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Abstract. Shape analysis concerns the problem of determining “shape invariants”for pro-
grams that perform destructive updating on dynamically allocated storage. In recent work,
we have shown how shape analysis can be performed using an abstract interpretation based
on 3-valued first-order logic. In that work, concrete stores are finite2-valued logical struc-
tures, and the sets of stores that can possibly arise during execution arerepresented (conser-
vatively) using a certain family of finite3-valued logical structures. In this paper, we show
how3-valued structures that arise in shape analysis can be characterized using formulas in
first-order logic with transitive closure. We also define a non-standard (“supervaluational”)
semantics for3-valued first-order logic that is more precise than a conventional3-valued
semantics, and demonstrate that the supervaluational semantics can be implemented using
existing theorem provers.

1 Introduction

Abstraction and abstract interpretation [9] are key tools for automatically verifying
properties of systems, both for hardware systems [7, 10] andsoftware systems [44]. In
abstract interpretation, sets of concrete stores are represented in a conservative manner
by abstract values (as explained below). Each transition ofthe system is given an inter-
pretation over abstract values that is conservative with respect to its interpretation over
corresponding sets of concrete stores; that is, the result of “executing” a transition must
be an abstract value that describes a superset of the concrete stores that actually arise.
This methodology guarantees that the results of abstract interpretation overapproximate
the sets of concrete stores that actually arise at each pointin the system.

One issue that arises when abstraction is employed concernstheexpressivenessof
the abstraction method: “What collections of concrete states can be expressed exactly
using the given abstraction method?” A second issue that arises when abstraction is
employed is how toextract informationfrom an abstract value. For instance, this is a
fundamental problem for clients of abstract interpretation, such as verification tools,
program optimizers, program-understanding tools, etc., which need to be able to inter-
pret what an abstract value means. An abstract valuea represents a set of concrete stores
X; ideally, a queryϕ should return an answer that summarizes the result of posingϕ
against each concrete storeS ∈ X:

– If ϕ is true for eachS, the summary answer should be “true”.
– If ϕ is false for eachS, the summary answer should be “false”.
– If ϕ is true for someS ∈ X but false for someS′ ∈ X, the summary answer should

be “unknown”.

This paper presents results on both of these questions, for aclass of abstractions that
originally arose in work on the problem of shape analysis [28, 5, 51]. Shape analysis
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concerns the problem of finding “shape descriptors” that characterize the shapes of
the data structures that a program’s pointer variables point to. Shape analysis is one
of the most challenging problems in abstract interpretation because it generally deals
with programs written in languages like C, C++, and Java, which allow (i) dynamic
allocation and deallocation of cells from the heap, (ii) destructive updating of structure
fields, and, in the case of Java, (iii) dynamic creation and destruction of threads. This
combination of features creates considerable difficultiesfor any abstract-interpretation
method.

The motivation for the present paper was to understand the expressiveness of the
shape abstractions defined in [51]. In that work, concrete stores are finite2-valued log-
ical structures, and the sets of stores that can possibly arise during execution are rep-
resented (conservatively) using a certain family of finite3-valued logical structures. In
this setting, an abstract value is a set of3-valued logical structures.

Because the notion of abstraction used in [51] is based on logical structures, our
results are actually more broadly applicable than shape-analysis problems. For example,
it was applied to verification of sorting algorithms [37]; showing absence of concurrent
modification exception [47]; correct usage of JDBC, I/O streams, Java collections and
iterators [59]; correctness of concurrent queue algorithms [60]; modelling concurrency
in Java programs, which contain dynamic creation of objectsand threads [58]; analyzing
processes in ambient calculus [45]; and reducing space consumption of Java programs
via compile-time memory management, with application to JavaCard programs [52].

In fact, our results apply to any abstraction in which concrete states of a system
are represented by finite2-value logical structure and abstraction is performed via the
mechanisms described in Sections 2 and 3. The approach takenin the paper should
also be relevant for addressing expressibility issues for anumber of other abstractions
that are related to [51], including [40, 31, 17, 24, 7, 6], as well as for theallocation-
site abstraction—often used in points-to analysis [1, 54, 53, 15,55, 11, 18]—in which
all objects allocated at a single statement are representedby a single “abstract mem-
ory object” [29, 5]. Throughout the paper, however, we use shape-analysis examples to
illustrate the concepts discussed.

The paper investigates the expressiveness of finite3-valued structures by giving a
logical characterization of these structures; that is, we examine the question

For a given3-valued structureS, under what circumstances is it possible to
create a formulâγ(S), such thatS\ satisfieŝγ(S) exactly whenS\ is a2-valued
structure thatS represents? I.e.,S\ |= γ̂(S) iff S representsS\.

This paper presents two results concerning this question:

– It is not possible to give a formulâγ(S) written in first-order logic with transitive
closure for an arbitrary structureS (unlessNL = NP , see Section 3). However,
it is always possible for a well-defined class of3-valued structures. (This class
includes all the3-valued structures that have been shown to be useful for shape
analysis [51].)

– Moreover, it is always possible to give âγ(S) in general, using a more powerful
formalism, namely, monadic second-order formulas.

The ability to write a formulâγ(S) that exactly captures whatS represents provides
a fundamental tool for improving TVLA [38] by the use of symbolic methods. The
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current TVLA system performs iterative fixed-point computations and yields at every
program point a set of3-valued structures, which represent a superset of all possible
stores that can arise at this point in any execution. However, TVLA suffers from two
limitations: (i) it is not always as precise as possible (as explained below); (ii) it does not
scale to handle large programs, because the worst-case complexity of the algorithm is
doubly-exponential in certain parameters (typically, thenumber of program variables).

The contributions of this paper lay the required groundworkfor using symbolic
techniques to address both of these limitations. The ability to characterize a3-valued
structureS by a formulaγ̂(S) is a key step toward harnessing a standard (2-valued)
theorem prover to aid in abstract interpretation:

– Computing the effect of a program statement on an abstract value in the most-
precise way possible for a given shape-analysis abstraction.

– Developing a modular shape-analysis by usingassume-guaranteereasoning. The
idea is to allow arbitrary first-order formulas to be used to express pre- and post-
conditions, thereby enabling the code of each procedure to be analyzed once for all
potential contexts. This allows to use shape analysis for applications in which not
all the source code is available. This becomes specifically profitable for recursive
procedures since it saves the need to iterate shape analysis.

These methods are the subject of [62, 34].
Another contribution of this paper directly addresses the first of the aforementioned

limitations of TVLA’s current technique. We give a procedure for extracting information
from a3-valued logical structureS in the most-precise way possible. That is, we give a
nonstandard way to check if a formulaϕ holds inS:

– If γ̂(S) ⇒ ϕ is valid, i.e., holds in all2-valued structures, we know thatϕ evaluates
to 1 in all the2-valued structures represented byS.

– If γ̂(S) ⇒ ¬ϕ is valid, we know thatϕ evaluates to0 in all the2-valued structures
represented byS.

– Otherwise we know that there exists a2-valued structure represented byS whereϕ
evaluates to1, and there exists another2-valued structure represented byS where
ϕ evaluates to0.

This method represents the most-precise way of extracting information from a3-valued
logical structure; in particular, whenever this method returns 1/2 (standing for “un-
known”), any sound method for extracting information fromS must also return1/2.
This is in contrast with the techniques used in [51], which can return1/2 even when all
the2-valued structures represented byS have the value1 (or all have the value0).

For practical purposes, the success of using symbolic methods depends on having
a terminating theorem prover. Although the validity question is undecidable for first-
order logic with transitive closure, several theorem provers for first-order logic have
been created. In this paper, we report on two experiments in which we used these tools
to implement symbolic procedures for extracting information from a3-valued structure
in the most-precise way possible. We also performed severalsuccessful experiments
with other symbolic operations [62, 12]. Although these experiments are rather prelimi-
nary, we believe that this approach can be made to work in practice. For example, there
has been some progress recently in using SPASS, including the use of transitive clo-
sure [36]. Also, in [26], we have identified a decidable subset of first-order logic with
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transitive closure that is useful for shape analysis. We define conditions under whicĥγ
can be expressed in that logic (Section 5.2). We are also investigating other decidable
logics, as well.

The remainder of the paper is organized as follows. Section 2defines our terminol-
ogy, and explains the use of3-valued structures as abstractions of2-valued structures.
Section 3 presents the results on the expressiveness of3-valued structures, and gives
an algorithm for generatinĝγ for certain families of 3-valued structures. Section 4 dis-
cusses the problem of reading out information from a3-valued structure in the most-
precise way possible. Section 5 discusses the applicationsof γ̂ to program analysis and
some implementation issues. Section 6 discusses related work. Appendix A defines an
alternative abstract domain for shape analysis, based on canonical abstraction, and the
γ̂ operation for that domain. Appendix B shows how to characterize general3-valued
structures. Appendix C contains the details for one of the paper’s examples. The proofs
appear in Appendix D.

