t® in all the2-valued structures
represented by.

— Otherwise we know that there exist@-aalued structure represented Bwwhereyp
evaluates td, and there exists anoth2svalued structure represented Bywhere
 evaluates td).

This method represents the most-precise way of extraatiiogmation from &3-valued
logical structure; in particular, whenever this methodimes 1/2 (standing for “un-
known”), any sound method for extracting information fr&frmust also returr /2.
This is in contrast with the techniques used in [51], which ezturn1/2 even when all
the2-valued structures represented$have the valué (or all have the valué).

For practical purposes, the success of using symbolic rdstdepends on having
a terminating theorem prover. Although the validity quastis undecidable for first-
order logic with transitive closure, several theorem previer first-order logic have
been created. In this paper, we report on two experiment$iohawve used these tools
to implement symbolic procedures for extracting inforroatirom a3-valued structure
in the most-precise way possible. We also performed segei@essful experiments
with other symbolic operations [62, 12]. Although theseexkpents are rather prelimi-
nary, we believe that this approach can be made to work irtipea¢-or example, there
has been some progress recently in using SPASS, includaggé of transitive clo-
sure [36]. Also, in [26], we have identified a decidable stiloddirst-order logic with

transitive closure that is useful for shape analysis. Wendefonditions under which
can be expressed in that logic (Section 5.2). We are alsatigeting other decidable
logics, as well.

The remainder of the paper is organized as follows. Sectibefides our terminol-
ogy, and explains the use Bfvalued structures as abstraction2efalued structures.
Section 3 presents the results on the expressiveneswvalfied structures, and gives
an algorithm for generating for certain families of 3-valued structures. Section 4 dis-
cusses the problem of reading out information froi3+ealued structure in the most-
precise way possible. Section 5 discusses the applicatfonso program analysis and
some implementation issues. Section 6 discusses relatéd Agpendix A defines an
alternative abstract domain for shape analysis, basedramizal abstraction, and the
~ operation for that domain. Appendix B shows how to char@mteyeneraB-valued
structures. Appendix C contains the details for one of thEepa examples. The proofs
appear in Appendix D.

2 Preliminaries

Section 2.1 defines the syntax and standard Tarskian semmanfirst-order logic with
transitive closure and equality. Section 2.2 introduné=grity formulaswhich exclude
structures that do not represent a potential store. Se2i®introduces-valued logical
structures, which extend ordinary logical structures veithextra valuel /2, which
represents “unknown” values that arise when several ctmoaes are represented by
a single abstract node. The powerseBefalued structures forms an abstract domain,
which is related to the concrete domain consisting of thegrewat of2-valued structures
via embeddingas described in Section 2.4.

Fig. 1(a) shows the declaration of a linked-list data typ€jmand Fig. 1(b) shows a
C program that searches a list and splices a new elemenhmtist. This program will
be used as a running example throughout this paper.

/* insert.c */

#include "list.h"

void insert(List x, int d) {
List y, t, e;

i i | = .
/% list h */ assert(acycliclist(x) &% x !'= NULL);

typedef struct node { \)//milzy(y»n = NULL &&)
_struct node *n; y = y->n: ’
}llrjitstd_ata, t = malloc();
' t->data = d;
e = y->n;
t->n = e;
y->n = t;

(@) (b)

Fig. 1. (a) Declaration of a linked-list data type in C. (b) A C function that searehlést pointed
to by parametex, and splices in a new element.

2.1 Syntax and Semantics of First-Order Formulas with Trangtive Closure

We represent concrete stores by ordinzawalued logical structures over a fixed finite
set of predicate symbolB = {eq, p1,...,pn}, Whereeq is a designated binary predi-
cate, denoting equality of nodes. We also tiser R to denote the maximal arity of the
predicates ifP. Without loss of generality we exclude constant and fumcsgmbols
from the logic?

Example 21 Table 1 lists the set of predicates used in the running exanijsle unary
predicatesr, y, t, ande correspond to the program variables y, t , ande, respec-
tively. The binary predicate corresponds to tha fields ofLi st elements. The unary
predicateis (“is shared”) captures “heap sharing”, i.e.Li st elements pointed to by
more than one field. (It was introduced in [5] to capture listdatree data structures.)
The unary predicates,, r,, r, andr. hold for heap nodes reachable from the program
variablesx, y, t , ande, respectively. A heap nodeis said to bereachabldrom a pro-
gram variable if the variable points to a heap node and it is possible to go from’
to u by following zero or mora-links. Reachability is defined in term of the reflexive
transitive closure of the predicate

The notion of reachability plays a crucial role in definingsatactions that are
useful for proving program properties in practice. For iagte, it may have the effect of
preventing disjoint lists from being collapsed in the abstrrepresentation. This may
significantly improve the precision of the answers obtaiogd program analysis.

Predicate | Intended Meaning

eq(vi,v2) | Do v, andv, denote the same heap node?
q(v) Does pointer variablg point to nodey?
n(v1,v2) | Does then field of v; point tov,?

15(v) Is v pointed to by more than one field ?
rq(v) Is the nodev reachable frong ?

Table 1. The set of predicates for representing the stores manipulated byaprsghat use the
Li st data-type from Fig. 1(a}; denotes an arbitrary predicate in the B&far, which contains a
predicate for each program variable of tylpest . In the case of nsert, PVar = {x,y,t,e}.

We define first-order formulas inductively over thecabulary P using the logical
connectives/ and—, the quantified, and the operatorT'C” in the standard way:

e u=0[1]|pvr,...,vk) | (1) | (1 Vp2) | (Fvr 1) [(TCu1,v2 : 1) (s, v4)
where p € P;v; are variablesp, p; are formulas

The set of free variables of a formula is defined as usual. Afiba isclosedwhen
it has no free variables. The operat@iC’ denotes transitive closure. f; is a formula
with free variables/, then (TC vy, vs : 1)(vs,v4) is a formula with free variables
(V - {Ul,’Ug}) U {1}3, 1}4}.

We use several shorthand notatiops:= s = (=1 V @2); 1 A s = =(—p1 V

f

—p2); o1 & @2 = (o1 = wa) A (p2 = @1); andVo : @ £ =Jv : —p. The

* Constant symbols can be encoded via unary predicates;-amg functions via(n + 1)-ary
predicates.

transitive closure of a binary predicatés p* (vs, v4) £ (TCv1,vs : p(v1,v2)) (v, v4).

The reflexive transitive closure of a binary predicates p*(vs, vy) « ((TCwy,v9 :
p(v1,v2))(vs,v4)) V eq(vs, v4). The order of precedence among the connectives, from
highest to lowest, is as followsi, A, v, * T'C", V, and3. We drop parentheses wherever

possible, except for emphasis.

Definition 1. 2-valued Logical StructuresLetP; denote the set of predicate symbols
with arity . Alogical structure over P is a pair S = (U, ¢) in which

— U is a (possibly infinite) set of nodes.

— ¢ is the interpretation of predicate symbols, i.e., for evprgdicate symbop €
Pi, t(p): Ut — {0,1} determines the tuples for whighholds. Also.(eq) is the
interpretation of equality, i.ex(eq)(u1, uz) = 1iff u; = uo.

Below we define the standard Tarskian semantics for firstrdagyic.

Definition 2. Semantics of First-Order Logical FormulasConsider a logical struc-
ture S = (U, (). AnassignmentZ is a function that maps free variables to nodes (i.e.,
an assignment has the functionalyt {v1, v2,...} — U). An assignment that is de-
fined on all free variables of a formula is calledcompletefor . In the sequel, we
assume that every assignmehthat arises in connection with the discussion of some
formula ¢ is complete forp. We say thatS and 7 satisfy a formula o (denoted by
S, Z = ¢) when one of the following holds:

—p=1

— o =p(v1,v9,...,v;) ande(p)(Z(v1), Z(va), ..., Z(v;)) = 1.

— ¢ = o and S, Z = o does not hold.

— @ =1 Vg, and eitherS, Z = 1 or S, Z = ps.

— ¢ = vy : p; and there exists anodec U, m > 2, suchthatS, Z[v; — u] £ ¢1.

— ¢ = (TCuwy,vy : p1)(vs,v4) and there existsy, ug, ..., uy, € U, m > 2, such
that Z(v3) = uy, Z(v4) = upy and foralll < i < m, S, Z[v; — u;,v9 —
uz‘+1])Z ®1-

For a closed formula, we will omit the assignment in the satisfaction relatiomda
merely writeS = .

2.2 Integrity Formula

Because not all logical structures represent stores, wa dssignated closed formula
F, called theintegrity formula® to exclude structures that are not of interest; in our
application, such structures are ones that do not correspmpossible stores. This
allows us to restrict the set of structures to the ones ygati'.

Definition 3. A structureS is admissibleif S = F'.

In the rest of the paper, we assume that we work with a fixedfityeformula F'.
All our notations are parameterized yand F'.

Example 22 For theList data type, there are four conditions that define the admissi-
ble structures. At any time during execution,

5 In [51] these are called “hygiene conditions”.

(a) each program variable can point to at most one heap node.

(b) then field of a heap node can point to at most one heap node.

(c) predicateis (“is shared”) holds for exactly those nodes that have two arren
predecessors.

(d) the reachability predicate for each variabdgholds for exactly those nodes that are
reachable from program variablg.

The setPVar contains a predicate for each program variable of typest ; in the

case ofi nsert, PVar = {x,y,t,e}. Thus, the integrity formuld7,;; for theLi st

data-type is:

Ape PVar¥v1, V2 @ p(v1) A p(v2) = eq(vy,v2) (a)
A Y, v1,v2 : n(v,v1) An(v,ve) = eq(vy,ve) (D)
A Yo :is(v) <= FJui,vg : meq(vr,v2) An(v,v) An(ve,v) (c)
A NgePvarVv : 7q(v) <= Fu1 : g(v1) An*(v1,v) (d)

2.3 3-Valued Logical Structures and Embedding

In this section, we defing-valued logical structures, which provide a way to représen
a set of2-valued logical structures in a compact and conservative wa

We say that the valugsand1 aredefinite valuesind thatl /2 is anindefinite value
and define a partial ordér on truth values to reflect information conteft. C I
denotes that; possibly has more definite information than

Definition 4. [Information Order] . For l1,1> € {0,1/2,1}, we define thénforma-
tion order on truth values as followd; C Iy if [; = ly orils = 1/2.

Definition 5. A 3-valued logical structure over P is the generalization of-valued
structures given in Definition 1, in that predicates may htnevaluel /2. This means
that S = (U,) where forp € P;, «(p): (U®)" — {0,1,1/2}. In addition, (i) for all
u € U, 1%(eq)(u,u) 3 1, and (i) for all uy, us € U such thatu; andus are distinct
nodes;® (eq)(u1,us) = 0.

A nodeu € U having:® (eq)(u,u) = 1/2 is called asummary node As we shall
see, such a node may represent more than one node from a%jixadned structure.

We denote the set &f-valued logical structures by 2-STRU(A]. The set of 3-
valued logical structures is denoted by 3-STRURJT

A 3-valued structure can be depicted as a directed graph, witesnas graph nodes.
A unary predicate is represented in the graph by having a solid arrow from tled-pr
icate name to nodeu for each node: for which ¢(p)(u) = 1. An arrow between two
nodes indicates whether a binary predicate holds for theesponding pair of nodes.
An indefinite value of a predicate is shown by a dotted arrtvMaluel is shown by a
solid arrow; and the valuéis shown by the absence of an arrow.

Example 23 Fig. 2(d) shows &-valued structure that represents possible inputs of the
i nsert program. This structure represents all lists that are pedhto by program
variablex and have at least two elements. The structurezhasdesu; andus, where

uy is the head of the list pointed to ry andu, is a summary node (drawn as a double
circle), which represents the tail of the list. Predicateholds foru; andus, indicating
that all elements of the list are reachable framOther unary predicates are not shown,

indicating that their values aré for all nodes, i.e., the program variablgs e, andt
are NULL, and there is no sharing in the list. The dotted edge fignto w5 indicates
that there may ba-links from the head of the list to some elements in the taifatt,
the (u1, ug)-edge represents exactly ondink that points to exactly one list element,
because of conjunct (b) of the integrity formula Example IB2contrast, the dotted
self-loop onu, represents alh-links that may occur in the tail.

s () s (D))
A A A A A
X, Tz Tz X, Tz Tz Tz
@) (b)
s @@ @@ |5 O
A A
X, Tz Tt rt Tt X, Tz T
(© (d)

Fig. 2. (a),(b),(c) Examples di-valued structures representing linked-lists that are pointed to by
program variable, of length2, 3, and4, respectively. (d)5 represents all lists that are pointed
to by program variable and that have at least two elements, including the lists represented by

(@)-().

2.4 Embedding Order
We define theembedding orderingn structures as follows:

Definition 6. LetS = (U®,.5) andS’ = (US',.5") be two logical structures, and let
f:US — U® be a surjective. We say thgtembedsS in S’ (denoted bys T/) if
for every predicate symbplc P; and alluy, ..., u; € U,

B p)(ury .. u) T () (F(wn), -, flug)) (1)

We say that' can be embedded in5’ (denoted bys' T 5”) if there exists a function
f such thats C/ §’.

Example 24 Fig. 2(a)-(c) show some of thievalued structures that can be embedded
into the 3-valued structureS shown in Fig. 2(d). The function that embesisinto S
maps the nodaf e US tou, € U®, fori = 1,2. The function that embeds, into

S maps the node’ € US* tou; € US, and bothu}, u} € US to uy € US. Also,
Eq. (1) holds, because whenever a predicate has a definite iab, the corresponding
predicate inS, has the same value. For exampl&(z)(u,) is 0 and f (u}) = f(u}) =

uy, and both:S () (u}) and .5 () (u3) are 0. Similarly, 5 (r,)(uz) = 1, and both
150 (1) (u) and 15+ (r,) (u}) are 1. For a binary predicate; (n)(us, u;) = 0, and
both ;5 (n)(ug, ui) and . (n)(ug, ui) are0.