2 Preliminaries

Section 2.1 defines the syntax and standard Tarskian semantics of first-order logic with
transitive closure and equality. Section 2.2 introducesintegrity formulas, which exclude
structures that do not represent a potential store. Section2.3 introduces3-valued logical
structures, which extend ordinary logical structures withan extra value,1/2, which
represents “unknown” values that arise when several concrete nodes are represented by
a single abstract node. The powerset of3-valued structures forms an abstract domain,
which is related to the concrete domain consisting of the powerset of2-valued structures
via embedding, as described in Section 2.4.

Fig. 1(a) shows the declaration of a linked-list data type inC, and Fig. 1(b) shows a
C program that searches a list and splices a new element into the list. This program will
be used as a running example throughout this paper.

/* list.h */
typedef struct node {
struct node *n;
int data;

} *List;

/* insert.c */
#include "list.h"
void insert(List x, int d) {
List y, t, e;
assert(acyclic list(x) && x != NULL);
y = x;
while (y->n != NULL && ...)

y = y->n;
t = malloc();
t->data = d;
e = y->n;
t->n = e;
y->n = t;

}
(a) (b)

Fig. 1. (a) Declaration of a linked-list data type in C. (b) A C function that searches a list pointed
to by parameterx, and splices in a new element.
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2.1 Syntax and Semantics of First-Order Formulas with Transitive Closure

We represent concrete stores by ordinary2-valued logical structures over a fixed finite
set of predicate symbolsP = {eq, p1, . . . , pn}, whereeq is a designated binary predi-
cate, denoting equality of nodes. We also usemaxR to denote the maximal arity of the
predicates inP. Without loss of generality we exclude constant and function symbols
from the logic.4

Example 21 Table 1 lists the set of predicates used in the running example. The unary
predicatesx, y, t, ande correspond to the program variablesx, y, t, ande, respec-
tively. The binary predicaten corresponds to then fields ofList elements. The unary
predicateis (“is shared”) captures “heap sharing”, i.e.,List elements pointed to by
more than one field. (It was introduced in [5] to capture list and tree data structures.)
The unary predicatesrx, ry, rt, andre hold for heap nodes reachable from the program
variablesx, y, t, ande, respectively. A heap nodeu is said to bereachablefrom a pro-
gram variable if the variable points to a heap nodeu′, and it is possible to go fromu′

to u by following zero or moren-links. Reachability is defined in term of the reflexive
transitive closure of the predicaten.

The notion of reachability plays a crucial role in defining abstractions that are
useful for proving program properties in practice. For instance, it may have the effect of
preventing disjoint lists from being collapsed in the abstract representation. This may
significantly improve the precision of the answers obtainedby a program analysis.

Predicate Intended Meaning
eq(v1, v2) Do v1 andv2 denote the same heap node?
q(v) Does pointer variableq point to nodev?
n(v1, v2) Does then field of v1 point tov2?
is(v) Is v pointed to by more than one field ?
rq(v) Is the nodev reachable fromq ?

Table 1. The set of predicates for representing the stores manipulated by programs that use the
List data-type from Fig. 1(a).q denotes an arbitrary predicate in the setPV ar, which contains a
predicate for each program variable of typeList. In the case ofinsert, PVar = {x, y, t, e}.

We define first-order formulas inductively over thevocabulary P using the logical
connectives∨ and¬, the quantifier∃, and the operator ‘TC ’ in the standard way:

ϕ ::= 0 | 1 | p(v1, . . . , vk) | (¬ϕ1) | (ϕ1 ∨ ϕ2) | (∃v1 : ϕ1) | (TC v1, v2 : ϕ1)(v3, v4)

where p ∈ P; vi are variables;ϕ,ϕi are formulas

The set of free variables of a formula is defined as usual. A formula isclosedwhen
it has no free variables. The operator ‘TC ’ denotes transitive closure. Ifϕ1 is a formula
with free variablesV , then(TC v1, v2 : ϕ1)(v3, v4) is a formula with free variables
(V − {v1, v2}) ∪ {v3, v4}.

We use several shorthand notations:ϕ1 ⇒ ϕ2
def
= (¬ϕ1 ∨ ϕ2); ϕ1 ∧ ϕ2

def
= ¬(¬ϕ1 ∨

¬ϕ2); ϕ1 ⇔ ϕ2
def
= (ϕ1 ⇒ ϕ2) ∧ (ϕ2 ⇒ ϕ1); and ∀v : ϕ

def
= ¬∃v : ¬ϕ. The

4 Constant symbols can be encoded via unary predicates, andn-ary functions via(n + 1)-ary
predicates.

5



transitive closure of a binary predicatep isp+(v3, v4)
def
= (TCv1, v2 : p(v1, v2))(v3, v4).

The reflexive transitive closure of a binary predicatep is p∗(v3, v4)
def
= ((TC v1, v2 :

p(v1, v2))(v3, v4)) ∨ eq(v3, v4). The order of precedence among the connectives, from
highest to lowest, is as follows:¬, ∧, ∨, ‘TC ’, ∀, and∃. We drop parentheses wherever
possible, except for emphasis.

Definition 1. 2-valued Logical StructuresLetPi denote the set of predicate symbols
with arity i. A logical structure overP is a pairS = 〈U, ι〉 in which

– U is a (possibly infinite) set of nodes.
– ι is the interpretation of predicate symbols, i.e., for everypredicate symbolp ∈
Pi, ι(p) : U i → {0, 1} determines the tuples for whichp holds. Also,ι(eq) is the
interpretation of equality, i.e.,ι(eq)(u1, u2) = 1 iff u1 = u2.

Below we define the standard Tarskian semantics for first-order logic.

Definition 2. Semantics of First-Order Logical FormulasConsider a logical struc-
tureS = 〈U, ι〉. AnassignmentZ is a function that maps free variables to nodes (i.e.,
an assignment has the functionalityZ : {v1, v2, . . .} → U ). An assignment that is de-
fined on all free variables of a formulaϕ is calledcomplete for ϕ. In the sequel, we
assume that every assignmentZ that arises in connection with the discussion of some
formula ϕ is complete forϕ. We say thatS and Z satisfy a formulaϕ (denoted by
S,Z |= ϕ) when one of the following holds:

– ϕ ≡ 1

– ϕ ≡ p(v1, v2, . . . , vi) andι(p)(Z(v1), Z(v2), . . . , Z(vi)) = 1.
– ϕ ≡ ¬ϕ0 andS,Z |= ϕ0 does not hold.
– ϕ ≡ ϕ1 ∨ ϕ2, and eitherS,Z |= ϕ1 or S,Z |= ϕ2.
– ϕ ≡ ∃v1 : ϕ1 and there exists a nodeu ∈ U , m ≥ 2, such thatS,Z[v1 7→ u] |= ϕ1.
– ϕ ≡ (TC v1, v2 : ϕ1)(v3, v4) and there existsu1, u2, . . . , um ∈ U , m ≥ 2, such

that Z(v3) = u1, Z(v4) = um and for all 1 ≤ i < m, S,Z[v1 7→ ui, v2 7→
ui+1] |= ϕ1.

For a closed formulaϕ, we will omit the assignment in the satisfaction relation, and
merely writeS |= ϕ.

2.2 Integrity Formula

Because not all logical structures represent stores, we usea designated closed formula
F , called theintegrity formula,5 to exclude structures that are not of interest; in our
application, such structures are ones that do not correspond to possible stores. This
allows us to restrict the set of structures to the ones satisfying F .

Definition 3. A structureS is admissibleif S |= F .

In the rest of the paper, we assume that we work with a fixed integrity formulaF .
All our notations are parameterized byP andF .

Example 22 For theList data type, there are four conditions that define the admissi-
ble structures. At any time during execution,

5 In [51] these are called “hygiene conditions”.
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(a) each program variable can point to at most one heap node.
(b) then field of a heap node can point to at most one heap node.
(c) predicateis (“is shared”) holds for exactly those nodes that have two or more

predecessors.
(d) the reachability predicate for each variableq holds for exactly those nodes that are

reachable from program variableq.

The setPVar contains a predicate for each program variable of typeList; in the
case ofinsert, PVar = {x, y, t, e}. Thus, the integrity formulaFList for theList
data-type is:

∧p∈PVar∀v1, v2 : p(v1) ∧ p(v2) ⇒ eq(v1, v2) (a)
∧ ∀v, v1, v2 : n(v, v1) ∧ n(v, v2) ⇒ eq(v1, v2) (b)
∧ ∀v : is(v) ⇐⇒ ∃v1, v2 : ¬eq(v1, v2) ∧ n(v1, v) ∧ n(v2, v) (c)
∧ ∧q∈PVar∀v : rq(v) ⇐⇒ ∃v1 : q(v1) ∧ n∗(v1, v) (d)

2.3 3-Valued Logical Structures and Embedding

In this section, we define3-valued logical structures, which provide a way to represent
a set of2-valued logical structures in a compact and conservative way.

We say that the values0 and1 aredefinite valuesand that1/2 is anindefinite value,
and define a partial orderv on truth values to reflect information content.l1 v l2
denotes thatl1 possibly has more definite information thanl2:

Definition 4. [Information Order] . For l1, l2 ∈ {0, 1/2, 1}, we define theinforma-
tion order on truth values as follows:l1 v l2 if l1 = l2 or l2 = 1/2.

Definition 5. A 3-valued logical structure overP is the generalization of2-valued
structures given in Definition 1, in that predicates may havethe value1/2. This means
that S = 〈U, ι〉 where forp ∈ Pi, ι(p) : (US)i → {0, 1, 1/2}. In addition, (i) for all
u ∈ US , ιS(eq)(u, u) w 1, and (ii) for all u1, u2 ∈ US such thatu1 andu2 are distinct
nodes,ιS(eq)(u1, u2) = 0.

A nodeu ∈ U havingιS(eq)(u, u) = 1/2 is called asummary node. As we shall
see, such a node may represent more than one node from a given2-valued structure.

We denote the set of2-valued logical structures by 2-STRUCT[P]. The set of 3-
valued logical structures is denoted by 3-STRUCT[P].

A 3-valued structure can be depicted as a directed graph, with nodes as graph nodes.
A unary predicatep is represented in the graph by having a solid arrow from the pred-
icate namep to nodeu for each nodeu for which ι(p)(u) = 1. An arrow between two
nodes indicates whether a binary predicate holds for the corresponding pair of nodes.
An indefinite value of a predicate is shown by a dotted arrow; the value1 is shown by a
solid arrow; and the value0 is shown by the absence of an arrow.

Example 23 Fig. 2(d) shows a3-valued structure that represents possible inputs of the
insert program. This structure represents all lists that are pointed to by program
variablex and have at least two elements. The structure has2 nodes,u1 andu2, where
u1 is the head of the list pointed to byx, andu2 is a summary node (drawn as a double
circle), which represents the tail of the list. Predicaterx holds foru1 andu2, indicating
that all elements of the list are reachable fromx. Other unary predicates are not shown,
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indicating that their values are0 for all nodes, i.e., the program variablesy, e, andt
areNULL, and there is no sharing in the list. The dotted edge fromu1 to u2 indicates
that there may ben-links from the head of the list to some elements in the tail. In fact,
the (u1, u2)-edge represents exactly onen-link that points to exactly one list element,
because of conjunct (b) of the integrity formula Example 22.In contrast, the dotted
self-loop onu2 represents alln-links that may occur in the tail.

Sa
GFED@ABCu\

1

n //GFED@ABCu\
2

x, rx

OO

rx

OO
Sb

GFED@ABCu\
1

n //GFED@ABCu\
2

n //GFED@ABCu\
3

x, rx

OO

rx

OO

rx

OO

(a) (b)

Sc
GFED@ABCu\

1

n //GFED@ABCu\
2

n //GFED@ABCu\
3

n //GFED@ABCu\
4

x, rx

OO

rx

OO

rx

OO

rx

OO
S ?>=<89:;u1

n // u2

n

��

x, rx

OO

rx

OO

(c) (d)

Fig. 2. (a),(b),(c) Examples of2-valued structures representing linked-lists that are pointed to by
program variablex, of length2, 3, and4, respectively. (d)S represents all lists that are pointed
to by program variablex and that have at least two elements, including the lists represented by
(a)-(c).

2.4 Embedding Order

We define theembedding orderingon structures as follows:

Definition 6. LetS = 〈US , ιS〉 andS′ = 〈US′

, ιS
′

〉 be two logical structures, and let
f : US → US′

be a surjective. We say thatf embedsS in S′ (denoted byS vf S′) if
for every predicate symbolp ∈ Pi and allu1, . . . , ui ∈ US ,

ιS(p)(u1, . . . , ui) v ιS
′

(p)(f(u1), . . . , f(ui)) (1)

We say thatS can be embedded inS′ (denoted byS v S′) if there exists a function
f such thatS vf S′.

Example 24 Fig. 2(a)-(c) show some of the2-valued structures that can be embedded
into the3-valued structureS shown in Fig. 2(d). The function that embedsSa into S
maps the nodeu\

i ∈ USa to ui ∈ US , for i = 1, 2. The function that embedsSb into
S maps the nodeu\

1 ∈ USb to u1 ∈ US , and bothu\
2, u

\
3 ∈ USb to u2 ∈ US . Also,

Eq. (1) holds, because whenever a predicate has a definite value inS, the corresponding
predicate inSb has the same value. For example,ιS(x)(u2) is 0 andf(u\

2) = f(u\
3) =

u2, and bothιSb(x)(u\
2) and ιSb(x)(u\

3) are 0. Similarly, ιS(rx)(u2) = 1, and both
ιSb(rx)(u\

2) and ιSb(rx)(u\
3) are 1. For a binary predicate,ιS(n)(u2, u1) = 0, and

bothιSb(n)(u\
2, u

\
1) andιSb(n)(u\

3, u
\
1) are0.

Remark. Embedding can be viewed as a variant of homomorphism [19]. In cases where
S is a 2-valued structure (i.e., all predicates inS have definite values, includingeq,
which is interpreted as standard equality), checking whether a2-valued structureS′
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embeds intoS is equivalent to checking whether there is an isomorphism between
S′ and S. In cases where all nodes inS are summary nodes (i.e., for allu ∈ US ,
ιS(eq)(u, u) = 1/2), and all other values of predicates are definite, embeddingis equiv-
alent to strong homomorphism. In cases where all nodes inS are summary nodes and
all other values of predicates are either0 or 1/2, embedding is equivalent to homomor-
phism. In all other cases, i.e, when a predicate value for some tuple inS is 1, embedding
generalizes the notion of homomorphism.
Remark. In Definition 6, we require thatf be surjective in order to guarantee that a
quantified formula, such as∃v : ϕ, has consistent values in two3-valued structuresS
andS′ related by embedding. For example, iff were not surjective, then there could
exist an individualu′ ∈ US′

, not in the range off , such that the value ofS′ on ϕ is 1
whenv is assigned tou′. This would permit there to be structuresS andS′ for which
the value of∃v : ϕ onS is 0 but its value onS′ is 1.

Concretization of 3-Valued Structures. Embedding allows us to define the (poten-
tially infinite) set of concrete structures that a set of3-valued structures represents:

Definition 7. Concretization of 3-Valued Structures For a set of structuresX ⊆
3-STRUCT[P], we denote byγ(X) the set of2-valued structures thatX represents, i.e.,

γ(X) = {S\ ∈ 2-STRUCT[P] | existsS ∈ Xsuch thatS\ v S andS\ |= F} (2)

Also, for a singleton setX = {S} we writeγ(S) instead ofγ(X).

Example 25 Example 24 shows thatSa v S, Sb v S, andSc v S for the2-valued
structures in Figs. 2(a-c); also, the integrity formula is satisfied forSa, Sb, and Sc.
Therefore,Sa, Sb, andSc are in the concretization of3-valued structureS: Sa, Sb, Sc ∈
γ(S). Note that the indefinite values of predicates inS allow the corresponding values
in Sb to be either0 or 1. In particular, ιS(eq)(u2, u2) = 1/2 reflects the fact that
the abstract nodeu2 may represent more than one concrete node. Indeed,Sb contains
two nodes,u\

2 andu\
3, that are represented byu2 ∈ S. Also,ιS(eq)(u\

2, u
\
3) = 0, but

ιS(eq)(u\
2, u

\
2) = 1.

The abstract domain we consider is the powerset of 3-valued structures, where the or-
dering relationv is defined as follows: for every two sets of3-valued structuresX1 and
X2, X1 v X2 iff for all S1 ∈ X1 there existsS2 ∈ X2 such thatS1 is embedded into
S2.

The Analysis Technique The TVLA ([38]) system carries out an abstract interpreta-
tion [9] to collect a set of structures at each program pointP . This involves finding
the least fixed point of a certain set of equations. To ensure termination, the analysis
is carried out with respect to a finite abstract domain, that is, the set of different struc-
tures is finite. When the fixed point is reached, the structuresthat have been collected
at program pointp describe a superset of all the concrete stores that can occurat p. To
determine whether a query is always satisfied atp, one checks whether it holds in all
of the structures that were collected there. Instantiations of this framework are capable
of establishing nontrivial properties of programs that perform complex pointer-based
manipulations ofa priori unbounded-size heap-allocated data structures.
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3 Characterizing 3-Valued Structures by First-Order Formulas
This section presents our results on characterizing3-valued structures using first-order
formulas. Given a3-valued structureS, the question that we wish to answer is whether
it is possible to give a formulâγ(S) that accepts exactly the set of2-valued structures
thatS represents, i.e.,S\ |= γ̂(S) iff S\ ∈ γ(S).

This question has different answers depending on what assumptions are made. The
task of generating a characteristic formula for a3-valued structureS is challenging
because we have to find a formula that identifies when embedding is possible, i.e., that is
satisfied by exactly those2-valued structures that embed intoS. It is not always possible
to characterize anarbitrary 3-valued structure by a first-order formula, i.e., there exists
a 3-valued structureS for which there is no first-order formula with transitive closure
that accepts exactly the set of2-valued structuresγ(S).