Remark. Embedding can be viewed as a variant of homomorphism [a@ases where

S is a2-valued structure (i.e., all predicates $hhave definite values, includingy,
which is interpreted as standard equality), checking wdreie-valued structures’

embeds intaS is equivalent to checking whether there is an isomorphistwéoen
S’ and S. In cases where all nodes 1§ are summary nodes (i.e., for all € U¥,

1% (eq)(u,u) = 1/2), and all other values of predicates are definite, embedslieguiv-
alent to strong homomorphism. In cases where all nodésare summary nodes and
all other values of predicates are eitiiesr 1/2, embedding is equivalent to homomor-
phism. In all other cases, i.e, when a predicate value foesogie inS'is 1, embedding
generalizes the notion of homomorphism.

Remark. In Definition 6, we require thaf be surjective in order to guarantee that a
quantified formula, such a% : ¢, has consistent values in tvdevalued structures
and S’ related by embedding. For example fifwere not surjective, then there could
exist an individuak/ € U5, not in the range of, such that the value o’ on pis1
whenw is assigned ta’. This would permit there to be structur8sand S’ for which
the value ofiv : ¢ on S is 0 but its value onS’ is 1.

Concretization of 3-Valued Structures. Embedding allows us to define the (poten-
tially infinite) set of concrete structures that a ses-afalued structures represents:

Definition 7. Concretization of 3-Valued Structures For a set of structures C
3-STRUCTP], we denote by(X) the set oR-valued structures thak represents, i.e.,

v(X) = {S% € 2-STRUCTP] | existsS € XsuchthatS® C SandS? = F} (2)

Also, for a singleton seX’ = {S} we writey(.S) instead ofy(X).

Example 25 Example 24 shows that, C S, S, C S, andS. C S for the 2-valued
structures in Figs. 2(a-c); also, the integrity formula iatisfied forS,, S;, and S..
Therefore S, Sy, andS.. are in the concretization &f-valued structures: S,, Sy, S. €
~(S). Note that the indefinite values of predicatesSiallow the corresponding values
in S, to be either0 or 1. In particular, :%(eq)(uz,u2) = 1/2 reflects the fact that
the abstract node, may represent more than one concrete node. Ind8gdpntains
two nodesy, and u}, that are represented by, € S. Also, . (eq)(ul, u}) = 0, but
% (eq) (uh, u3) = 1.

The abstract domain we consider is the powerset of 3-valiradtsres, where the or-
dering relatiorC is defined as follows: for every two sets33¥alued structureX’; and
X5, X1 C X, ifffor all S; € X; there existsS, € X, such thatS; is embedded into
Ss.

The Analysis Technique The TVLA ([38]) system carries out an abstract interpreta-
tion [9] to collect a set of structures at each program péinThis involves finding
the least fixed point of a certain set of equations. To engrmaihation, the analysis
is carried out with respect to a finite abstract domain, thathie set of different struc-
tures is finite. When the fixed point is reached, the structtirashave been collected
at program poinp describe a superset of all the concrete stores that can atgufo
determine whether a query is always satisfieg,aine checks whether it holds in all
of the structures that were collected there. Instantiatifthis framework are capable
of establishing nontrivial properties of programs thatf@en complex pointer-based
manipulations of priori unbounded-size heap-allocated data structures.

3 Characterizing 3-Valued Structures by First-Order Formulas

This section presents our results on characterigiwglued structures using first-order
formulas. Given &-valued structures, the question that we wish to answer is whether
it is possible to give a formul@(S) that accepts exactly the set®alued structures
that S represents, i.e§® = 3(9) iff S* € ~(9).

This question has different answers depending on what gagam are made. The
task of generating a characteristic formula foB-aalued structures is challenging
because we have to find a formula that identifies when embgd&ipossible, i.e., that is
satisfied by exactly thoskvalued structures that embed irfiolt is not always possible
to characterize aarbitrary 3-valued structure by a first-order formula, i.e., there xis
a 3-valued structures' for which there is no first-order formula with transitive sioe
that accepts exactly the set®alued structures(S).

For example, consider tHevalued structures shown in Fig. 3. The absence of a
self loop on any of the three summary nodes implies thzdvalued structure can be
embedded into this structure if and only if it can be colorsithg3 colors (Lemma D1
in the appendix). It is well-known that there exists no fistler formula, even with
transitive closure, that expressgsolorability of undirected graphs, unlegs= N P
(e.g., see [25, 8]). Therefore, there is no first-order fdantiat accepts exactly the set
().

Remark. In fact, the condition is even stronger. First-order logith transitive closure
can only express non-deterministic logspace (NL) commrtaf thus, the NP-complete
problem of3-colorability is not expressible in first-order logic, useVL = NP. It

is shown in [25] using an ordering relation on the nodes. Inanntext, without the
ordering, the logic is less expressive. Thus, the conditiwher which 3-colorability is
expressible is even stronger thAh. = N P. We believe that there is an example of
a 3-valued structure that is not expressible in the logic, pegelently of the question
whetherP = N P. However, it is not the main focus of the current paper.

Up <> U2
A 4

v
u3

Fig. 3. A 3-valued structure that represeBtgolorable undirected graphs. Zvalued structure
can be embedded into this structure if and only if it can be colored Gsandprs.

3.1 FO-ldentifiable Structures

Intuitively, the difficulty in characterizing-valued structures is how to uniquely iden-
tify the correspondence between concrete and abstracs misde a first-order formula.
Fortunately, as we will see, for the subclas8-afalued structures used in shape analysis
(also known as “bounded structures”), the correspondeande easily defined using
first-order formulas. The bounded structures are a subefdhe 3-valued structures in
which it is possible to identify uniquely each node using stforder formula.

Definition 8. A 3-valued structureS is called FO-identifiable if for every nodeu €
U there exists a first-order formula nogiew) with designated free variable such

10

that for every2-valued structureS® that embeds int& using a functionf, for every
concrete node € US* and for every node; € US:

Ff) = u; = S [w s uf] = nod, (w) 3)

The idea behind this definition is to have a formula that uelgudentifies each node
u of the 3-valued structur@. This will be used to identify the set of nodes oba
valued structure that are mappedutdy embedding. In other words, a concrete node
uf satisfies thevode formula of at most one abstract node, as formalized by thenam

Lemma 1. Let S be an FO-identifiable structure, and let, u, € S be distinct nodes.
Let S* be a 2-valued structure that embeds ift@nd letu? € S?. At most one of the
following hold:

1. 8% [w— uf] nodeﬁl (w)

2. 5% [w+ uf] = node, (w)

Remark. Definition 8 can be generalized to handle arbitizxmalued structures, by also
allowing extra designated free variables for every comcretde and using equality to
check if the concrete node is equal to the designated variabtiéi (w,v1,...,05) &
w = v;. However, the equality formula cannot be used to identifgle®oin a3-valued
structure because equality evaluate$t® on summary nodes.

We now introduce a standard concept for turning valuatiotsformulas.
Definition 9. For a predicatep of arity & and truth valueB € {0,1,1/2}, we define

the formulap® (vy, v, . .., vx) to be thecharacteristic formula of B for p, by
PO (1,02, ..., 08) = —p(vg,va,. .. 0k)
1 def
pr(vy,ve,...,v) =p(vy,va,...,Uk)
def
p1/2(v1,v2, o) =1

The main idea in the above definition is that, iére {0,1}, p® holds when the
value ofp is B, and forB = 1/2 the value ofp is unrestricted. This is formalized by
the following lemma:

Lemma 2. For every2-valued structures? and assignment
S8z = pP(vr,...,) iff S (p)(Z(v1),...,Z(vr)) E B

Definition 8 is not a constructive definition, because therjiges range over arbi-
trary 2-valued structures and arbitrary embedding functions.thisrreason, we now
introduce a testable condition that implies FO-identifigbi

Bounded Structures. The following subclass o8-values structures was defined in
[50];® the motivation there was to guarantee that shape analysicaraied out with
respect to a finite set of abstract structures, and henceéhhanalysis would always
terminate.

8 This definition of bounded structures was given in [50]; it is slightly mestrictive than the
one given in [51, 35], which did not impose requirement 10(ii). Hosveit does not limit the
set of problems handled by our method, if the structure that is boundibeé mveak sense is
also FO-identifiable.

11

Definition 10. A bounded structure over vocabularyP is a structureS = (U*, /%)
such that for everyi;, uy € U®, whereu; # usy, there exists a predicate symhok P;
such that (i) (p) (u1) # ¢ (p)(u2) and (i) bothe® (p) (u1) ande® (p) (us) are notl/2,
i.e.,t%(p)(u1), % (p)(uz) € {0,1}.
Intuitively, for each pair of nodes in a bounded structuhere is at least one predi-
cate that has different definite values for these nodes.,There is a finite number of
different bounded structures (up to isomorphism).

The following lemma shows that bounded structures are F@tifiable using for-
mulas over unary predicates only (denotedyy:

Lemma 3. Every bounde@-valued structures is FO-identifiable , where
nodef def /\ ¢ (p)(ui)(w) (4)
pEP1

Example 31 The first-ordemode formulas for the structur& shown in Fig. 2, are:

node;. (w) Arz(w) A —y(w) A —t(w) A —e(w)
/\“T‘y(w) A —r(w) A —re(w) A —is(w)
nodef = —x(w) Are(w) A —y(w) A —t(w) A —e(w)

/\—|ry (w) A =1 (w) A —re(w) A —is(w)

Remark. In the case that is a bounde@-valued structure, the definition of a bounded
structure becomes trivial. The reason is that every nodecain be named by a quantifier-
free formula built from unary predicates. This is esselytidle same as saying that ev-
ery node can be named by a constant. If strucffrembeds intaS, thenS” must be
isomorphic toS, therefore it is possible to name all nodesSétby the same constants.
However, this restricted case is not of particular intefesus, because, to guarantee
termination, shape analysis operates on structures théiossummary nodes and in-
definite values. In the case th&fcontains a summary node, a struct§fe¢hat embeds
into S may have an unbounded number of nodes; hence the nodgsaainnot be
named by a finite set of constants in the language.

We already know of interesting cases of FO-identifiable cdtmes that are not
bounded, which can be used to generalize the abstractiaredefi [50]:

Example 32 The3-valued structures’ in Fig. 4 is FO-identifiable by:

node’ (w) & z(w) A1, (w) A ~y(w) A =t(w) A —e(w)
, /\—\ry(w) A =rg(w) A —re(w) A —is(w)
nodei (w) E Jw; : z(w) An(wy,w) A—z(w) Are(w) A—y(w) A =tw) A —e(w)
A=y (w) A =rg(w) A =re(w) A —is(w)
nodef) = (Fw : z(wy) An(w, w)) A-z(w) Are(w) A—y(w) A—tw) A —e(w)
A=y (w) A =rg(w) A =re(w) A —is(w)

However,S’ is not a bounded structure because nodgsndug have the same values
of unary predicates. To distinguish between these nodesxteaded noq%(w) with
the underlined subformula, which captures the fact thay anlis directly pointed to by
ann-edge fromu; .

12

T
N .
n n
@%@ > U3
X7 Tx r(E r(E

(S)
Fig. 4. A 3-valued structures’ is FO-identifiable, but not bounded.

It can be shown that every FO-identifiable structure can lmwerbed into a bounded
structure by introducing more instrumentation predicafes methodological reasons,
we use the notion of FO-identifiable which directly capture ability to uniquely iden-
tify embedding via (FO) formulasOne of the interesting features of FO-identifiable
structures is that the structures generated by a common Tafiekation “focus”, de-
fined in [35], are all FO-identifiable (see Lemma D2 in Append). For example,
Fig. 4 shows the structurs’, which is one of the structures resulting from apply-
ing the“focus” operation to the structufefrom Fig. 2(d) with the formuladv,, v, :
x(v1) An(vy,v9). 5" is FO-identifiable, but not bounded. However, structures the
one shown in Fig. 3 are not FO-identifiable unléss- N P.

3.2 Characterizing FO-identifiable structures
To characterize an FO-identifialevalued structure, we must ensure

1. the existence of a surjective embedding function.

2. that every concrete node is represented by some absbaet n

3. that corresponding concrete and abstract predicatevatget the embedding con-
dition of Eq. (1).

Definition 11. First-order Characteristic Formula LetS = (U = {uy,u2,...,un},t)
be an FO-identifiablg-valued structure.
We define théotality characteristic formula to be the closed formula:

Eivtar = Y = \/ node, (w) (5)
=1
We define thaullary characteristic formula to be the closed formula:
e LS
Sullary d:f /\ p ®)0 (6)
pEPo

For a predicatep of arity r > 1, we define theredicate characteristic formula to
be the closed formula:

fs[p]d:efvwla"'awr: /\
{uf,...,ul}eU
Nj—i node, (w;) = p™ Pt (wy, . wy) U]

j=1

" In subsequent sections, we redefine this notion to capture other atdis$rstures.

13

Thecharacteristic formula of S is defined by:

¢S = /\Sg;l(au : node (v))
N é-total
A égullar (8)

NINET Nper, €510

Thecharacteristic formula of set X C 3-STRUCT[P] is defined by:

AX)=FA(\ ¢) ©)

sex
Finally, for a singleton seX = {S} we write5(S) instead ofy(X).

The main ideas behind the four conjuncts of Eq. (8) are:

— The existential quantification in the first conjunct reqsitkat the2-valued struc-
tures have at leastdistinct nodes. For each abstract nodé jthe first sub-formula
locates the corresponding concrete node. Overall, thiginohguarantees that em-
bedding is surjective.

— The totality formula ensures that every concrete node ieesgmted by some ab-
stract node. It guarantees that the embedding functionlisdeéned.

— The nullary characteristic formula ensures that the vatiesillary predicates in
the 2-valued structures are at least as precise as the valueg abthesponding
nullary predicates ity

— The predicate characteristic formulas guarantee thatqatedvalues in the-valued
structures obey the requirements imposed by an embeddimg fh

Example 33 After a small amount of simplification, the characteristicrfiiula~(.5)
for the structureS shown in Fig. 2 isFr;. A €9, where¢® is:

Jv : node’ (v) A Jv : nodqi (v)
A Vw : nodei (w) Vv node;i (w)

A Npep, Vo : /\i:l,Q(nOdii (w1) = pbs(p)(ui)(wl))
A Ywy, ws : (nodefl (w1) A node;fl (we2) = eq(wr,wa) A n(wy,ws) A —n(ws,wr))
A (nod€ (w1) ANode;, (ws) = —eq(wr,wa) A —n(ws, wr))

Thenode formulas are given in Example 31, and the predicates fori theer t pro-
gram in Fig. 1(b) are shown in Table 1. Above, we simplifiedoneula from Eq. (8) by
combining implications that had the same premises. Thgiitydormula F; ., is given
in Example 22. Note that it uses transitive closure to defiea¢achability predicates;
consequentlyy(S) is a formula in first-order logic with transitive closure.

8 Definition 11 relates to all FO-identifiable structures, not only to boundedtstres. For
bounded structures, it can be simplified by omittigtp] for all unary predicates, because
it is implied by £ ,,;. In fact, it can be omitted only for the abstraction predicates, as de-
fined in [51]; however throughout this paper we consider all unaegipates to be abstraction
predicates.

14

When a predicate has an indefinite value on some node tupleresponding con-
junct of Eq. (7) can be omitted, because it simplifieg to

Thus, the size of this simplified version éf is linear in the number of definite
values of predicates ifi. Assuming that the.ode® formulas contain no quantifiers or
transitive-closure operator, e.g., whéris bounded, th¢* formula has no quantifier
alternation, and does not contain any occurrences of timsitige-closure operator.
Thus, the formulay is in Existential-Universal normal form (and thus decidafr
satisfiability) wheneveF is in Existential-Universal normal form and does not camtai
transitive closuré.Moreover, if the maximal arity of the predicate fis 2, then? is
in the two-variable fragment of first-order logic [43], wieger F' is. In Section 5, we
discuss other conditions under whigltan be expressed in a decidable logic.

The following theorem shows that for every FO-identifialiteistureS, the formula
~(S) accepts exactly the set Bfvalued structures represented.$y

Theorem 1. For every FO-identifiabl@-valued structures, and2-valued structures?,
St € 4(S)iff ST = 7(S).

4 Supervaluational Semantics for First-Order Formulas

In this section, we consider the problem of how to extraatrimfation from a3-valued
structure by evaluating a query. A compositional semaifiic3-valued first-order logic
is defined in [51]; however, that semantics is not as precdsheone defined here. The
semantics given in this section can be seen as providingntiiteof obtainable precision.

The Notion of Supervaluational Semanticglefined below, has been used in [56, 4].

Definition 12. Supervaluational Semantics of First-Order Formulas Let X be a set
of 3-valued structures ang be a closed formula. Treupervaluational semantics ofp
in X, denoted by(¢)) (X), is defined to be the join of the valuesobbtained from each
of the2-valued structures thak represents, i.e., the most-precise conservative value
that can be reported for the value of formutein the 2-valued structures represented
by X is

1 if Sf = gforall Sf € v(X)

(ep(X)=4¢0 if S5 B~ o forall S € v(X) (10)
1/2 otherwise

The compositional semantics given in [51] and used in TVLA ggeld 1/2 for ¢,
even when the value af is 1 for all the 2-valued structures’ that S represents (or
when the value op is 0 for all the S?). In contrast, when the supervaluational semantics
yields1/2, we knowthat any sound extraction of information frashmust returnl /2.

Example 41 We demonstrate now that the supervaluational semantidsediormula
(Px—next£NULL « Fuq, ve : z(v1) An(vy,ve) on the structures from Fig. 2(d) isl. That
is, we wish to argue that for all of tHevalued structures that structuiefrom Fig. 2(d)
represents, the value of the formuyha_,,ext-nurr Must bel.

% For practical reasons, we often replace thele formula by a new (definable) predicate, and
add its definition to the integrity formula.

15

We reason as followsS represents a list with at least two nodes; i.e., aNalued
structures represented Wy have at least two nodes. One nodé, corresponding to
uy in S, is pointed to by program variablg. The other node, corresponding to the
summary nodes, must be reachable from Consider the sequence of nodes reachable
from x, starting withuﬂ. Denote the first node in the sequence that embedsuintty
ug By the definition of reachability, there must berafink to ug from a node embedded
into u; . But the integrity rules guarantee that there is exactly node that embeds into
uy, namelyu? . Therefore, the formula(v;) A n(vy, vs) holds for[vy — u}, vy — ul].

Note that this formula will be evaluated tg2 by TVLA, because(vy) A n(v1, v2)
evaluates td /2 under the assignmeifit; — u;,v2 — us]: the compositional seman-
tics yieldsz(uy) A n(ug,uz) =1A1/2=1/2.

Notice that Definition 12 does not provide a constructive wagompute((y)) (X)
because/(X) is usually an infinite set.

Computing Supervaluational Semantics using Theorem Provs. If an appropri-
ate theorem prover is at hanfly))(S) can be computed with the procedure shown
in Fig. 5. This procedure is not an algorithm, because therém prover might not
terminate. Termination can be assured by using standahnaitpees (e.g., having the
theorem prover return a safe answer if a time-out threshsoékéeeded) at the cost of
losing the ability to guarantee that a most-precise resulbtained. If the queries posed
by operatiorSuper val uat i on can be expressed in a decidable logic, the algorithm
for computing supervaluation can be implemented using #sidecprocedure for that
logic. In Section 5, we discuss such decidable logics tratiaeful for shape analysis.

procedur e Superval uation(¢: Fornul a,
X: Set of 3-valued structures): Value
if ((X)=¢ is valid) return 1;
else if (9(X)=—-¢ is valid) return 0;
otherwi se return 1/2;

Fig. 5. A procedure for computing the supervaluational value of a formtlzat encodes a query
on a3-valued structures'.

5 Applications

The experiments discussed in this section demonstrate theyvdperation can be har-
nessed in the context of program analysis: the results itbescbelow go beyond what
previous systems were capable of. In Section 5.1, we didbiessise existing theo-
rem provers and their limitations. In Section 5.2, we suggesay to overcome these
limitations, using decidable logic.

We present two examples that ugs® read out information frorB-valued structures
in a conservative, but rather precise way. The first examgrieathstrates how supervalu-
ational semantics allows us to obtain more precise infaonditom a3-valued structure
than we would have using compositional semantics. The skexample demonstrates
how to use th&-valued structures obtained from a TVLA analysis to cortdteuloop
invariant; this is then used to show that certain propedfeslinked data structure hold
on each loop iteration. In addition, we briefly describe hpean be used in algorithms

16

for computing most-precise abstraction operations fopstanalysis. Finally, we re-
port on other work that employ$ to generate a concrete counter-example for shape
analysis.

Remark. The~ operation defines a symbolic concretization with respea tpven
abstract domain. In Section 3, we defirgtbr the abstract domain of sets ®valued
structures. In Appendix A, we describe a related abstrantaiio and definéy for it.

The applications described in this section can be used wigrdamain for whichy is
defined in some logic and a theorem prover for that logic exist our examples, we
use” defined in Section 3 and the first-order logic with transitl@sure.

5.1 Using the First-Order Theorem Prover SPASS

The TVLA ([38]) system performs an iterative fixed-point goatation, which yields
at every program poinp a setX, of bounded structures. It guarantees thak,,)
is a superset of the-valued structures that can arisepain any execution. We have
implemented thé operation in TVLA, and employed SPASS [57] to check, usirg th
formula®(X,), that certain properties of the heap hold at program pairtiso, we
implemented the supervaluational procedure describeddtich 4, employing SPASS.
The enhanced version of TVLA generates the fornful4) and makes at most two
calls to SPASS to compute the supervaluational value of aygunen structureS. In
this section, we report on our experience in using SPASS lamgtoblems we have
encountered.

First, calls to SPASS theorem prover need not terminategusecfirst-order logic
is undecidable in general. However, in the examples desttielow, SPASS always
terminated.

Example 51 In Example 41 we (manually) proved that the supervaluatieatue of
the formulayy . nextnur ON the structureS from Fig. 2(d) is1. To check this auto-
matically, we used SPASS to determine the validity(8) = ¢x_.nextnuiL; SPASS
indicated that the formula is valid. This guarantees thatfitrmulay, . next v eval-
uates tol on all of the2-valued structures that embed into

In contrast, TVLA uses Kleene semanticsFaralued formulas, and will evaluate
the formulagy _next-nurr. 10 1/2: under the assignmeib, — w1, vo — ug], x(v1) A
n(vy,vq) evaluates td A 1/2, which equald /2.

Generating and Querying a Loop Invariant We used TVLA to compute, for each
program poinip, a setX,, of bounded structures that overapproximate the set ofsstore
that may occur at that point. We then generatéed,,). Because TVLA is soundj(X,,)
must be an invariant that holds at program peginaccording to Theorem 1. In particu-
lar, whenp is a program point that begins a lo6f(,X,,) is a loop invariant.

Example 52 Let X = {S; | i« = 1,...,5} denote the set of fiv&valued structures
that TVLA found at the beginning of the loop in thesert program from Fig. 2.
Table 2 and Table 3 of Appendix C show #ieand their characteristic formulas. The
loop invariant is defined by

5
A(X) = Frise A (\/ €%
i=1

17

Using SPASS, this formula was then used to check that in streigture that can
occur at the beginning of the loog, points to a valid list, i.e., one that is acyclic and
unshared. This property is defined by the following formulas

acyc, LYoy, vg : re(v1) AnT (v, v9) = —nt(va, v1)

uns, =Vou:r.(v) = =(3wi, wa: —eq(w, ws) A n(wy,v) An(ws,v))

list, = acyc, Auns,
We applied SPASS to check the validityy08) = list,; SPASS indicated that the
formula is validi®

In addition to the termination issue, a second obstacleasSIPASS considers in-
finite structures, which are not allowed in our settlhg\s a consequence, SPASS can
fail to verify that a formula is valid for our intended set dfigctures; however, the op-
posite can never happen: whenever SPASS indicates thanalfois valid, it is indeed
valid for our intended set of structures.

Example 53 We tried to verify that every concrete linked-list reprasenby the3-
valued structureS from Fig. 2(d) has a last element. This condition is exprédse
the formulayp; . £ JuyVoy —n(vy,v2). The supervaluational value gf;,s; on a
structure S is {(¢)(S) = 1, for the following reasons. Becausg has the definite
valuel onusg in S, all concrete nodes represented by the summary ngdaust be
reachable frome. Thus, these nodes must form a linked list, i.e., each oétbescrete
nodes, except for one node that is the “last”, hasraedge to another concrete node
represented byi;. The last node does not have aredge back to any of the nodes
represented byis, because that would create sharing, whereas the value dfigate
is in S is 0 on us. Also, the last node cannot have aredge to the concrete node
represented by, because the value of predicateon the pair(us,u;) in S is 0.
Therefore, the last element cannot have an outgehagige.

We used SPASS to determine the validiy(éf) = ¢;,:; SPASS indicated that the
formula isnotvalid, because it considered a structure that has infiniteny concrete
nodes, all represented hy,. Each of these concrete nodes hasraadge to the next
node.

The validity test of the formul&(S) = -y failed, of course, because there
exists a finite structure that is represented $and thus satisfie§(S)) and has a
last element. For example, the structure in Fig. 2(a) thairesents a list of size.
Therefore, the procedure Supervaluatigp,s:, S) implemented using SPASS returns
1/2, even though the supervaluational valuesgf,; on S is 1.

The third, and most severe, problem that we face is that SRIE®S not support
transitive closure. Because transitive closure is notesgible in first-order logic, we
could only partially model transitive closure in SPASS, asatibed below.

SPASS follows other theorem provers in allowing axioms tpregs requirements
on the set of structures considered. We used SPASS axiomsdelnmtegrity rules.
To partially model transitive closure, we replaced uses©ofv;, v) by uses of a new

10 SPASS input is available fromwwy. ¢s. t au. ac. i | / ~gret ay.
11 Our intended structures are finite, because they represent menmdigucations, which are
guaranteed to be finite, although their size is not bounded.

18

designated predicatén](vy, v2). Therefore, SPASS will consider some structures that
do not represent possible stores. As a consequence, SPAS&I¢a verify that a for-
mula is valid for our intended set of structures; however dhposite can never happen:
whenever SPASS indicates that a formula is valid, it is indesid for our intended
set of structures. To avoid some of the spurious failuresréoepvalidity, we added
axioms to guarantee that ({}n](v1, v2) is transitive and (ii}t[n](v1, v2) includes all
of n(v1,ve); thus,t[n] (v, v2) includes all ofn™* (v1, v5). Because transitive closure re-
quires a minimal set, which is not expressible in first-otdgic, this approach provides
a looser set of integrity rules than we would like. Howeveis still the case that when-
ever SPASS indicates that a formula is valid, it is indeedtvalr the set of structures
in whicht[n](v1,v2) is exactlyn™ (v1, v2).

Example 54 SPASS takes into account the structure shown in Fig. 6, iohwthe value
of t[n](u1,u3) is 1, but the value ofi* (u, u3) is 0 because there is ne-edge fromu,
to us.

OE=ONO
Tr TT A

X, Tz x Tz

Fig. 6. SPASS takes into account structures in whichtfé predicate overapproximates thé
predicate, such as the structure shown in this figure.