For example, consider the3-valued structureS shown in Fig. 3. The absence of a
self loop on any of the three summary nodes implies that a2-valued structure can be
embedded into this structure if and only if it can be colored using3 colors (Lemma D1
in the appendix). It is well-known that there exists no first-order formula, even with
transitive closure, that expresses3-colorability of undirected graphs, unlessP = NP
(e.g., see [25, 8]). Therefore, there is no first-order formula that accepts exactly the set
γ(S).
Remark. In fact, the condition is even stronger. First-order logicwith transitive closure
can only express non-deterministic logspace (NL) computations, thus, the NP-complete
problem of3-colorability is not expressible in first-order logic, unlessNL = NP . It
is shown in [25] using an ordering relation on the nodes. In our context, without the
ordering, the logic is less expressive. Thus, the conditionunder which 3-colorability is
expressible is even stronger thanNL = NP . We believe that there is an example of
a 3-valued structure that is not expressible in the logic, independently of the question
whetherP = NP . However, it is not the main focus of the current paper.

u1 oo // u2

u3

��

OO

}}

==

Fig. 3. A 3-valued structure that represents3-colorable undirected graphs. A2-valued structure
can be embedded into this structure if and only if it can be colored using3 colors.

3.1 FO-Identifiable Structures

Intuitively, the difficulty in characterizing3-valued structures is how to uniquely iden-
tify the correspondence between concrete and abstract nodes using a first-order formula.
Fortunately, as we will see, for the subclass of3-valued structures used in shape analysis
(also known as “bounded structures”), the correspondence can be easily defined using
first-order formulas. The bounded structures are a subclassof the3-valued structures in
which it is possible to identify uniquely each node using a first-order formula.

Definition 8. A 3-valued structureS is calledFO-identifiable if for every nodeu ∈
US there exists a first-order formula nodeS

u(w) with designated free variablew such
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that for every2-valued structureS\ that embeds intoS using a functionf , for every
concrete nodeu\ ∈ US\

and for every nodeui ∈ US :

f(u\) = ui ⇐⇒ S\, [w 7→ u\] |= nodeSui
(w) (3)

The idea behind this definition is to have a formula that uniquely identifies each node
u of the 3-valued structureS. This will be used to identify the set of nodes of a2-
valued structure that are mapped tou by embedding. In other words, a concrete node
u\ satisfies thenode formula of at most one abstract node, as formalized by the lemma:

Lemma 1. LetS be an FO-identifiable structure, and letu1, u2 ∈ S be distinct nodes.
Let S\ be a 2-valued structure that embeds intoS and letu\ ∈ S\. At most one of the
following hold:
1. S\, [w 7→ u\] |= nodeSu1

(w)

2. S\, [w 7→ u\] |= nodeSu2
(w)

Remark. Definition 8 can be generalized to handle arbitrary2-valued structures, by also
allowing extra designated free variables for every concrete node and using equality to
check if the concrete node is equal to the designated variable: nodeSui

(w, v1, . . . , vn)
def
=

w = vi. However, the equality formula cannot be used to identify nodes in a3-valued
structure because equality evaluates to1/2 on summary nodes.

We now introduce a standard concept for turning valuations into formulas.

Definition 9. For a predicatep of arity k and truth valueB ∈ {0, 1, 1/2}, we define
the formulapB(v1, v2, . . . , vk) to be thecharacteristic formula of B for p, by

p0(v1, v2, . . . , vk)
def
= ¬p(v1, v2, . . . , vk)

p1(v1, v2, . . . , vk)
def
= p(v1, v2, . . . , vk)

p1/2(v1, v2, . . . , vk)
def
= 1

The main idea in the above definition is that, forB ∈ {0, 1}, pB holds when the
value ofp is B, and forB = 1/2 the value ofp is unrestricted. This is formalized by
the following lemma:

Lemma 2. For every2-valued structureS\ and assignmentZ

S\, Z |= pB(v1, . . . , vk) iff ιS
\

(p)(Z(v1), . . . , Z(vk)) v B

Definition 8 is not a constructive definition, because the premises range over arbi-
trary 2-valued structures and arbitrary embedding functions. Forthis reason, we now
introduce a testable condition that implies FO-identifiability.

Bounded Structures. The following subclass of3-values structures was defined in
[50];6 the motivation there was to guarantee that shape analysis was carried out with
respect to a finite set of abstract structures, and hence thatthe analysis would always
terminate.

6 This definition of bounded structures was given in [50]; it is slightly more restrictive than the
one given in [51, 35], which did not impose requirement 10(ii). However, it does not limit the
set of problems handled by our method, if the structure that is bounded inthe weak sense is
also FO-identifiable.

11



Definition 10. A bounded structure over vocabularyP is a structureS = 〈US , ιS〉
such that for everyu1, u2 ∈ US , whereu1 6= u2, there exists a predicate symbolp ∈ P1

such that (i)ιS(p)(u1) 6= ιS(p)(u2) and (ii) bothιS(p)(u1) andιS(p)(u2) are not1/2,
i.e., ιS(p)(u1), ι

S(p)(u2) ∈ {0, 1}.

Intuitively, for each pair of nodes in a bounded structure, there is at least one predi-
cate that has different definite values for these nodes. Thus, there is a finite number of
different bounded structures (up to isomorphism).

The following lemma shows that bounded structures are FO-identifiable using for-
mulas over unary predicates only (denoted byP1):

Lemma 3. Every bounded3-valued structureS is FO-identifiable , where

nodeSui
(w)

def
=
∧

p∈P1

pιS(p)(ui)(w) (4)

Example 31 The first-ordernode formulas for the structureS shown in Fig. 2, are:

nodeSu1
(w) = x(w) ∧ rx(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)

∧¬ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

nodeSu2
(w) = ¬x(w) ∧ rx(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)

∧¬ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

Remark. In the case thatS is a bounded2-valued structure, the definition of a bounded
structure becomes trivial. The reason is that every node inS can be named by a quantifier-
free formula built from unary predicates. This is essentially the same as saying that ev-
ery node can be named by a constant. If structureS′ embeds intoS, thenS′ must be
isomorphic toS, therefore it is possible to name all nodes ofS′ by the same constants.
However, this restricted case is not of particular interestfor us, because, to guarantee
termination, shape analysis operates on structures that contain summary nodes and in-
definite values. In the case thatS contains a summary node, a structureS′ that embeds
into S may have an unbounded number of nodes; hence the nodes ofS′ cannot be
named by a finite set of constants in the language.

We already know of interesting cases of FO-identifiable structures that are not
bounded, which can be used to generalize the abstraction defined in [50]:

Example 32 The3-valued structureS′ in Fig. 4 is FO-identifiable by:

nodeS
′

u1
(w)

def
= x(w) ∧ rx(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)

∧¬ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

nodeS
′

u2
(w)

def
= ∃w1 : x(w1) ∧ n(w1, w) ∧ ¬x(w) ∧ rx(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)

∧¬ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

nodeS
′

u3
(w)

def
= ¬(∃w1 : x(w1) ∧ n(w1, w)) ∧ ¬x(w) ∧ rx(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)

∧¬ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

However,S′ is not a bounded structure because nodesu2 andu3 have the same values
of unary predicates. To distinguish between these nodes, weextended nodeS

′

u2
(w) with

the underlined subformula, which captures the fact that only u2 is directly pointed to by
ann-edge fromu1.

12



?>=<89:;u1
n // ?>=<89:;u2

n // u3

n

��

x, rx

OO

rx

OO

rx

OO

(S’)

Fig. 4.A 3-valued structureS′ is FO-identifiable, but not bounded.

It can be shown that every FO-identifiable structure can be converted into a bounded
structure by introducing more instrumentation predicates. For methodological reasons,
we use the notion of FO-identifiable which directly capture the ability to uniquely iden-
tify embedding via (FO) formulas.7 One of the interesting features of FO-identifiable
structures is that the structures generated by a common TVLAoperation “focus”, de-
fined in [35], are all FO-identifiable (see Lemma D2 in Appendix D). For example,
Fig. 4 shows the structureS′, which is one of the structures resulting from apply-
ing the“focus” operation to the structureS from Fig. 2(d) with the formula∃v1, v2 :
x(v1) ∧ n(v1, v2). S′ is FO-identifiable, but not bounded. However, structures like the
one shown in Fig. 3 are not FO-identifiable unlessP = NP .

3.2 Characterizing FO-identifiable structures

To characterize an FO-identifiable3-valued structure, we must ensure

1. the existence of a surjective embedding function.
2. that every concrete node is represented by some abstract node.
3. that corresponding concrete and abstract predicate values meet the embedding con-

dition of Eq. (1).

Definition 11. First-order Characteristic Formula LetS = 〈U = {u1, u2, . . . , un}, ι〉
be an FO-identifiable3-valued structure.

We define thetotality characteristic formula to be the closed formula:

ξS
total

def
= ∀w :

n∨

i=1

nodeSui
(w) (5)

We define thenullary characteristic formula to be the closed formula:

ξS
nullary

def
=
∧

p∈P0

pιS(p)() (6)

For a predicatep of arity r ≥ 1, we define thepredicate characteristic formula to
be the closed formula:

ξS [p]
def
= ∀w1, . . . , wr :

∧

{u′

1
,...,u′

r}∈U

∧r
j=1 nodeSu′

j
(wj) ⇒ pιS(p)(u′

1
,...,u′

r)(w1, . . . , wr) (7)

7 In subsequent sections, we redefine this notion to capture other classesof structures.

13



Thecharacteristic formula of S is defined by:

ξS def
=
∧n

i=1(∃v : nodeSui
(v))

∧ ξS
total

∧ ξS
nullary

∧
∧maxR

r=1

∧
p∈Pr

ξS [p]

(8)

Thecharacteristic formula of setX ⊆ 3-STRUCT[P] is defined by:

γ̂(X) = F ∧ (
∨

S∈X

ξS) (9)

Finally, for a singleton setX = {S} we writeγ̂(S) instead of̂γ(X).

The main ideas behind the four conjuncts of Eq. (8) are:

– The existential quantification in the first conjunct requires that the2-valued struc-
tures have at leastn distinct nodes. For each abstract node inS, the first sub-formula
locates the corresponding concrete node. Overall, this conjunct guarantees that em-
bedding is surjective.

– The totality formula ensures that every concrete node is represented by some ab-
stract node. It guarantees that the embedding function is well-defined.

– The nullary characteristic formula ensures that the valuesof nullary predicates in
the 2-valued structures are at least as precise as the values of the corresponding
nullary predicates inS.

– The predicate characteristic formulas guarantee that predicate values in the2-valued
structures obey the requirements imposed by an embedding into S.8

Example 33 After a small amount of simplification, the characteristic formula γ̂(S)
for the structureS shown in Fig. 2 isFList ∧ ξS , whereξS is:

∃v : nodeSu1
(v) ∧ ∃v : nodeSu2

(v)

∧ ∀w : nodeSu1
(w) ∨ nodeSu2

(w)

∧
∧

p∈P1
∀w1 :

∧
i=1,2(nodeSui

(w1) ⇒ pιS(p)(ui)(w1))

∧ ∀w1, w2 : (nodeSu1
(w1) ∧ nodeSu1

(w2) ⇒ eq(w1, w2) ∧ ¬n(w1, w2) ∧ ¬n(w2, w1))

∧ (nodeSu1
(w1) ∧ nodeSu2

(w2) ⇒ ¬eq(w1, w2) ∧ ¬n(w2, w1))

Thenode formulas are given in Example 31, and the predicates for theinsert pro-
gram in Fig. 1(b) are shown in Table 1. Above, we simplified theformula from Eq. (8) by
combining implications that had the same premises. The integrity formulaFList is given
in Example 22. Note that it uses transitive closure to define the reachability predicates;
consequently,̂γ(S) is a formula in first-order logic with transitive closure.

8 Definition 11 relates to all FO-identifiable structures, not only to bounded structures. For
bounded structures, it can be simplified by omittingξS [p] for all unary predicatesp, because
it is implied by ξS

total. In fact, it can be omitted only for the abstraction predicates, as de-
fined in [51]; however throughout this paper we consider all unary predicates to be abstraction
predicates.
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When a predicate has an indefinite value on some node tuple, a corresponding con-
junct of Eq. (7) can be omitted, because it simplifies to1.

Thus, the size of this simplified version ofξS is linear in the number of definite
values of predicates inS. Assuming that thenodeS formulas contain no quantifiers or
transitive-closure operator, e.g., whenS is bounded, theξS formula has no quantifier
alternation, and does not contain any occurrences of the transitive-closure operator.
Thus, the formulâγ is in Existential-Universal normal form (and thus decidable for
satisfiability) wheneverF is in Existential-Universal normal form and does not contain
transitive closure.9 Moreover, if the maximal arity of the predicate inP is 2, thenγ̂ is
in the two-variable fragment of first-order logic [43], whereverF is. In Section 5, we
discuss other conditions under whichγ̂ can be expressed in a decidable logic.

The following theorem shows that for every FO-identifiable structureS, the formula
γ̂(S) accepts exactly the set of2-valued structures represented byS.

Theorem 1. For every FO-identifiable3-valued structureS, and2-valued structureS\,
S\ ∈ γ(S) iff S\ |= γ̂(S).

4 Supervaluational Semantics for First-Order Formulas

In this section, we consider the problem of how to extract information from a3-valued
structure by evaluating a query. A compositional semanticsfor 3-valued first-order logic
is defined in [51]; however, that semantics is not as precise as the one defined here. The
semantics given in this section can be seen as providing the limit of obtainable precision.

The Notion of Supervaluational Semanticsdefined below, has been used in [56, 4].

Definition 12. Supervaluational Semantics of First-Order Formulas LetX be a set
of3-valued structures andϕ be a closed formula. Thesupervaluational semantics ofϕ
in X, denoted by〈〈ϕ〉〉(X), is defined to be the join of the values ofϕ obtained from each
of the2-valued structures thatX represents, i.e., the most-precise conservative value
that can be reported for the value of formulaϕ in the2-valued structures represented
byX is

〈〈ϕ〉〉(X) =






1 if S\ |= ϕ for all S\ ∈ γ(X)
0 if S\ 6|= ϕ for all S\ ∈ γ(X)
1/2 otherwise

(10)

The compositional semantics given in [51] and used in TVLA can yield 1/2 for ϕ,
even when the value ofϕ is 1 for all the 2-valued structuresS\ that S represents (or
when the value ofϕ is 0 for all theS\). In contrast, when the supervaluational semantics
yields1/2, weknowthat any sound extraction of information fromS must return1/2.

Example 41 We demonstrate now that the supervaluational semantics of the formula
ϕx→next 6=NULL

def
= ∃v1, v2 : x(v1)∧ n(v1, v2) on the structureS from Fig. 2(d) is1. That

is, we wish to argue that for all of the2-valued structures that structureS from Fig. 2(d)
represents, the value of the formulaϕx→next 6=NULL must be1.

9 For practical reasons, we often replace thenode formula by a new (definable) predicate, and
add its definition to the integrity formula.
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We reason as follows:S represents a list with at least two nodes; i.e., all2-valued
structures represented byS have at least two nodes. One node,u\

1, corresponding to
u1 in S, is pointed to by program variablex. The other node, corresponding to the
summary nodeu2, must be reachable fromx. Consider the sequence of nodes reachable
fromx, starting withu\

1. Denote the first node in the sequence that embeds intou2 by
u\

2. By the definition of reachability, there must be ann-link tou\
2 from a node embedded

into u1. But the integrity rules guarantee that there is exactly onenode that embeds into
u1, namely,u\

1. Therefore, the formulax(v1)∧n(v1, v2) holds for[v1 7→ u\
1, v2 7→ u\

2].
Note that this formula will be evaluated to1/2 by TVLA, becausex(v1)∧n(v1, v2)

evaluates to1/2 under the assignment[v1 7→ u1, v2 7→ u2]: the compositional seman-
tics yieldsx(u1) ∧ n(u1, u2) = 1 ∧ 1/2 = 1/2.

Notice that Definition 12 does not provide a constructive wayto compute〈〈ϕ〉〉(X)
becauseγ(X) is usually an infinite set.

Computing Supervaluational Semantics using Theorem Provers. If an appropri-
ate theorem prover is at hand,〈〈ϕ〉〉(S) can be computed with the procedure shown
in Fig. 5. This procedure is not an algorithm, because the theorem prover might not
terminate. Termination can be assured by using standard techniques (e.g., having the
theorem prover return a safe answer if a time-out threshold is exceeded) at the cost of
losing the ability to guarantee that a most-precise result is obtained. If the queries posed
by operationSupervaluation can be expressed in a decidable logic, the algorithm
for computing supervaluation can be implemented using a decision procedure for that
logic. In Section 5, we discuss such decidable logics that are useful for shape analysis.

procedure Supervaluation(ϕ: Formula,
X: Set of 3-valued structures): Value

if (γ̂(X) ⇒ ϕ is valid) return 1;
else if (γ̂(X) ⇒ ¬ϕ is valid) return 0;
otherwise return 1/2;

Fig. 5.A procedure for computing the supervaluational value of a formulaϕ that encodes a query
on a3-valued structuresS.

5 Applications

The experiments discussed in this section demonstrate how the γ̂ operation can be har-
nessed in the context of program analysis: the results described below go beyond what
previous systems were capable of. In Section 5.1, we discussthe use existing theo-
rem provers and their limitations. In Section 5.2, we suggest a way to overcome these
limitations, using decidable logic.