Remark. For practical purposes, the success of using symbolic adstdepends on
having a terminating theorem prover. We have successfslyd SPASS as part of a
prototype implementation of thessume operation (Section 5.3), and the path-pruning
optimization for counter-example generation (Section.®though these experiments
are rather preliminary, we believe that this approach caméeée to work in practice.
For example, there has been some recent progress in usifgSsSh#cluding the use
of transitive closure [36]. Also, we have investigated a ptamentary approach, dis-
cussed in Section 5.2.

5.2 Decidable Logic

The obstacles mentioned in Section 5.1 are not specific td&SSPAhey occur in all
theorem provers for first-order logic that we are aware ofaddress these obstacles,
we are investigating the use of a decidable logic. To reabontdinked data structures,
we need a notion of reachability to be expressible, for exapysing transitive closure.
However, a logic that is both decidable and includes redtityamust be limited in
other aspects.

One such example is the decidable second-order theory obtwoessorsVS2S
[46]; its decision procedure is implemented in a tool caMdNA [23]. Second-order
quantification suffices to express reachability, but theeesdill two problems. First,
the decision procedure faNS2Sis necessarily non-elementary [41]. SecoWd$2S
only applies to trees, or, equivalently, to function grafdraphs with at most one edge
leaving any vertex).

19

Another example i€2 A(T'C, f1), which is a subset of first-order logic with transi-
tive closure, in which the following restriction are impdsen formulas: (i) they must
be in existential-universal form, and (ii) they must use astra single unary function
f, but can use an arbitrary number of unary predicates. [26lvstthat the decision
procedure for satisfiability o A(T'C, f1) is NEXPTIME-complete.

In spite of their limitations, bothWS2Sand EA(T'C, f1) can be useful for reason-
ing about shape invariants and mutation operations on datetsres, such as singly
and doubly linked lists, (shared) trees, and graph typek T3 key is thesimulation
techniqud?27], which encodes complex data-structures ustagtablestructures, e.g.,
function graphs or simple trees, where we can reason witidaele logics.

For example, given a suitable simulation,formula can be expressed WS2S
and EA(TC, ') if the integrity formulaF can. This follows from the definition of
7 in Eq. (9) and the fact that® does not contain quantifier alternation. This makes
EA(TC, f') andWS2Sandidate implementations for the decision procedure irsed
the supervaluational semantics and in the algorithms ttestbelow.

5.3 Assume-Guarantee Shape Analysis

The#~ operation is useful beyond computing supervaluationaloesgits: it is a neces-
sary operation used in the algorithms described in [62, BB&se algorithms perform
abstract operations symbolically by representing abstralces as logical formulas,
and use a theorem prover to check validity of these formdlagse algorithms im-
prove on existing shape-analysis techniques by:

— conducting abstract interpretation in the most-precishitm, improving the tech-
nique used in the TVLA system [38, 51], which provides no gnéges about the
precision of its basic mechanisms.

— performing modular verification using assume-guarantasaring and procedure
specifications. This is perhaps the most-exciting poteapplication ofy (and
EA(TC, f!) logic), because existing mechanisms for shape analysikjdimg
TVLA, do not support assume-guarantee reasoning.

5.4 Counter-example Generation

Some preliminary work to use the techniques presented snpéper to improve the
applicability of TVLA has been carried out. The tool desedhin [13,12] uses th&
operation to generate a concrete counter-example for atpaterror message produced
by TVLA for an intermediate3-valued structures' at a program poinp. Such a tool is
useful to check if a reported error is a real error or a falsera, i.e., it never occurs on
any concrete store.

Generation of concrete counter-examples fr6rproceeds as follows. Firs§ is
converted to the formulg(S). Then, the tool uses weakest precondition to generate
a formula that represents the stores at the entry point ¢aat lo an execution trace
that reacheg with a store that satisfieg(.S). Finally, a separate tool [39] generates a
concrete store that satisfies the formula for the entry point

20

6 Related Work

There is a sizeable literature structure-description formalisnfsr describing proper-
ties of linked data structures (see [2, 51] for referencBEs¢. motivation for the present
paper was to understand the expressive power of the shapactiosis defined in [51].

In previous work, Benedikt et al. [2] showed how to transkste kinds of shape
descriptors, “path matrices” [20, 22] and the variant ofpghgraphs discussed in [49],
into a logic calledZ,. (“logic of reachability expressions”). The shape grapbstfi49]
are also amenable to the techniques presented in the presgesit the characteristic
formula defined in Eq. (8) is much simpler than the transtatio L, given in [2];
moreover, Eq. (8) applies to a more general class of shapeipkess. However, the
logic used in [2] is decidable, which guarantees that teatimig procedures can be
given for problems that can be addressed uging

The Pointer Analysis Logic Engine (PALE) [42] provides austure-description
formalism that serves as an assertion language; asseati@iranslated to second-order
monadic logic and fed to MONA. PALE does not handle all datacttires, but can han-
dle data structures describable as graph types [30]. Bedhadogic used by MONA
is decidable, PALE is guaranteed to terminate.

One point of contrast between the shape abstractions basedalued structures
studied in this paper and bofl). and the PALE assertion language is that the powerset
of 3-valued structures forms an abstract domain. This means3thalued structures
can be used for program analysis by setting up an apprométef equations and
finding its fixed point [51]. In contrast, when PALE is used fopgram analysis, an
invariant must be supplied for each loop.

Other structure-description formalisms in the literatimelude ADDS [21] and
shape types [16].

The supervaluational semantics for first-order logic dised in Section 4 is related
to a number of other supervaluational semantics for pdagits and3-valued log-
ics discussed in the literature [56, 3, 4]. Compared to previwork, an innovation of
Fig. 5 is the use of to translate &-valued structure to a formula. In fact, Fig. 5 is an
example of a general reductionist strategy for providingigesvaluational evaluation
procedure for abstract domains by using existing logicstaadrem-provers/decision-
procedures.

Arecentwork [32], which is an abbreviated version of a motteesive presentation
of the results reported in [33], provides an alternativeabizrization oB-valued struc-
tures using logical formulas, equivalent to the charaz&tion presented in the present
paper. The present paper, which extends and elaborate® grgtlts of [61], unlike
[32, 33], reports on experience and algorithmic issues imguegical characterization
of structures for shape analysis; this material is impaf@cause shape analysis is the
primary motivation and the intended application of thisgraps well as [32, 33]. Also,
Section A.4 of the present paper gives a simple semanticragufor the property of
closure under negation, shown in [33] using a different faliem. The technical sim-
ilarities and differences between the two works are deedrih a note available from
WWwW. cs.tau. ac.il/~gretay.

21

7 Final Remarks

In [48], we discuss how to perform all operations requireddbstract interpretation
in the most-precise way possible (relative to the abstagdti use), if certain primitive
operations can be carried out, and if a sufficiently poweffabrem prover is at hand.
Chief among the primitive operations that must be availabfe thus, the material that
has been presented in this paper shows how to fulfill the reougnts of [48] for a
family of abstractions based davalued structures (essentially those used in our past
work [51] and in the TVLA system [38]).

In ongoing work, we are investigating the feasibility of ety applying the tech-
nigues from [48] to perform abstract interpretation fortednstions based oB-valued
structures. This approach could be more precise than TVLdalee, for instance, it
would take into account in a first-class way the integrityniata of the abstraction. In
contrast, in TVLA some operations temporarily ignore theegnity formula, and rely
on later clean-up steps to rectify matters.

Another step can be taken in this direction, which is to eliaé the use df-valued
structures, and directly carry out fixed-point computagiower logical formulas.

We are also investigating the feasibility of using the restriom this paper to de-
velop a more precise and modular version of TVLA by usasgume-guarantea-
soning [62]. The idea is to allow arbitrary first-order foriasiwith transitive closure to
be used to express pre- and post-conditions, and to an&lgz®tle for each procedure
separately.

References

1. L. O. Andersen. Binding-time analysis and the taming of C pointers. aviddSchmidt,
editor, Proc. of ACM Symposium on Partial Evaluation and Semantics-Basegta&froMa-
nipulation, PEPM’'93 pages 47-58, New York, NY, 1993. ACM Press.

2. M. Benedikt, T. Reps, and M. Sagiv. A decidable logic for describimiged data structures.
In Proceedings of the 1999 European Symposium On Programrmages 2—-19, March
1999.

3. S. Blamey. Partial logic. In D.M. Gabbay and F. Guenthner, editéasdbook of Phil.
Logic, 2nd. Ed., Vol. 5pages 261-353. Kluwer Academic Publishers, 2002.

4. G. Bruns and P. Godefroid. Generalized model checking: Regsatout partial state
spaces. IProc. CONCURpages 168-182. Springer-Verlag, 2000.

5. D.R. Chase, M. Wegman, and F. Zadeck. Analysis of pointerstanctigres. InNSIGPLAN
Conf. on Prog. Lang. Design and Imphages 296-310, New York, NY, 1990. ACM Press.

6. E.M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Countamg{e-guided abstraction
refinement. IrProc. Computer-Aided Verjfpages 154—-169, July 2000.

7. E.M. Clarke, O. Grumberg, and D.E. Long. Model checking dwlraction.Trans. on Prog.
Lang. and Syst16(5):1512-1542, 1994.

8. B. Courcelle. On the expression of graph properties in some fratgro&émonadic second-
order logic. In N. Immerman and P.G. Kolaitis, editobescriptive Complexity and Finite
Models: Proceedings of a DIAMCS Workshopapter 2, pages 33-57. American Mathemat-
ical Society, 1996.

9. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice hfodstatic analysis
of programs by construction of approximation of fixed points.Simp. on Princ. of Prog.
Lang, pages 238-252, New York, NY, 1977. ACM Press.

10. D. Dams.Abstract Interpretation and Partial Refinement for Model CheckiRgD thesis,
Technical Univ. of Eindhoven, Eindhoven, The Netherlands, Jug619

22

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

27.

28.

29.

30.

31.
32.

33.

34.

35.

M. Das. Unification-based pointer analysis with directional assigtsnémConf. on Prog.
Lang. Design and Implpages 35-46, 2000.

G. Erez. Generating concrete counter examples for arbitratsgabgomains. Master’s
thesis, Tel-Aviv University, Tel-Aviv, Israel, 2004. In Preparation

G. Erez, M. Sagiv, and E. Yahav. Generating concrete couwden@es for arbitrary abstract
domains. Unpublished Manuscript, 2003.

R. Fagin. Monadic generalized specZaMath. Logik 21:89-96, 1975.

M. Rahndrich, J. Foster, Z. Su, and A. Aiken. Partial online cycle eliminatiandlusion
constraint graphs. I8IGPLAN Conf. on Prog. Lang. Design and Implages 85-96, New
York, NY, June 1998. ACM Press.

P. Fradet and D. Le Metayer. Shape typesSymp. on Princ. of Prog. Langages 27-39,
New York, NY, 1997. ACM Press.

P. Godefroid and R. Jagadeesan. On the expressivenessabfed models. INVMCAI,
pages 206-222, 2003.

N. Heintze and O. Tardieu. Ultra-fast aliasing analysis using CLAilkomlines of C code
in a second. 'SIGPLAN Conf. on Prog. Lang. Design and Implew York, NY, June 2001.
ACM Press.

P. Hell and J. NesetrilGraphs and Homomorphism®xford University Press, 2004.

L. Hendren. Parallelizing Programs with Recursive Data Structurd3hD thesis, Cornell
Univ., Ithaca, NY, Jan 1990.

L. Hendren, J. Hummel, and A. Nicolau. Abstractions for rewarpbinter data structures:
Improving the analysis and the transformation of imperative progrdamSIGPLAN Conf.
on Prog. Lang. Design and Imppages 249-260, New York, NY, June 1992. ACM Press.
L. Hendren and A. Nicolau. Parallelizing programs with recursa@ dtructures.|EEE
Trans. on Par. and Dist. SystL(1):35-47, January 1990.

J.G. Henriksen, J. Jensen, M. Jgrgensen, N. Klarlund, Be PRiRauhe, and A. Sandholm.
Mona: Monadic second-order logic in practice.Rroc. of TACAS 95ages 89-110, 1996.
M. Huth, R. Jagadeesan, and D. A. Schmidt. Modal transition sgst&rfoundation for
three-valued program analysis. BSOPR pages 155-169, 2001.

N. ImmermanDescriptive ComplexitySpringer-Verlag, 1999.

N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yor3he boundary between
decidability and undecidability for transitive-closure logics d8L, 2004.

N. Immerman, A. Rabinovich, T. Reps, M. Sagiv, and G. Yorgéxification via structure
simulation. InCAV, 2004.

N.D. Jones and S.S. Muchnick. Flow analysis and optimization oflliepstructures. In
S.S. Muchnick and N.D. Jones, edito”spgram Flow Analysis: Theory and Applicatigns
chapter 4, pages 102—-131. Prentice-Hall, Englewood Cliffs, NJ,.1981

N.D. Jones and S.S. Muchnick. A flexible approach to interproeddiata flow analysis
and programs with recursive data structuresSymp. on Princ. of Prog. Langpages 66—
74, New York, NY, 1982. ACM Press.

N. Klarlund and M. Schwartzbach. Graph typesSimp. on Princ. of Prog. Langpages
196-205, New York, NY, January 1993. ACM Press.

V. Kuncak, P. Lam, and M. C. Rinard. Role analysisPDPL, pages 17-32, 2002.

V. Kuncak and M. Rinard. Boolean algebra of shape analysigreimts. InVMCAI, pages
59-72, 2003.

V. Kuncak and M. Rinard. On Boolean algebra of shape analysistreints. Technical
report, MIT, CSAIL, 2003. Available at “http://www.mit.edt/vkuncak/papers/index.html”.
P. Lam, V. Kuncak, and M. Rinard. Hob: A tool for verifying dateusture consistency. In
Conf. on Compiler Construction (tool dem@p05.