We present two examples that useγ̂ to read out information from3-valued structures
in a conservative, but rather precise way. The first example demonstrates how supervalu-
ational semantics allows us to obtain more precise information from a3-valued structure
than we would have using compositional semantics. The second example demonstrates
how to use the3-valued structures obtained from a TVLA analysis to construct a loop
invariant; this is then used to show that certain propertiesof a linked data structure hold
on each loop iteration. In addition, we briefly describe howγ̂ can be used in algorithms
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for computing most-precise abstraction operations for shape analysis. Finally, we re-
port on other work that employŝγ to generate a concrete counter-example for shape
analysis.
Remark. The γ̂ operation defines a symbolic concretization with respect toa given
abstract domain. In Section 3, we definedγ̂ for the abstract domain of sets of3-valued
structures. In Appendix A, we describe a related abstract domain and definêγ for it.
The applications described in this section can be used with any domain for whicĥγ is
defined in some logic and a theorem prover for that logic exists. In our examples, we
useγ̂ defined in Section 3 and the first-order logic with transitiveclosure.

5.1 Using the First-Order Theorem Prover SPASS

The TVLA ([38]) system performs an iterative fixed-point computation, which yields
at every program pointp a setXp of bounded structures. It guarantees thatγ(Xp)
is a superset of the2-valued structures that can arise atp in any execution. We have
implemented thêγ operation in TVLA, and employed SPASS [57] to check, using the
formula γ̂(Xp), that certain properties of the heap hold at program pointp. Also, we
implemented the supervaluational procedure described in Section 4, employing SPASS.
The enhanced version of TVLA generates the formulaγ̂(S) and makes at most two
calls to SPASS to compute the supervaluational value of a query ϕ in structureS. In
this section, we report on our experience in using SPASS and the problems we have
encountered.

First, calls to SPASS theorem prover need not terminate, because first-order logic
is undecidable in general. However, in the examples described below, SPASS always
terminated.

Example 51 In Example 41 we (manually) proved that the supervaluational value of
the formulaϕx→next 6=NULL on the structureS from Fig. 2(d) is1. To check this auto-
matically, we used SPASS to determine the validity ofγ̂(S) ⇒ ϕx→next 6=NULL; SPASS
indicated that the formula is valid. This guarantees that the formulaϕx→next 6=NULL eval-
uates to1 on all of the2-valued structures that embed intoS.

In contrast, TVLA uses Kleene semantics for3-valued formulas, and will evaluate
the formulaϕx→next 6=NULL to 1/2: under the assignment[v1 7→ u1, v2 7→ u2], x(v1) ∧
n(v1, v2) evaluates to1 ∧ 1/2, which equals1/2.

Generating and Querying a Loop Invariant We used TVLA to compute, for each
program pointp, a setXp of bounded structures that overapproximate the set of stores
that may occur at that point. We then generatedγ̂(Xp). Because TVLA is sound,̂γ(Xp)
must be an invariant that holds at program pointp, according to Theorem 1. In particu-
lar, whenp is a program point that begins a loop,γ̂(Xp) is a loop invariant.

Example 52 Let X = {Si | i = 1, . . . , 5} denote the set of five3-valued structures
that TVLA found at the beginning of the loop in theinsert program from Fig. 2.
Table 2 and Table 3 of Appendix C show theSi and their characteristic formulas. The
loop invariant is defined by

γ̂(X) = FList ∧ (

5∨

i=1

ξSi)
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Using SPASS, this formula was then used to check that in everystructure that can
occur at the beginning of the loop,x points to a valid list, i.e., one that is acyclic and
unshared. This property is defined by the following formulas:

acycx
def
= ∀v1, v2 : rx(v1) ∧ n+(v1, v2) ⇒ ¬n+(v2, v1)

unsx
def
= ∀v : rx(v) ⇒ ¬(∃w1, w2 : ¬eq(w1, w2) ∧ n(w1, v) ∧ n(w2, v))

listx
def
= acycx ∧ unsx

We applied SPASS to check the validity ofγ̂(S) ⇒ listx; SPASS indicated that the
formula is valid.10

In addition to the termination issue, a second obstacle is that SPASS considers in-
finite structures, which are not allowed in our setting.11 As a consequence, SPASS can
fail to verify that a formula is valid for our intended set of structures; however, the op-
posite can never happen: whenever SPASS indicates that a formula is valid, it is indeed
valid for our intended set of structures.

Example 53 We tried to verify that every concrete linked-list represented by the3-
valued structureS from Fig. 2(d) has a last element. This condition is expressed by
the formulaϕlast

def
= ∃v1∀v2 : ¬n(v1, v2). The supervaluational value ofϕlast on a

structureS is 〈〈ϕ〉〉(S) = 1, for the following reasons. Becauserx has the definite
value1 on u2 in S, all concrete nodes represented by the summary nodeu2 must be
reachable fromx. Thus, these nodes must form a linked list, i.e., each of these concrete
nodes, except for one node that is the “last”, has ann-edge to another concrete node
represented byu2. The last node does not have ann-edge back to any of the nodes
represented byu2, because that would create sharing, whereas the value of predicate
is in S is 0 on u2. Also, the last node cannot have ann-edge to the concrete node
represented byu1, because the value of predicaten on the pair〈u2, u1〉 in S is 0.
Therefore, the last element cannot have an outgoingn-edge.

We used SPASS to determine the validity ofγ̂(S) ⇒ ϕlast; SPASS indicated that the
formula isnotvalid, because it considered a structure that has infinitelymany concrete
nodes, all represented byu2. Each of these concrete nodes has ann-edge to the next
node.

The validity test of the formulâγ(S) ⇒ ¬ϕlast failed, of course, because there
exists a finite structure that is represented byS (and thus satisfieŝγ(S)) and has a
last element. For example, the structure in Fig. 2(a) that represents a list of size2.
Therefore, the procedure Supervaluation(ϕlast, S) implemented using SPASS returns
1/2, even though the supervaluational value ofϕlast onS is 1.

The third, and most severe, problem that we face is that SPASSdoes not support
transitive closure. Because transitive closure is not expressible in first-order logic, we
could only partially model transitive closure in SPASS, as described below.

SPASS follows other theorem provers in allowing axioms to express requirements
on the set of structures considered. We used SPASS axioms to model integrity rules.
To partially model transitive closure, we replaced uses ofn+(v1, v2) by uses of a new

10 SPASS input is available fromwww.cs.tau.ac.il/∼gretay.
11 Our intended structures are finite, because they represent memory configurations, which are

guaranteed to be finite, although their size is not bounded.
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designated predicatet[n](v1, v2). Therefore, SPASS will consider some structures that
do not represent possible stores. As a consequence, SPASS can fail to verify that a for-
mula is valid for our intended set of structures; however, the opposite can never happen:
whenever SPASS indicates that a formula is valid, it is indeed valid for our intended
set of structures. To avoid some of the spurious failures to prove validity, we added
axioms to guarantee that (i)t[n](v1, v2) is transitive and (ii)t[n](v1, v2) includes all
of n(v1, v2); thus,t[n](v1, v2) includes all ofn+(v1, v2). Because transitive closure re-
quires a minimal set, which is not expressible in first-orderlogic, this approach provides
a looser set of integrity rules than we would like. However, it is still the case that when-
ever SPASS indicates that a formula is valid, it is indeed valid for the set of structures
in which t[n](v1, v2) is exactlyn+(v1, v2).

Example 54 SPASS takes into account the structure shown in Fig. 6, in which the value
of t[n](u1, u3) is 1, but the value ofn+(u1, u3) is 0 because there is non-edge fromu2

to u3.

?>=<89:;u1
n //

t[n]
((

t[n]

��
?>=<89:;u2 ?>=<89:;u3

x, rx

OO

rx

OO

rx

OO

Fig. 6.SPASS takes into account structures in which thet[n] predicate overapproximates then+

predicate, such as the structure shown in this figure.

Remark. For practical purposes, the success of using symbolic methods depends on
having a terminating theorem prover. We have successfully used SPASS as part of a
prototype implementation of theassume operation (Section 5.3), and the path-pruning
optimization for counter-example generation (Section 5.4). Although these experiments
are rather preliminary, we believe that this approach can bemade to work in practice.
For example, there has been some recent progress in using SPASS, including the use
of transitive closure [36]. Also, we have investigated a complementary approach, dis-
cussed in Section 5.2.

5.2 Decidable Logic

The obstacles mentioned in Section 5.1 are not specific to SPASS. They occur in all
theorem provers for first-order logic that we are aware of. Toaddress these obstacles,
we are investigating the use of a decidable logic. To reason about linked data structures,
we need a notion of reachability to be expressible, for example, using transitive closure.
However, a logic that is both decidable and includes reachability must be limited in
other aspects.

One such example is the decidable second-order theory of twosuccessorsWS2S
[46]; its decision procedure is implemented in a tool calledMONA [23]. Second-order
quantification suffices to express reachability, but there are still two problems. First,
the decision procedure forWS2Sis necessarily non-elementary [41]. Second,WS2S
only applies to trees, or, equivalently, to function graphs(graphs with at most one edge
leaving any vertex).
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Another example isEA(TC, f1), which is a subset of first-order logic with transi-
tive closure, in which the following restriction are imposed on formulas: (i) they must
be in existential-universal form, and (ii) they must use at most a single unary function
f , but can use an arbitrary number of unary predicates. [26] shows that the decision
procedure for satisfiability ofEA(TC, f1) is NEXPTIME-complete.