T. Lev-Ami. TVLA: A framework for Kleene based static analysisadter’s thesis, Tel-Aviv
University, Tel-Aviv, Israel, 2000.

23

36

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

. T. Lev-Ami, N. Immerman, T. Reps, M. Sagiv, S. Srivastava &. Yorsh. Simulating
reachability using first-order logic with applications to verifciation of linkethdgtructures.
Submitted for publication, 2005.

T. Lev-Ami, T. Reps, M. Sagiv, and R. Wilhelm. Putting static analysisdtk for verifica-
tion: A case study. IfProc. of the Int. Symp. on Software Testing and Analysiges 2638,
2000.

T. Lev-Ami and M. Sagiv. TVLA: A system for implementing static bsas. InStatic
Analysis Symppages 280-301, 2000.

W. McCune. Mace 2.0 reference manual and guide. Availablehtp:f/www-
unix.mcs.anl.gov/AR/mace/”, 2001.

K. L. McMillan. Verification of infinite state systems by compositional mlacthecking. In
CHARME pages 219-234, 1999.

Albert R. Meyer. Weak monadic second-order theory of ssords not elementary re-
cursive. InLogic Colloquium, (Proc. Symposium on Logic, Boston, 19Fayes 132—-154,
1975.

A. Mgller and M.I. Schwartzbach. The pointer assertion logic engm8IGPLAN Conf. on
Prog. Lang. Design and Implpages 221-231, 2001.

M. Mortimer. On languages with two variable&eitschr. f. math. Logik u. Grundlagen d.
Math, 21:135-140, 1975.

F. Nielson, H.R. Nielson, and C. HankiRrinciples of Program AnalysisSpringer-Verlag,
1999.

F. Nielson, H.R. Nielson, and M. Sagiv. A Kleene analysis of mobilkiants. In G. Smolka,
editor,Proc. of ESOP 2000s/0lume 1782 oL.NCS pages 305—-319. Springer, 2000.

M. Rabin. Decidability of second-order theories and automata ort@fires.Trans. Amer.
Math. Soc.141:1-35, 1969.

G. Ramalingam, A. Varshavsky, J. Field, D. Goyal, and M. Sdpgriving specialized pro-
gram analyses for certifying component-client conformancéLbI, pages 83-94, 2002.
T. Reps, M. Sagiv, and G. Yorsh. Symbolic implementation of thé¢ toassformer. In
VMCAI, pages 252—-266, 2004.

M. Sagiv, T. Reps, and R. Wilhelm. Solving shape-analysis prablentanguages with
destructive updatingTrans. on Prog. Lang. and Sys20(1):1-50, January 1998.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysis wadud logic. InSymp.
on Princ. of Prog. Lang.pages 105-118, New York, NY, January 1999. ACM Press.

M. Sagiv, T. Reps, and R. Wilhelm. Parametric shape analysiswadugd logic.Trans. on
Prog. Lang. and Syst2002.

R. Shaham, E. Yahav, E.K. Kolodner, and Mooly Sagiv. Estahlislocal temporal heap
safety properties with applications to compile-time memory managemeRtot of Static
Analysis Symposium (SAS’08dlume 2694 oL NCS pages 483-503. Springer, June 2003.
M. Shapiro and S. Horwitz. Fast and accurate flow-insensitivagptiranalysis. Ir8ymp.
on Princ. of Prog. Lang.pages 1-14, 1997.

B. Steensgaard. Points-to analysis in almost-linear tim8yinp. on Princ. of Prog. Lang.
pages 32-41, 1996.

Z. Su, M. Rhndrich, and A. Aiken. Projection merging: Reducing redundanciesinsion
constraint graphs. In T. Reps, edit@ymp. on Princ. of Prog. Langpages 81-95, New
York, NY, January 2000. ACM Press.

B. van Fraassen. Singular terms, truth-value gaps, and free bdhil, 63(17):481-495,
1966.

C. Weidenbach. SPASS: An automated theorem prover for filst-dogic with equality.
Available at “http://spass.mpi-sh.mpg.de/index.html”.

E. Yahav. Verifying safety properties of concurrent Java fanmg using 3-valued logic.
Symp. on Princ. of Prog. Lang36(3):27-40, 2001.

24

59. E. Yahav and G. Ramalingam. Verifying safety properties usingraépn and heteroge-
neous abstractions. Proceedings of the ACM SIGPLAN 2004 conference on Programming
language design and implementatigrages 25-34. ACM Press, 2004.

60. E. Yahav and M. Sagiv. Automatically verifying concurrent quelgorithms. In Byron
Cook, Scott Stoller, and Willem Visser, editoEectronic Notes in Theoretical Computer
Sciencevolume 89. Elsevier, 2003.

61. G. Yorsh. Logical characterizations of heap abstractions. Mattesis, Tel-Aviv Univer-
sity, Tel-Aviv, Israel, 2003. Available at “http://www.math.tau.ae-lgretay”.

62. G. Yorsh, T. W. Reps, and M. Sagiv. Symbolically computing mostipe abstract opera-
tions for shape analysis. TACAS pages 530-545, 2004.

A Characterizing Canonical Abstraction by First-Order For mulas

This section defines an alternative abstract domain forrusbape analysis (and other
logic-based analyses). This domain keeps more explicirinétion than the one in
Section 2.4 and enjoys nice closure properties (see Setin This domain uses a
particular class of embedding functions that are defined Siynple operation, called
canonical abstractiopwhich map2-valued structures into a limited subset of bounded
structures.

A.1 Canonical Abstraction

Canonical abstraction was defined in [50] as an abstractitntie following proper-
ties:

— It provides a uniform way to obtaiB-valued structures of a priori bounded size.
This is important to automatically derive properties ofgmams with loops by em-
ploying iterative fixed-point algorithms. Canonical alastion maps concrete nodes
into abstract nodes according to the definite values of tlaeypredicates.

— The information loss is minimized when multiple nodesSare mapped to the
same node iry’,

This is formalized by the following definition:

Definition 13. A structureS’ = (US',,5") is acanonical abstractionof a structures,
if § Ceanonical G ‘wherecanonical: U — U is the following surjective mapping:
canonical(u) = Uipep, |u5 (p) (u)=1},{peP: |15 (p) (u)=0} (11)
and, for everyp € Py, of arity k,
Fp)(uy, -y uy) = L P (p)(ur, .. ug) (12)
u; € US, st

canonical(u;) = uj € Usl7
1<i<k

L

We say thats’ = canonical(S).

The name ti,ep, 1.5 (p) (w)=1},{peP1 |15 (p)(w)=0} IS KNOWN as thecanonical name
of nodeu. The subscript on the canonical namexdfivolves two sets of unary predicate
symbols: (i) those that are truewatand (ii) those that are false at

25

Example Al In structuresS from Fig. 2, the canonical names of the nodes are as fol-
lows:

NodeCanonical Name

UL |\W{z,r,} {y.t,e,is,my,r¢,7e

U2 u{r‘p},{z,y,t,e,is,ru,rt,re}
In the context of canonical abstractiofi,shown in Fig. 2 represents;, and.S.., but not
S,; i.e., S represents lists that are pointed to bythat have at least three nodes, but it
does not represent a list with just two nodes. The reasoratptiedicates: andeq have
indefinite values ir5, but a list with only two nodes cannot have béthnd 1 values
for the corresponding entries, as required for minimizinfprmation loss as defined in
Eqg. (12)*? In contrast, according to the abstraction that relies on eahding, defined
in Section 2.45 represents lists with two or more elements.

To characterize canonical abstraction, we define the s&tvafued structures that
are “images of canonical abstractionC@Q), i.e., the results of applying canonical ab-
straction ta2-valued structures.

Definition 14. Image of canonical abstraction (CA) StructuresS is anICA if there
exists a2-valued structures® such thats is the canonical abstraction .

Concretization of 3-Valued Structures. Canonical abstraction allows us to define the
(potentially infinite) set oR-valued structures represented by a set-ohlued struc-
tures, that aréCA

Definition 15. Concretization of ICA Structures For a set of structureX’ C 3-STRUCTP],
that arelCA structures, we denote by.(X) the set oR-valued structures thak rep-
resents, i.e.,
(X) = St € 2-STRUCTP] | existsS € Xsuch that (13)
7el2) =9 S is the canonical abstraction ¢ and S% = F

Also, for a singleton seX’ = {5} we writev.(S) instead ofy.(X).

The abstract domain is the powersetl GfA structures, where the order relation is
set inclusion. Note that this abstract domain is finite, bheeahere is a finite number
of different ICA structures (up to isomorphism). Denotedgythe extension of the ab-
straction functiorcanonical to sets. This defines a Galois connect{on, v.) between
sets of2-valued structures and setsl@fA structures.

A.2 Canonical-FO-Identifiable Structures

We define the notion of canonical-FO-identifiable hodes gisianonical abstraction
rather than embedding, which was used for the notion of Fedtiflable nodes in Def-
inition 8.

Definition 16. We say that a nodein a 3-valued structureS is canonical-FO-identifiable
if there exists a formula nodéw) with designated free variable, such that for every

12 Eq. (12) is called théight-embeddingondition in [51].

26

2-valued structures?, if S is the canonical abstraction &, i.e.,S% € v.(S), then for
every concrete nodé € US":

canonical(uf) = u < S [w — uf] = node (w) (14)
S is called canonical-FO-identifiable if all the nodesSrare canonical-FO-identifiable.

We can also prove Lemma 1 for the case of canonical abstmactber than em-
bedding.

A.3 Characterizing Canonical Abstraction

An ICA structure is always a bounded structure, in which all nylerd unary predi-
cates have definite valué$This is formalized by the following lemma:

Lemma 4. If 3-valued structureS = (U, %) over vocabularyP is ICA then:

(i) Sis abounded structure.
(ii) For each nullary predicate, .°(p)() € {0, 1}.
(iii) For each element € U and each unary predicate :*(p)(u) € {0, 1}.

The following lemma shows th&CA structures are canonical-FO-identifiable:

Lemma 5. Every 3-valued structureS that is anICA is canonical-FO-identifiable,

where .
nodg (w) £ A p* @0 (w) (15)
pEP1

Using this fact, we can define a formutd that accepts exactly the setdivalued
structures represented yunder canonical abstraction. The formuf&is merely¢®
with additional conjuncts to ensure that the informaticsslts minimized, i.e., for every
predicatep and everyl /2 entry ofp, the2-valued structure has both a corresponding
entry and a corresponding 0 entry.

Definition 17. First-Order Characteristic Formula for Cano nical Abstraction Let
3-valued structureS = (U°,) be an ICA.
For a predicatep of arity », we define the closed formula fpr

So o Fwi, . wpt Njoy node’, (w;) A p(ws, . .., w,)
= /\ A Jwi, .. we s AL, nod€ (w;) A —p(wi,. .., w,.)
{uf,.. ul} C Us) ’ J=1 G\ ’)
st (p)(uh, ... ul) =1/2
(16)
The formula ofS is defined by:
mazrR
def
#ESAN N (17)
r=2 p€P;,

13If not all unary predicates are defined as abstraction predicates tHeeresult may be a
bounded structure of the less restrictive kind mentioned in Section 3.4, sy predicates
that are not abstraction predicates may have indefinite values.

27

1

)

Thecharacteristic formula for canonical abstraction of a set @ | CA structures
X C 3-STRUCTP] is defined by

(X)) =FAr(\ 79 (18)
SeX

Also, for a singleton seX = {S}, whereS is anICA structure, we writéy.(S) instead
of 7(X).

Example A2 The characteristic formula for canonical abstraction oétktructureS
shown in Fig. 2(d) is:

A Jw, ws : I’10dq$1 wy
A Jw, ws : nodef:l w1

(w1) A node;,
(
A Jwy, wo : nodiz(
(
(
(

A node,
A node,
A node’,
A node’,
A node;,

wa) A n(wr, ws)
wa) A —n(wy, ws)
wy wa) A n(wy, ws) (29)
A Jwy, wo : I’10d§2 wy)
A Jwy, ws : node;'fz wy)
A Jwy,ws : node,‘fz w1

wa) A —n(wy, ws)
wa) A eq(wy, ws)
wa) A meq(wy, wa)

—_— — — — — —
N N N N S

wherey(S) is given in Example 33. As explained in Example #tioes not represent
a list of two nodes; the correspondir?gvalued structureS,, shown in Fig. 2(a), does
not satisfy Eq. (19), because the last four lines cannot bisfial by any assignment in
Sq.

Remark. The formular® does not contain quantifier alternation and transitivelries
Thereforejy. is in Existential-Universal normal form (and thus decidgghthenever
is in Existential-Universal form and does not contain tiewes closure.

Theorem 2. For every3-valued structures that is anlCA and2-valued structures®
% € 7 (S) iff S* |=7.(S)

A.4 Closure Properties of ICA Structures

This section gives a simple semantic proof that the claserofifilas that characterize
ICA structures is closed under negation. This result was/eho [33] using a different
formalism.

From Eg. (12) it follows that for two distinct ICA structurés and.Ss, 7.(S51) N
~.(S2) = @. Intuitively, each-valued structure can be represented by exactly one ICA
structure. This implies that the complement of the conza¢ittn of an ICA structure
can be represented precisely by a finite set of ICA structures

Denote byD the set of all2-valued structures that satisfy the integrity formitla
D £ {S% € 2-STRUCTP] | S% = F}.

Lemma 6. Let.S be an ICA structure. There exists a set of ICA structu¥esuch that
'YC(X) =D~ 'YC(S)'

This can be reformulated using Theorem 2 in terms of chaiatiteformulas for ICA
structures. This shows that the class of formulas that cleniae canonical abstraction
is closed under negation, in the following sense:

28

Lemma 7. Consider the formula® from Eq. (17), for some ICA structuig. There
exists a set of ICA structureX, such that the formuld A -9 is equivalent to the
formula”.(X).

Remark. Note that Lemma 6 and Lemma 7 do not hold for bounded strestusing
~, described in Section 3.1, insteadf The reason, intuitively, is that sor@evalued
structures can be represented by more than one boundetlisttuc

For example, consider ti¥evalued structuré, from Fig. 2, which denotes a linked-
list of length exactl\2. Itis in the concretization of two differeBtvalued structures: the
firstis S, itself, considered as&valued structures’ (that represents a singlevalued
structurery(S’) = {S,}); the second is the structugefrom Fig. 2.

For the purpose of this example, assume that the integnitydta F' (that defines
D) requires that all elements be reachable fronin addition to the integrity formula
Fr;s¢ from Example 22. The Complemeﬁt”:ef D~ v(58") = D\ S, is the set that
contains an empty linked list, a linked list of lengthand linked lists of lengtt3 or
more. The representation 6fis a setX of bounded structures. To capture linked lists
of length3 or more, X must contain &-valued structureS from Fig. 2. Howevery(S)
includes a list of length as well, denoted b, which is notinC. Therefore X cannot
contain$, and a contradiction is obtained.

B Characterizing General 3-Valued Structures by NP Formulas

In this section, we show how to characterize gengnalued structures.

B.1 Motivating Example

If the input structure is FO-identifiable, Theorem 1 ensthesthe result of operation
precisely captures the concretization of the input stmgcflihe purpose of this example
is to show what happens if we apply theoperation, as defined in Section 3, to a
structure that is not FO-Identifiable. Whéris not FO-identifiabley(.S) only provides

a sufficient test for the embedding ®fvalued structures ints.

Example B1 The 3-valued structureS shown in Fig. 3 describes undirected graphs.
We draw undirected edges as two-way directed edges. Thistste uses a set of pred-
icatesP = {eq, f, b}, wheref(vy,v2) andb(ve, v1) denote the forward and backward
directions of an edge between nodgsandv,.

When Eq. (8) is applied to thevalued structureS shown in Fig. 3, we get

A

A\

A\ le,’wg /\k;aé] nodqf (w1 /\nOd% (w2 = f1/2(’w1,w2))
A Vwy,ws /\k#J(no & (

A Ywg,wsg /\ ,(nodg, (W1)A“0d‘3§ wz) (w17w2))

A Ywp,wg: /\ (nodef

29

Because this example does not include unary predicates;dtie formula given in
Lemma 3 evaluates tbon all elements. Hence, Eq. (20) can be simplified to:

vl

Vw \/1 11

Ywi, we : /\k¢ (1/\1?1

Ywi, we : /\k;@(l/\lél

Ywy, ws : /\ (1/\1=>—|b(w1,w2))
Yy, ws : /\;‘;1(1 A1 = —f(wy,ws))

>>>>>>

After further simplification, we get the formutav,, wy : —f (w1, ws) A Ywy,ws :
—b(w1,we). The simplification is due to the fact that the implicatiorEig. (7) uncon-
ditionally holds for all pairs of distinct nodes, becaugandb evaluate tal /2 on those
pairs, except for the requirement imposed by the absencaelfdbsps inS.

This formula is only fulfilled by graphs with no edges, whick abviously3-
colorable. But this formula is too restrictive: it does napture some3-colorable
graphs.

B.2 Characterizing General3-Valued Structures

Existential monadic second-order formulas are a subsea@ihs second-order formu-
las [14], named NP formulas, which capture NP computatiarfermula in existential
monadic second-order logic has the form:

Vi, Vo, .., Vit

where theV; are set variables, and s a first-order formula that can use membership
tests inV;. We show that in this subset of second-order logic, the cbariatic formula
from Definition 11 can be generalized to handle arbitBamalued structures using exis-
tential quantification over set variables (with one setalala for each abstract nod€).

Definition 18. NP Characteristic FormulaLetS = (U = {uj, ug,...,u,},¢) be a
3-valued structure.
We define the following formula to ensure that the sets areemopty:

s [i] £ Jw; : node (w;) (21)

non_empty

We define the following formula to ensure that the $gtd/; are disjoint:
EGisjoint k> 3] = Vwy, wy : nod€,, (w1) A node, (wa) = —eq(wy,ws) (22)
TheNP characteristic formula of S is defined by:
ES d:ef 3V1, R ‘/7' . /\1 1 fnon empfy[] A /\k;éj gdsisjoint[kvﬂ

A &t
ota 23
A é‘S'u,llar ()

AN INET Npep, €511)

1% This result is mostly theoretical. In principle, this encoding falls into monadimnd order
logic, which is decidable if we restrict the concrete structures of intereéstés. However, we
have not investigated this direction further.

30

where¢?, ., &3 €5[p] are defined as in Definition 11, except that npde the NP

nullary’
def

formula nodéi (w) = (w € V;). (Here, we abuse notation slightly by referringitpin
nodqfi (w). This could have been formalized by passifig. . ., V,, as extra parameters
to node .)

TheNP characteristic formula of a finite setX C 3-STRUCT/[P] is defined by:

Ane(X)=F A\ €) (24)
Sex

Finally, for a singleton seX = {S} we writeyy p(S) instead ofyn p(X).

Example B2 After a small amount of simplification, the NP charactedg$trmula¢®
for the graph shown in Fig. 3 is:

WL Vo,V A, (Bw:w € V) (i)
A Npgj Vi, w2 2 (w1 € Vig Awg € V= —eq(wr, wa)) (#1)
AVw: o weV, (i)
A Ywi,ws : /\?:1(/\]-:172 w; € Vi = —e(wy,ws) A —e(ws,wr)) (1v)

In this formula,Vy, V5, and V3 represent the three color classes. Line by line, the for-
mula says: (i) each color class has at least one member; t{g) ¢olor classes are
pairwise disjoint; (iii) every node is in a color class; (impdes in the same color class
are not connected by an undirected edge.

The following theorem generalizes the result in Theorenr Afoarbitrary3-valued
structureS, using NP-formulayy p(S) to accept exactly the set @fvalued structures
represented by.

Theorem 3. For every3-valued structureS, and2-valued structures®:
S* € ~(9) iff S* = Fnp(S)

C Generating and Querying a Loop Invariant

Table 2 and Table 3 show the structures and the charaateiostnulas for the experi-
ment described in Example 52.

It is interesting to note that the size §f2 is bigger than the size @f*'. This is
natural becaus$, has more definite values, which impose more restrictions #na
imposed bys; .

D Proofs

Lemma D1 Consider the3-valued structures shown in Fig. 3. For alR-valued struc-
turesC, C can be embedded int®if and only ifC' can be colored using colors.
Proof of the if direction:Suppose thaf” is 3-colorable, let: be a mapping from the
nodes ofC' to the colors{1, 2,3}. We define embedding functiofi from C to S as
follows: f(u) = uc(y), i.€., a nodew € C that has coloi is mapped ta; € S. Itis
easy to see that preserves predicate valuesShbecause the only definite valuesdn

31

Structure CharacteristicFormula
node’! (w) = x(w) A y(w) A —t(w) A —e(w)
A 1o (w) Ary(w) A _‘Tt(w) —re(w) A —is(w)
node’! (w) = —~x(w) A —~y(w) A =t(w) A —e(w)
;T A Tz (w) Ary(w) A =re(w) ﬁre(w) A —is(w)
& = Ai=1,(3v : nod€! (v
A VYw : \/1 12 nodefl
f ! A Y, wa s Ay 12nodef (w;) =
o ety oty —eq(wi,wz) A —-n(wsz,wr)
A NYwi,ws 0 \;_; , NOd€! (w;) =
Neq(wi, w2) A “n(wr, ws)
node;? (w) = x(w) A =~y(w) A —t(w) A =e(w)
A 1o (w) A =y (w) A —re(w) A —re(w) A —is(w)
node’? (w) = —~w(w) A ~y(w) A =t(w) A —e(w)
A ra(w) Ary(w) A =re(w) A —\re(w) A —is(w)
£ = Niz12(Fv: node?(v)

n AVw: Vi, nodeﬁ2
X — —
@P @? A Ywi,ws : /\L7112 I"IOde?1 wi) =
—eq(wi,w2) A n(wz, wi) An(wl, w?2)

S Tz Yo Tas Ty A Ywi,ws : /\1.:1,2 node’f} (w;) =

Neg(wi, w2) A —n(wi, ws)

Ywi, wz : Ny node;! (w;) =

Neg(wi, w2) A —n(wi, w2)
z(w) A ~y(w) A —t(w) A —e(w)
ro(w) A =1y (w) A —ri(w) A —re(w) A —is(w)
—z(w) A y(w) A —t(w) A —e(w)
ro(w) A ry(w) A =rg(w) A —re(w) A —is(w)
—z(w) A —y(w) A =t(w) A —e(w)
Tz (w) A ry(w) A —re(w) A ﬂTe() A is(w)
Niz1,23F0: node;? (v))
Yw : vz:1,2,3 nodeff (w)

x —> Ywr, w1 (A\;—; , NOdE? (w
@ @? eq(w1,w2) A —\n(wl,wg))
A (N, NODES (w;) =

y7 T1/7T‘y T‘E7T‘y

3 @)

>

node;? (w)
node’? (w)

node’? (w)

>> >0 >0 >

eq(w1, w2) A ~n(wy, w2)
A (node? (w1) A node? (wa) =
—eq(wi, w2) A —n(wz, w1) A n(wr,ws))
A (nod€ (w1) A nodes (w2) =
—eq(wr, w2) A n(wz, wr))
A (node? (wi) A node? (w2) =
ﬁeq(wl, w2) A —n(wz,wr) A —n(wr,ws))

Table 2. (Continued in Table 3.) The left column shows the structures that arthe aeginning

of the loop in thei nsert program from Fig. 1(b). The right column shows the characteristic
formula for each structure. Note that we omit the redundant subtass® [p], for p € Py, that

are part of; ,,,; and nodé) definitions.

32

Structure

CharacteristicFormula

node;? (w)
node (w)
node? (w)

node* (w)

z(w) A —y(w) A =t(w) A —e(w)
7o (W) A =1y (w) A =rg(w) A —re(w) A —is(w)
—z(w) A —y(w) A —t(w) A —e(w)
7o (W) A =1y (w) A =rg(w) A —re(w) A —is(w)
—z(w) A y(w) A =t(w) A —e(w)
ro (W) A ry(w) A =re(w) A —re(w) A —is(w)
—z(w) A =y(w) A —t(w) A —e(w)

)))) ()

5 1

S>>0 >0 >0 >0

Yw, wa :

(Nizi2 node! (w;) =
eq(wy, w2) A jn(wl,wz))
(/\1:1,2 nOdei (wi)
eq(wi,w2) A ﬁ"(wl,wz)
(nodej* (w1) A nodeis (ws)
—eq(w1,w2) A —n(wsa,wi))
node24(w1 Anode? (wa) =
—eq(w1,w2) A —n(wsa,wi))
node?‘*(wl A node? (wa) =
—eq(w1,w2) A —n(wz, w1) A —-n(wi,ws))

)=

)

)

)

)

) A
)
) A
)
) A
(nodej? (w1) A node (wa
) A
)
) A
)
) A

=

—eq(w1,w2) A —n(wa, wr))
(node (w1) A node? (wo
—eq(w1,w2) A ~n(wa, wy
(node (w1) A node; (wo

—eq(w1,w2) A —n(wz, w1) A —n(wi,ws))

=
A —n(wi, w2))
=

node;: (w)
nodes (w)

nodes (w)

z(w) A ~y(w) A —t(w) A —e(w)
ro(w) A =1y (w) A =ri(w) A —re(w)
—z(w) A —y(w) A —t(w) A —e(w)
ro(w) A =1y (w) A —re(w) A —re(w)
—z(w) A y(w) A —t(w) A —e(w)
ro(w) A ry(w) A —re(w) A —re(w)

A —is(w)
A —is(w)

A —is(w)

>> >0 >0 >

Ywi, wa :

/\i:1,2,3(3” : nOdeis (v))
Y : Vi:1,2,3 nodeff(w)

(Ai—1,o nOdEE: (w;) =
eq(wi,w2) A —n(wi,ws))
(/\i:l,Q nOdeEg (wi) =
eq(wi,w2) A —n(wi,ws))
(node® (w1) A nodes (w2) =
—eq(w1, w2) A —n(wz,wi))
(nodes (wz2) A node (w2) =
—eq(w1, w2) A —n(wa,wi))
(node? (w1) A node (w2) =

) A)A

—eq(w1, w2) A n(wz, w1) A “n(wi,ws))

Table 3. Table 2 continued.

33

indicate the absence of self-loops. It is preserved, becdgse are no edges @with
both endpoints in the same color.
Proof of the only-if directionSuppose that’ is embedded intd' using f. We show that
C'is 3-colorable. For each nodec C, let the color of ug(u), be the name of the cor-
responding node 8, i.e.,c(u) = f(u). The absence of self loops on any of the three
summary nodes guarantees that a pair of adjacent nodésamnot be mapped hfto
the same summary node. That is, for any edg€'ithe endpoints must be mapped by
f to different summary nodes, thus they have different colors
Lemma 1Let S be an FO-identifiable structure and let, u, € S be distinct individ-
uals. LetS? be a 2-valued structure that embeds istand letu! € S%. At most one of
the following can hold, but not both:

1. 8% [w— uf] nodefl (w)

2. 8% [w—uf] = nodefz (w)

Proof. BecauseS? embeds intaS, there exists an embedding functign such that
St Cf S. For the sake of argument, assume that both claims hold. Bipiben 8, we
get thatf(u?) = uy and f(u?) = uy; becausef is a function, we get that; = us.
This yields a contradiction to the assumption thatandu. are distinct individuals.