In spite of their limitations, bothWS2SandEA(TC, f1) can be useful for reason-
ing about shape invariants and mutation operations on data structures, such as singly
and doubly linked lists, (shared) trees, and graph types [30]. The key is thesimulation
technique[27], which encodes complex data-structures usingtractablestructures, e.g.,
function graphs or simple trees, where we can reason with decidable logics.

For example, given a suitable simulation,γ̂ formula can be expressed inWS2S
andEA(TC, f1) if the integrity formulaF can. This follows from the definition of
γ̂ in Eq. (9) and the fact thatξS does not contain quantifier alternation. This makes
EA(TC, f1) andWS2Scandidate implementations for the decision procedure usedin
the supervaluational semantics and in the algorithms described below.

5.3 Assume-Guarantee Shape Analysis

The γ̂ operation is useful beyond computing supervaluational semantics: it is a neces-
sary operation used in the algorithms described in [62, 48].These algorithms perform
abstract operations symbolically by representing abstract values as logical formulas,
and use a theorem prover to check validity of these formulas.These algorithms im-
prove on existing shape-analysis techniques by:

– conducting abstract interpretation in the most-precise fashion, improving the tech-
nique used in the TVLA system [38, 51], which provides no guarantees about the
precision of its basic mechanisms.

– performing modular verification using assume-guarantee reasoning and procedure
specifications. This is perhaps the most-exciting potential application of γ̂ (and
EA(TC, f1) logic), because existing mechanisms for shape analysis, including
TVLA, do not support assume-guarantee reasoning.

5.4 Counter-example Generation

Some preliminary work to use the techniques presented in this paper to improve the
applicability of TVLA has been carried out. The tool described in [13, 12] uses thêγ
operation to generate a concrete counter-example for a potential error message produced
by TVLA for an intermediate3-valued structureS at a program pointp. Such a tool is
useful to check if a reported error is a real error or a false-alarm, i.e., it never occurs on
any concrete store.

Generation of concrete counter-examples fromS proceeds as follows. First,S is
converted to the formulâγ(S). Then, the tool uses weakest precondition to generate
a formula that represents the stores at the entry point that lead to an execution trace
that reachesp with a store that satisfieŝγ(S). Finally, a separate tool [39] generates a
concrete store that satisfies the formula for the entry point.
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6 Related Work

There is a sizeable literature onstructure-description formalismsfor describing proper-
ties of linked data structures (see [2, 51] for references).The motivation for the present
paper was to understand the expressive power of the shape abstractions defined in [51].

In previous work, Benedikt et al. [2] showed how to translatetwo kinds of shape
descriptors, “path matrices” [20, 22] and the variant of shape graphs discussed in [49],
into a logic calledLr (“logic of reachability expressions”). The shape graphs from [49]
are also amenable to the techniques presented in the presentpaper: the characteristic
formula defined in Eq. (8) is much simpler than the translation to Lr given in [2];
moreover, Eq. (8) applies to a more general class of shape descriptors. However, the
logic used in [2] is decidable, which guarantees that terminating procedures can be
given for problems that can be addressed usingLr.

The Pointer Analysis Logic Engine (PALE) [42] provides a structure-description
formalism that serves as an assertion language; assertionsare translated to second-order
monadic logic and fed to MONA. PALE does not handle all data structures, but can han-
dle data structures describable as graph types [30]. Because the logic used by MONA
is decidable, PALE is guaranteed to terminate.

One point of contrast between the shape abstractions based on 3-valued structures
studied in this paper and bothLr and the PALE assertion language is that the powerset
of 3-valued structures forms an abstract domain. This means that 3-valued structures
can be used for program analysis by setting up an appropriateset of equations and
finding its fixed point [51]. In contrast, when PALE is used forprogram analysis, an
invariant must be supplied for each loop.

Other structure-description formalisms in the literatureinclude ADDS [21] and
shape types [16].

The supervaluational semantics for first-order logic discussed in Section 4 is related
to a number of other supervaluational semantics for partiallogics and3-valued log-
ics discussed in the literature [56, 3, 4]. Compared to previous work, an innovation of
Fig. 5 is the use of̂γ to translate a3-valued structure to a formula. In fact, Fig. 5 is an
example of a general reductionist strategy for providing a supervaluational evaluation
procedure for abstract domains by using existing logics andtheorem-provers/decision-
procedures.

A recent work [32], which is an abbreviated version of a more extensive presentation
of the results reported in [33], provides an alternative characterization of3-valued struc-
tures using logical formulas, equivalent to the characterization presented in the present
paper. The present paper, which extends and elaborates on the results of [61], unlike
[32, 33], reports on experience and algorithmic issues in using logical characterization
of structures for shape analysis; this material is important because shape analysis is the
primary motivation and the intended application of this paper, as well as [32, 33]. Also,
Section A.4 of the present paper gives a simple semantic argument for the property of
closure under negation, shown in [33] using a different formalism. The technical sim-
ilarities and differences between the two works are described in a note available from
www.cs.tau.ac.il/∼gretay.
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7 Final Remarks
In [48], we discuss how to perform all operations required for abstract interpretation
in the most-precise way possible (relative to the abstraction in use), if certain primitive
operations can be carried out, and if a sufficiently powerfultheorem prover is at hand.
Chief among the primitive operations that must be availableis γ̂; thus, the material that
has been presented in this paper shows how to fulfill the requirements of [48] for a
family of abstractions based on3-valued structures (essentially those used in our past
work [51] and in the TVLA system [38]).

In ongoing work, we are investigating the feasibility of actually applying the tech-
niques from [48] to perform abstract interpretation for abstractions based on3-valued
structures. This approach could be more precise than TVLA because, for instance, it
would take into account in a first-class way the integrity formula of the abstraction. In
contrast, in TVLA some operations temporarily ignore the integrity formula, and rely
on later clean-up steps to rectify matters.

Another step can be taken in this direction, which is to eliminate the use of3-valued
structures, and directly carry out fixed-point computations over logical formulas.

We are also investigating the feasibility of using the results from this paper to de-
velop a more precise and modular version of TVLA by usingassume-guaranteerea-
soning [62]. The idea is to allow arbitrary first-order formulas with transitive closure to
be used to express pre- and post-conditions, and to analyze the code for each procedure
separately.
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A Characterizing Canonical Abstraction by First-Order For mulas

This section defines an alternative abstract domain for use in shape analysis (and other
logic-based analyses). This domain keeps more explicit information than the one in
Section 2.4 and enjoys nice closure properties (see SectionA.4). This domain uses a
particular class of embedding functions that are defined by asimple operation, called
canonical abstraction, which maps2-valued structures into a limited subset of bounded
structures.

A.1 Canonical Abstraction

Canonical abstraction was defined in [50] as an abstraction with the following proper-
ties:

– It provides a uniform way to obtain3-valued structures of a priori bounded size.
This is important to automatically derive properties of programs with loops by em-
ploying iterative fixed-point algorithms. Canonical abstraction maps concrete nodes
into abstract nodes according to the definite values of the unary predicates.

– The information loss is minimized when multiple nodes ofS are mapped to the
same node inS′,

This is formalized by the following definition:

Definition 13. A structureS′ = 〈US′

, ιS
′

〉 is acanonical abstractionof a structureS,
if S vcanonical S′, wherecanonical : US → US′

is the following surjective mapping:

canonical(u) = u{p∈P1|ιS(p)(u)=1},{p∈P1|ιS(p)(u)=0} (11)

and, for everyp ∈ Pk of arity k,

ιS
′

(p)(u′
1, . . . , u

′
k) =

⊔

ui ∈ US , s.t.

canonical(ui) = u′

i ∈ US′

,
1 ≤ i ≤ k

ιS(p)(u1, . . . , uk) (12)

We say thatS′ = canonical(S).

The name “u{p∈P1|ιS(p)(u)=1},{p∈P1|ιS(p)(u)=0}” is known as thecanonical name
of nodeu. The subscript on the canonical name ofu involves two sets of unary predicate
symbols: (i) those that are true atu, and (ii) those that are false atu.
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Example A1 In structureS from Fig. 2, the canonical names of the nodes are as fol-
lows:

NodeCanonical Name
u1 u{x,rx},{y,t,e,is,ry,rt,re}

u2 u{rx},{x,y,t,e,is,ry,rt,re}

In the context of canonical abstraction,S shown in Fig. 2 representsSb andSc, but not
Sa; i.e., S represents lists that are pointed to byx that have at least three nodes, but it
does not represent a list with just two nodes. The reason is that predicatesn andeq have
indefinite values inS, but a list with only two nodes cannot have both0 and1 values
for the corresponding entries, as required for minimizing information loss as defined in
Eq. (12).12 In contrast, according to the abstraction that relies on embedding, defined
in Section 2.4,S represents lists with two or more elements.

To characterize canonical abstraction, we define the set of3-valued structures that
are “images of canonical abstraction” (ICA), i.e., the results of applying canonical ab-
straction to2-valued structures.