Lemma 2 For every2-valued structures® and assignment

S8 Z = pB (o1, vs, ..., 0p) iff 5 (0)(Z(v1), Z(vs), ..., Z(vg)) C B

Proof of the if direction:Suppose thaztsh()(Z(v),Z(vg), ..y Z(vg)) C B. There
are two cases to consider: = 1/2 or (ii) ¢° (p)(Z(vl) Z(ve),...,Z(vg)) =
B. If B = 1/2, then by Definition 9,p% (Ul,vg,... vg) = 1 and thusSh Z E
pB(v1,v0,...,v;) for all Z. If B = 1, then.S (p)(Z(1), Z(va),..., Z(vg)) = 1,
thus S%, Z |= p(v1,va,...,vx) Which is S8, Z |= p!(vi,ve, .. vk) by Definition 9.
Similarly, if B = 0, thenLS”(p)(Z(vl), Z(va),...,Z(vx)) = 0 implies thatS*, Z =

—p(v1,v2,...,0%) = p°(v1,v2, ..., V).
Proof of the only-if directionAssume thats®, Z = pB(vy,va,...,v). If B = 1/2,

then ¢5° (p)(Z(v1), Z(v2),...,Z(vg)) C B trivially holds. If B = 0, apply Defini-
tion 9 to the assumption to gét, Z = —p(v1, va, . . ., vx), which implies

S p)(Z(v1), Z(va), ..., Z(vg)) = 0 = B. Similarly, if B = 1, the assumption im-
plies.S* (p)(Z(v1), Z(vs), . .., Z(v)) = 1 = B.

Lemma 3 Every bounde@d-valued structures is FO-identifiable, where

node’ (w) & A\ p 0 ()

PEPL

Proof: Consider a boundedvalued structures = {U, .°}. We shall show that every
elementu € U is FO-identifiable using the formula defined in Eq. (4). [9tbe a2-
valued structure that embeds irfiausing a functionf, and letu” be a concrete element
inUS". By Definition 8, we have to show that the following holds:

fwf) =u <= S [w— uf] = nod€ (w)

34

Proof of the if direction:Suppose thalS*, [w — uf] = node (w). In particular,
each conjunct of nodemust hold, i.e., for each predicaee Py, St [w — uf] =
p*" P (). Using Lemma 2 we get that” (p)(u?) T .5 (p)(w). In addition, the em-
bedding condition in Eq. (1), requires, in particular, tf@at each unary predicate
S (p)(uf) T o5 (p)(f(uf)) holds. Letu; = f(uf). For the sake of argument, assume
thatu; # u. Recall thatS is a bounded structure, in which every individual must have
a unique combination of definite values of unary predicafssa consequence, there
must be a unary predicatesuch that® (p)(u;) # +*(p)(u) and the value op on both
uy andu is definite. This yields a contradiction, becaus®n definite values implies
equality; however*" (p) (u?) = ¢*(p)(u) ande™" (p) (u?) = % (p) (f (u")) = 15 (p) (w1)
can not hold simultaneously, by the assumption.

Proof of the only-if direction:Suppose thaff(u®) = wu. Using Eq. (1), the embed-
ding functionf guarantees that for each unary predigate® (p) (u?) T 5 (p)(f(u?)).
This means thas?, [w — uf] = p° ®FEH) (w) by Lemma 2, orS%, [w — uf] |=
p") (1) by the assumption. This holds for all unary predicates, and holds for
their conjunction as well, namely, for the formula ngde

Lemma D2 Given a set of formulag’ and a3-valued structures, if the “focus” algo-
rithm [35, Sec.6] terminates, it returns a set of structukésuch thaty(S) = ~v(X) and
every formulap € F' evaluates, using the compositional semantics, to a defraitee

in every structure inX, for every assignment. If the input structufés FO-ldentifiable,
then all structures inX are FO-Identifiable.

Proof: By induction on the iterations of the loop in the “fe€walgorithm, it is suffi-
cient to show that the structures returned by the procelgoceisAssi gnnent from
[35, Fig.17] are FO-Identifiable. The only interesting casehen the input literal of
FocusAssi gnnent is of the formp(uy, ..., ux). The resulting set of structures

is {So, 51, 5"} where S, and S; are copies ofS with p(uy,...,u;) set to0 and1,
respectively. Thus, i is FO-identifiable, theib, and.S; are FO-identifiableS” is a
result of splitting a node:; € S into ».0 andwu.1, and settingp(uy, ..., u;) to 0 on
one of the copies, and tbon the other. To simplify the exposition, suppose that the
first nodeu, is split. ThenS” is FO-identifiable using the formulas ngtlev) for all
exceptu.0, u.1, and

nodef_/é(w) £ Ju,, . .. V. p(w, va, ... vE) A nodef(w) A /\].ZQ’_“J€ nodefj (vj)
nodej”l(w) = vy, ..., vp.plw, va, . .., vx) A NodE (w) A Nj=2. & nodejj (vj)

Theorem 1For every FO-identifiablg-valued structureS, and2-valued structures®
S* € ~(8) iff 5% = 3(S)

Proof: In Lemma D3, we show that the if-direction holds, evamen S is not FO-
identifiable, i.e., every concrete structure satisfying tharacteristic formula(s) is
indeed iny(S). In Lemma D4 we show the only-if part, i.e., for an FO-ideatifie
structure, the other direction is also true.

Lemma D3 LetS be afirst-order structure with set of individudls= {uy,us, ..., u,}.
Let nodei (w) used iny(S) be an arbitrary first-order formula free imw, such that
Lemma 1 holds. Then, for afi* such thatS® = 7(S), S% € (9).

veey

35

Proof: LetS% = (U*%, /%) be a concrete structure such tt#t = 7(S). We shall con-
struct a surjective functiofi: U — U such thatS? C/ S. Let Z be an assignment
overuvy, ..., v, such thats?, Z% |= ¢, wherep £ A, node] (v;), i.e., ¢ is the first
line of Eqg. (8) without the existential quantification. Natet all Z(v;) are distinct,

according to Lemma 1. Define the functign U% — U by:

u; it Z8(v;) = uf
f(uf) = { ujifforall i, Z%(v;) # u® andu, is an arbitrary element such thag25)
5% fur =] = node] (w)

Let us show that every concrete element is mapped to someetamU. In the
case thatZ(v;) = u!, the concrete element is mapped ta,; € U by f. Otherwise,
becauses® = ¢5[total] holds, at least one of its disjuncts must be satisfied by each
i.e. 8% [w — uf] must satisfy noct%, (w) for someuw;; thus f’s definition will mapu®
to thisu;. Therefore f(uf) is well-defined.

In addition, every element; € U is assigned by to some concrete elememst €
U* such thatZ (v;) = u'j According to Lemma 1, all such eIemem%are different.
Therefore,f(u?) is surjective.

Let p be a nullary predicate. BecauSé satisfiest® it must satisfy each con-

nullary’
junct, in particulars? |= p*° 0. Using Lemma 2 we get that” (p)() = .5 (p)().
Letp € P be a predicate of arity > 1. Letu?,u},...,ul € U? and let us show

that
S

]
S)l s ud) O) (f (), F(uh)se flul)) (26)
Let Z be an assignment such thatw;) = v’ fori = 1,...,r. Because” = ¢5[p], we
conclude thas?, Z satisfies the body of Eq. (7). Consider the conjunct of theyhwith
premise/\’_, node;(uq)(wj). By definition of f, S%,w; ~ u! satisfies nod%uh_)(wj)

forall j = 1,...,r, which means that the premise is satisfied®lyZ. Therefore,

the conclusion must holds?, Z k= pt° @ f (WD) (wy, .. w,)) and the result
follows from Lemma 2.

Lemma D4 For every3-valued FO-identifiable structuré, and2-valued structures®
such thatS* = F andSt C S, S% |= ¢°.

Proof: Letf: S? — S be a surjective function such that =/ S. LetuE be an arbitrary
element such th@‘t(u?) = u;. Define an assignmeit® such thatz®(v;) = uf uf must
exist becaus¢ is surjective. Becausg is FO-identifiable, by Definition 8 we conclude
that for everyl < i < n, S%,Z" = nod€] (v;). Becausef is a function, allu! are
distinct elements, according to Lemma 1.

Becausef is a function, for everyu! there isu such thatf(u?) = u. Then, by
Definition 8, %, [w +— uf] = nod€ (w), i.e., every assignment to in S* satisfies
some disjunct of, ,. That isS" satisfiest?, ;.

For every nullary predicate € Py, using Eq. (1) and Lemma 2, we conclude that
St satisfieg” ®)0. Therefore S satisfiest

nullary*

Letp € P be apredicate of arity. Letu!, ..., uf € U? and letZ* be an assignment
such thatZ! (w;) = u?. We shall show thas®, Z* satisfy the body of Eq. (7). If the

36

premise of the implication is not satisfied then the formw@auously holds. Otherwise,
S%, Z' |= node (w;) for all i = 1,...,r. Then, by Definition 8f(uf) = ;. Using
Eq. (1) onf, we get:S* (p)(ul, ..., ul) T 5 (p)(f(ul),. .., f(ul)), which means that
S () (ul, .. ub) TS (p)(ua, .. ., u,) holds. By Lemma 2, we conclude thsit, Z°
satisfiegpt” (P (wrwn) (L w,).

Lemma 41f 3-valued structureS = (U, .“) over vocabularyP is ICA then:

(i) Sis abounded structure.
(ii) For each nullary predicate, :*(p)() € {0, 1}.
(iii) For each element € U, and each unary predicate ¢° (p)(u) € {0, 1}.

Proof: LetS% = {U*, LS“} be a2-valued structure, such thétis the canonical abstrac-
tion of S%. Let canonical: U" — U be the mapping that identifie$ as the canonical
abstraction of5*.

(i) Show thatS is a bounded structure. By Eq. (11), every abstract elenegmesents
concrete elements with the same canonical name. Thus, todistinct abstract
elementsug, u; € U, the canonical name of concrete elements represented by
ug Is different from the canonical name of concrete elemersesented by, .
Without loss of generality, assume that the canonical natiffes in a unary predi-
catep, such thap evaluates t@ on all concrete elements represented:pyandp
evaluates td on all concrete elements representedupyFrom the join operation
in Eq. (12), it follows that the value gf onuy must be) and the value op onw;
must bel. This shows that, in general, every pair of distinct elermemtS' differs
in a definite value of some unary predicate, proving $hé& a bounded structure.

(i) Letp be a nullary predicate. Show that(p)() € {0,1}. By Eq. (12),.%(p)() =
L{5* ()} = o5 (p)(). This means thathas the same value HandS®. Because
S% is a concrete structure, the valuepaiust be definite.

(iii) Letp be a unary predicate and letc U. Show that®(p)(u) € {0,1}. Suppose
that the opposite holds? (p)(u) = 1/2. By Eq. (12), there exist two concrete ele-
ments, denoted by, andu,, such thatanonical(ug) = v andcanonical (ug) =
u, andp evaluates t® onuy and tol onu;. Hence, these concrete elements have
different canonical names and by Eq. (11) they cannot be ethppcanonical to
the same abstract element; this contradicts the suppositid hence® (p)(u) €
{0,1}.

Lemma 5 Every 3-valued structureS that is anlCA is canonical-FO-identifiable,

where

nOin (w) € /\ pLS(p)(Ui)(w) 27)

pEP1

Proof: LetS = {U, .} be a3-valued structure that iECA. We shall show that every
elementu € U is canonical-FO-identifiable using the formula defined in @6). Let
St = {U*%, 5"} be a2-valued structure, such th&tis the canonical abstraction 6f,
induced by a functioranonical, and letu® € Us". By Definition 16, we have to show
that the following holds:

canonical(uf) = u < S [w — uf] = node (w)

37

Proof of the if directionSuppose tha$?, [w — 1] = node’ (w). Letu; = canonical (uf).
For the sake of argument, assume that~ «. S is anlCA and using Lemma 4(i) we
get thatS is a bounded structure. By Definition 10, there exists a upeggicatep that
evaluates to different definite values arandu;. Without loss of generality, suppose
thatp evaluates td on » and tol on u;. This implies the following two facts. First,
from property Eq. (12) of the definition of canonical absti@t, p also evaluates td
on all concrete values mapped#@ by canonical; in particular,p must evaluate ta
on u!. Second, recall that by assumption, each conjunct of;fwdest hold, i.e., for
each predicatp € Py, St, [w — uf] = p” ®®) (). Because evaluates td on u,
we get from Definition 9 thas", [w — u"] = p°(w), which means®” (p)(uf) = 0 and

a contradiction is obtained.

Proof of the only-if directionSuppose thatanonical(u®) = u. BecauseS is anICA
by Lemma 4(iii) we know that all unary predicates have dedimialues inS. Let p
be a unary predicate. L € {1,0} be such that®(p)(u) = B. Becausep has
definite valueB on « in S, by Eq. (12) it must have the same definite valdeon
all concrete nodes irf? that are mapped ta by canonical; in particular, onu®:
15 (p)(u®) = B. Therefore, using Definition &*, [w — u*] = p?(w), in other words,
S5, [w — uf] = pt” @@ (). This holds for all unary predicates, and thus holds for
their conjunction as well, i.e., for the formula ngde

Theorem 2For every3-valued structures that is anlCA and2-valued structures®

S% € 4,(9) iff ST = 7.(9)

Proof: In Lemma D5, we show that the if-direction holds,,i&3-valued structure
S is the canonical abstraction of every concrete structutisfgamg the characteristic
formula¥,(S); in Lemma D6 we show the other direction.

Lemma D5 LetS be anlCA with set of individual&” = {uy, ua, . .., u, }. Letnod€ (w)
be an arbitrary formula free inv, used iny,, such that Lemma 1 holds. Then, for &l
such thatS* |= 4.(S), S is a canonical abstraction of*.

Proof: LetS% = (U%, /%) be a concrete structure such it = 7.(S). We shall con-
struct a surjective functionanonical : U — U such thatS? is a canonical abstraction
of S. From Definition 17 it follows, in particular, tha® = ¢. Let Z* be an assign-

ment overvy, ..., v, such thats®, Z% |= ¢, wherep £ A7 nod€ (v;), i.e., ¢ is
the first line of Eq. (8) without the existential quantificat). Note that allZ%(v;) are

distinct, according to Lemma 1. Define the functi@monical: U* — U by:

ug it Z8(v;) = uf
canonical(u?) = { u; ifforall i, Z%(v;) # u* andu; is an arbitrary element such that
S%, [w — uf] |= node; (w)
(28)

Let us show that every concrete element is mapped to someetémU. In the
case thatZ(v;) = u?, the concrete element is mapped tau; € U by canonical.
Otherwise, becauss® |= ¢°[total] holds, at least one of its disjuncts must be satisfied
by eachu?, i.e., S% [w — uf] must satisfy nodg (w) for someu;; thus canonical’s
definition will mapu” to thisw;. Therefore canonical(ut) is well-defined.

38

In addition, every element; € U is assigned byanonical to some concrete ele-
mentu? € U such thatZ(v;) = u?. According to Lemma 1, all such elemenisare
different. Thereforecanonical (u?) is surjective.

We shall show thatanonical satisfies Eq. (11) and Eq. (12); that isnonical
identifiesS as the canonical abstraction $f.

First, let us show that Eq. (12) holds for the abstractiondsgul bycanonical,
namely that a predicate in S has the most precise abstract value w.r.t. the concrete
values that it represents, as is imposed:tyonical.

BecauseS is an ICA, all nullary predicates in5 must have definite values, by
Lemma 4(ji). S satisfies;;,,,; therefore, by Definition 9, nullary predicates $
must have the same definite values as'jrthis shows that Eq. (12) holds for nullary
predicates.

Because& is anlCA, all unary predicates if must have definite values, by Lemma 4(iii).
Letp be a unary predicate and letc U be an individual ofS such that® (p)(u) = b.
We shall show thap has the same definite valben all concrete elements mapped to
u by canonical. Because the join of these values is absave will get that Eq. (12)
holds forp andu. Recall thatS® satisfies formula®[p], hence each assignmentito
satisfies the conjunct nogiéw) = p®(w) of £5[p]. Letu” € U* be an individual of/*
such thatcanonical(u®) = u and consider an assignment in whietis mapped ta.?.

By the definition ofcanonical, this assignment satisfies ngde), the premise of the
conjunct. Therefore, it satisfies the conclusion, S8, [w —] satisfieg®(w). Using
Definition 9 we get thatS* (p) (u®) = b.

Let p be a predicate of arity > 1. If p has a definite valué in S on a tuple
us, ..., u., £%[p] requires thap evaluates to the same definite valuen every concrete
tuple u“l, ...,uf such thatcanom'cal(ug) = u; (by the same argument as for unary
predicates). Therefore, the join operation returras the most precise abstract value
of p for these concrete tuples. Otherwisepitvaluates tal/2 on uq,...,u, € U,
there must be two tuples of elementsli, sayugl, .. ,ugr andu’,,.. .,ui,., such
that S%, [w; u(hn, e, Wy ugr} = —p(wy, ..., w,) andS?, [wy — uﬁl, co, Wy
u?] | p(ws,. .., w,), becauses” = 75[p|. Thus,p evaluates t@ on the first tuple
and tol on the second tuple of the concrete structure; therefoeantbst precise value
obtained by the join operation on these values/i

We shall show thatanonical satisfies Eq. (11), i.e., it maps elements according to
their canonical names. This involves showing two direction

1. For the sake of contradiction, assume that there are tw'mdisﬁlementmg, ui €
U* that have the same canonical name (meaning that feralP;, .5° (p)(ul) =
Lsu(p)(uhl)), but canom’cal(ug) # canom‘cal(uq). BecauseS is a bounded struc-
ture, there must be unary predicatthat evaluates to on canom’cal(ug) and tol
on canonical (u“l). As shown abovep evaluates to the same definite values in the
concrete structuré?: .5° (p)(u) = 0, and.5* (p)(u!) = 1 and a contradiction is
obtained.

2. For the sake of contradiction, assume that two concretesgitspdenoted byg, Wl e
U, have different canonical names, but are mappechbynical to the same same
element inU: canom’cal(ug) = canomcal(ui), denoted byu. By definition of

39

canonical, S, [w— uE] satisfies node h)(w), fori =0, 1, in other words

canonical(u
E] satisfies nod@(w). Therefore, it satisfies each conjunctafde for-

mula, i.e., for allp, S%, [w — u’] satisfiegp*” P (w). From this and the fact that
all unary predicates it$ have definite values becauseis anICA, we conclude
by Definition 9, that.S" (p)(u?) = 5(p)(u). Therefore,S" (p)(ul) = 5 (p)(u)

2

and.S* (p)(ul) = 15(p)(u), for all p € P;. Thereforeu? andu have the same
canonical name and a contradiction is obtained.

St w i u

Lemma D6 For every3-valued structureS that is anlCA and 2-valued structures®
such thatS® |= F, such thatS is the canonical abstraction &f?, S% = 75.
Proof: Let canonical: U" — U be the mapping that identifie$ as the canonical
abstraction ofS®. canonical is a surjective function and possesses the properties in
Eq. (11) and Eq. (12).

First, we show thab? = ¢5. Letw’ be an arbitrary element such thatonical (u?) =
u;. Define an assignmeut® such thach(vZ-) = uf uf must exist becausernonical
is surjective. Becausg is canonical-FO-identifiable, by Lemma 5 we conclude that fo
everyl <i<n, S 7% nodq’fi (v;). According to Lemma 1, all thef are distinct
elements.

Becauseanonical is a function, for every: there is a: such thatanonical (u®) =
u. Then, by Definition 165", [w — u!] |= nod€’ (w), i.e., every assignment toin S*
satisfies some disjunct ¢f , ,. That is,S* satisfiest; ;.

Becauses is anlCA, nullary predicates have the same definite valueS and in
S, by Lemma 4(ii). Therefore, by Definition ¢ satisfiegp*” (?)0, for every nullary
predicatep € Py, which means that” satisfiest®

nullary*

Letp € P be a predicate of arity. Let uti, ...,ul € U% and letZ" be an assign-
ment such thaZ!(w;) = u’. We shall show thas", Z* satisfies the body of Eq. (7).
Consider a conjunct of the body. If the premise of the impiarain this conjunct is not
satisfied, then the conjunct vacuously holds. Otherws§ez® = nodefi (w;) for all
i=1,...,r. Then, by Lemma 5¢anom‘cal(u5) = u;. We have two cases to consider:
Q) if ¢S(p)(uy, ..., uy) =b e {1,0} then by Eq. (12)5" (p)(u?, ..., u2) = b, in other
words, S%, Z% satisfiesp®(wy, . .., w,). (i) if ¢°(p)(uy,...,u,) = 1/2 then by Defi-

=1,

nition 9, pt” M) (wyy | w,) = p2(wy, ... wy) which holds for any
assignment.

To complete the proof, we show that for everg P, of arity » > 1, 7°[p] holds.
Let p be a predicate that evaluateslt@® on a tupleu, ..., u, € S. Becauses is an

ICA 5(p)(uy,...,u,) = 1/2 means that the join operation in Eq. (12) yield&.

By the definition of join as the least upper bound, and usimrgitformation order in
Definition 4, we conclude that (%% must contain at least two distinct tuples; denoted
by ul,, ..., ul, andul, ... ul . Because:anom'cal(u?j) =u;fori=0,1andj =
1,...,r, by Lemma 5 we get tha§®, [w — qu] = noder (w). Therefore, each tuple
satisfies/\;f=1 nodefj (w;). (i) p evaluates t® on the first tuple and on the second
tuple. This shows that® = 7).

40

Lemma 6 Denote byD the set of all2-valued structures that satisfy the integrity for-
mulaF: D = {S% € 2-STRUCTP] | S° |= F}. LetS be an ICA structure. There exists
a set of ICA structureX’ such thaty.(X) = D \ v.(S).

Proof: Denote by the set of all ICA structures over a fixed vocabul@yi.e.,v.(Y) =

D. We claim thatX is defined byY” \ S. By definition,.(X) = v.(Y \ §), and we
show thaty.(Y \ S) = 7.(Y) \ 7.(S). By the definitions oft” and~. in Eq. (13),
7(Y . S) 2 D~ ~4.(5) holds. To complete the proof, we show that the other diractio
of inclusion holds as well. For the sake of argument, asshiatdhere exists 2-valued
structureS* that belongs to both..(S) and~.(Y ~ S). Thus, by Definition 15, there
exists an ICA structuré’ such thatcanonical(S*) = S’, andS’ is different fromsS.
From Eq. (12), it follows thatanonical(S%) # S, which contradicts the assumption
that S € ~.(S).

Lemma 7 Consider the formular® from Eq. (17), for some ICA structutg. There
exists a set of ICA structureX, such that the formuld@ A —7° is equivalent to the
formula”.(X).

Proof: LetD be the set of alR-valued structures that satisfy the integrity formila
Let X be the set of ICA structures that describes the complemet(sf), as given
by Lemma 6. LetS® be a2-valued structure such that® € ~.(X) if and only if
S% € D~ 4.(9). The right-hand side simplifies 6% € D andS® ¢ ~.(S). Applying
Theorem 2, we get thei® = 7.(X) if and only if S% satisfiesF but does not satisfy
3.(S). Using Eq. (18), this is equivalent & |= F A —-75.

Theorem 3For every3-valued structures, and a2-valued structures®:

S* € (9)iff S* = Fnp(S)

Proof: In Lemma D7, we show that the if-direction holds,, ie¥ery concrete structure
satisfying the NP-characteristic form@a p is indeed iny(S). In Lemma D8 we show
the only-if part.

Lemma D7 LetS be a logical structure with set of individuals = {uq, usa, ..., un}.
Then, for allS® such thatS® = Ax p(S), S¥ € v(S).

Proof: LetS% = (U*%, /%) be a concrete structure such ttft = 7(S). We shall con-
struct a surjective functiofi: U — U such thatS? C/ S. Let Z be an assignment
such thatS®, Z% = ¢ wherey is the body of¢® without the existential quantifiers on
sets. LetZ%(V;) = U; C U". Consider the following definition:

Fuf) = {u; | uf € U} (29)

f(u?) is a set of size at most because the paif®, Z® satisfies the sub-formula
&3isjoint This insures that the sets, . . ., U, are disjoint, i.e., each concrete element
belongs to at most one set. For simplicity, we say that') = u;, wheneverf (u?) =
{ui}.

We shall show that every concrete element is mapped toysome element itv.
BecauseS?, 7! satisfiest? . ,, we conclude that every concrete element satisfies the
formula nodéi (w) for someu;. Also, nodéi (w) given in Definition 18 is a member-
ship test in the sét;; therefore, every concrete element must be a member of seime s
U;. Thus,u! is mapped tai; € U, by the definition off in Eq. (29). This shows that
is well-defined.

41

Becauses?, Z* satisfies= &5, cmpry[i] fOr i = 1,...,n, it must be that every;
contains at least one element, aﬁy that is mapped ta; by f. Because the sets are

disjoint, all such eIemenb::;h are different. Thereforef, is surjective.
Let p be a nullary predlcate Because satlsflesfm”ary, it must satisfy each con-

junct, in particulars? |= p*° 0. Using Lemma 2 we get that” (p)() = .5 (p)().

Letp € P be a predicate of arity > 1. Letu!,uf, ..., u2 € U* and let us show
that .
o (p) () T) (f(ud), F(f), o f(1) (30)
Let Z% be an extension of assignmefit such thatz’(w;) = uf fori = 1,...,7.

BecauseS?, Z% = ¢5[p], we conclude thas®, Z¥ satisfies the body of Eq. (7). Con-
sider the conjunct of the body with premi;é‘(:g:1 node;(uq)(wj). By definition of f,

S5 w; u? satisfies nodﬁuu)(w]—) forallj = 1,...,r, which means that the premise
J

is satisfied byS®, Z%. Therefore, the conclusion must hold:
St 75 = pt") f (WD) (. w,)) and the result follows from Lemma 2.

Lemma D8 For every3-valued structures, and2-valued structures® such thatS* |=
FandS*C S, S% |= ¢5.

Proof: Letf: S* — S be a surjective function such théit C/ S. Define an assignment
Z%such thatz®(V;) = U; C U andU; = {u | f(uf) = u;}.

Becausef is a surjective function, there must exist at least one aiacelement
that is mapped ta; by f. This element belongs to the d&f. Therefore, S, Z% =
/\z 1 fnon em,pty[]

Becausef is a well-defined function, it maps each concrete elemerntactyy one
elementu; € U, which induces the séf;. Therefore, a concrete element cannot belong
to more than one set; hensé, 2% = A\, &5 joind ¥, J]-

Becausef is a function, f maps every concrete element to some elemerif .in
Therefore, every concrete element belongs to some setsatésfies some disjunct of
gfotal' That iSSh7 Zh ': gfotal'

For every nullary predicate € Py, using Eq. (1) and Lemma 2, we conclude that
S%, 7% satisfieg” PO Therefore $%, Z* = fmlmy

Letp € P be a predicate of arity. Letu?,...,u? € U" and letZ? be an ex-

tension of assignment! such thatZ%(w,) = uE We shall show tha,IS‘KZlh satisfy
the body of Eq. (7). If the premise of the implication is notisfged, then the formula
vacuously holds. Otherwisé}?, ZE = nodqi (w;) foralli =1,...,r. Then, by Def-

inition 18, u? belongs to the set;. The definition ofU; implies that f(u®) = u;.

Using Eq. (1), we getS’ (p)(uf,...,ub) T S(p)(f(u),..., f(ub)) which means
S)l ut) €5 (p)(ua, . .., u,). By Lemma 2 we conclude that', Z* satis-
fiespt”)W) (L).

42