Definition 14. Image of canonical abstraction (ICA) StructureS is an ICA if there
exists a2-valued structureS\ such thatS is the canonical abstraction ofS\.

Concretization of 3-Valued Structures.Canonical abstraction allows us to define the
(potentially infinite) set of2-valued structures represented by a set of3-valued struc-
tures, that areICA

Definition 15. Concretization of ICA Structures For a set of structuresX ⊆ 3-STRUCT[P],
that areICA structures, we denote byγc(X) the set of2-valued structures thatX rep-
resents, i.e.,

γc(X) =

{
S\ ∈ 2-STRUCT[P] | existsS ∈ Xsuch that
S is the canonical abstraction ofS\ andS\ |= F

}
(13)

Also, for a singleton setX = {S} we writeγc(S) instead ofγc(X).

The abstract domain is the powerset ofICA structures, where the order relation is
set inclusion. Note that this abstract domain is finite, because there is a finite number
of different ICA structures (up to isomorphism). Denote byαc the extension of the ab-
straction functioncanonical to sets. This defines a Galois connection〈αc, γc〉 between
sets of2-valued structures and sets ofICA structures.

A.2 Canonical-FO-Identifiable Structures

We define the notion of canonical-FO-identifiable nodes using canonical abstraction
rather than embedding, which was used for the notion of FO-identifiable nodes in Def-
inition 8.

Definition 16. We say that a nodeu in a3-valued structureS iscanonical-FO-identifiable
if there exists a formula nodeS

u(w) with designated free variablew, such that for every

12 Eq. (12) is called thetight-embeddingcondition in [51].
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2-valued structureS\, if S is the canonical abstraction ofS\, i.e.,S\ ∈ γc(S), then for
every concrete nodeu\ ∈ US\

:

canonical(u\) = u ⇐⇒ S\, [w 7→ u\] |= nodeSu(w) (14)

S is called canonical-FO-identifiable if all the nodes inS are canonical-FO-identifiable.

We can also prove Lemma 1 for the case of canonical abstraction rather than em-
bedding.

A.3 Characterizing Canonical Abstraction

An ICA structure is always a bounded structure, in which all nullary and unary predi-
cates have definite values.13 This is formalized by the following lemma:

Lemma 4. If 3-valued structureS = 〈US , ιS〉 over vocabularyP is ICA then:

(i) S is a bounded structure.
(ii) For each nullary predicatep, ιS(p)() ∈ {0, 1}.
(iii) For each elementu ∈ U and each unary predicatep, ιS(p)(u) ∈ {0, 1}.

The following lemma shows thatICA structures are canonical-FO-identifiable:

Lemma 5. Every 3-valued structureS that is an ICA is canonical-FO-identifiable,
where

nodeSui
(w)

def
=
∧

p∈P1

pιS(p)(ui)(w) (15)

Using this fact, we can define a formulaτS that accepts exactly the set of2-valued
structures represented byS under canonical abstraction. The formulaτS is merelyξS

with additional conjuncts to ensure that the information loss is minimized, i.e., for every
predicatep and every1/2 entry ofp, the2-valued structure has both a corresponding 1
entry and a corresponding 0 entry.

Definition 17. First-Order Characteristic Formula for Cano nical Abstraction Let
3-valued structureS = 〈US , ι〉 be an ICA.

For a predicatep of arity r, we define the closed formula forp:

τS [p]
def
=

∧

{u′

1
, . . . , u′

r} ⊆ US

s.t.ιS(p)(u′

1
, . . . , u′

r) = 1/2

(
∃w1, . . . , wr :

∧r
j=1 nodeSu′

j
(wj) ∧ p(w1, . . . , wr)

∧ ∃w1, . . . , wr :
∧r

j=1 nodeSu′

j
(wj) ∧ ¬p(w1, . . . , wr)

)

(16)
The formula ofS is defined by:

τS def
= ξS ∧

maxR∧

r=2

∧

p∈Pr

τS [p] (17)

13 If not all unary predicates are defined as abstraction predicates, thenthe result may be a
bounded structure of the less restrictive kind mentioned in Section 3.1. Also, unary predicates
that are not abstraction predicates may have indefinite values.
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Thecharacteristic formula for canonical abstraction of a set of ICA structures
X ⊆ 3-STRUCT[P] is defined by

γ̂c(X) = F ∧ (
∨

S∈X

τS) (18)

Also, for a singleton setX = {S}, whereS is anICA structure, we writêγc(S) instead
of γ̂c(X).

Example A2 The characteristic formula for canonical abstraction of the structureS
shown in Fig. 2(d) is:

γ̂c(S) = γ̂(S)

∧ ∃w1, w2 : nodeSu1
(w1) ∧ nodeSu2

(w2) ∧ n(w1, w2)

∧ ∃w1, w2 : nodeSu1
(w1) ∧ nodeSu2

(w2) ∧ ¬n(w1, w2)

∧ ∃w1, w2 : nodeSu2
(w1) ∧ nodeSu2

(w2) ∧ n(w1, w2)

∧ ∃w1, w2 : nodeSu2
(w1) ∧ nodeSu2

(w2) ∧ ¬n(w1, w2)

∧ ∃w1, w2 : nodeSu2
(w1) ∧ nodeSu2

(w2) ∧ eq(w1, w2)

∧ ∃w1, w2 : nodeSu2
(w1) ∧ nodeSu2

(w2) ∧ ¬eq(w1, w2)

(19)

whereγ̂(S) is given in Example 33. As explained in Example A1,S does not represent
a list of two nodes; the corresponding2-valued structureSa, shown in Fig. 2(a), does
not satisfy Eq. (19), because the last four lines cannot be satisfied by any assignment in
Sa.

Remark. The formulaτS does not contain quantifier alternation and transitive closure.
Therefore,̂γc is in Existential-Universal normal form (and thus decidable) wheneverF
is in Existential-Universal form and does not contain transitive closure.

Theorem 2. For every3-valued structureS that is anICA and2-valued structureS\

S\ ∈ γc(S) iff S\ |= γ̂c(S)

A.4 Closure Properties of ICA Structures

This section gives a simple semantic proof that the class of formulas that characterize
ICA structures is closed under negation. This result was shown in [33] using a different
formalism.

From Eq. (12) it follows that for two distinct ICA structuresS1 andS2, γc(S1) ∩
γc(S2) = ∅. Intuitively, each2-valued structure can be represented by exactly one ICA
structure. This implies that the complement of the concretization of an ICA structure
can be represented precisely by a finite set of ICA structures.

Denote byD the set of all2-valued structures that satisfy the integrity formulaF :
D

def
= {S\ ∈ 2-STRUCT[P] | S\ |= F}.

Lemma 6. LetS be an ICA structure. There exists a set of ICA structuresX such that
γc(X) = D r γc(S).

This can be reformulated using Theorem 2 in terms of characteristic formulas for ICA
structures. This shows that the class of formulas that characterize canonical abstraction
is closed under negation, in the following sense:
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Lemma 7. Consider the formulaτS from Eq. (17), for some ICA structureS. There
exists a set of ICA structuresX, such that the formulaF ∧ ¬τS is equivalent to the
formula γ̂c(X).

Remark. Note that Lemma 6 and Lemma 7 do not hold for bounded structures using
γ, described in Section 3.1, instead ofγc. The reason, intuitively, is that some2-valued
structures can be represented by more than one bounded structure.

For example, consider the2-valued structureSa from Fig. 2, which denotes a linked-
list of length exactly2. It is in the concretization of two different3-valued structures: the
first isSa itself, considered as a3-valued structureS′ (that represents a single2-valued
structure:γ(S′) = {Sa}); the second is the structureS from Fig. 2.

For the purpose of this example, assume that the integrity formulaF (that defines
D) requires that all elements be reachable fromx, in addition to the integrity formula
FList from Example 22. The complementC

def
= D r γ(S′) = D r Sa is the set that

contains an empty linked list, a linked list of length1, and linked lists of length3 or
more. The representation ofC is a setX of bounded structures. To capture linked lists
of length3 or more,X must contain a3-valued structureS from Fig. 2. However,γ(S)
includes a list of length2 as well, denoted bySa, which is not inC. Therefore,X cannot
containS, and a contradiction is obtained.

B Characterizing General3-Valued Structures by NP Formulas

In this section, we show how to characterize general3-valued structures.

B.1 Motivating Example

If the input structure is FO-identifiable, Theorem 1 ensuresthat the result of operation̂γ
precisely captures the concretization of the input structure. The purpose of this example
is to show what happens if we apply thêγ operation, as defined in Section 3, to a
structure that is not FO-Identifiable. WhenS is not FO-identifiable,̂γ(S) only provides
a sufficient test for the embedding of2-valued structures intoS.

Example B1 The3-valued structureS shown in Fig. 3 describes undirected graphs.
We draw undirected edges as two-way directed edges. This structure uses a set of pred-
icatesP = {eq, f, b}, wheref(v1, v2) andb(v2, v1) denote the forward and backward
directions of an edge between nodesv1 andv2.

When Eq. (8) is applied to the3-valued structureS shown in Fig. 3, we get

∧3
i=1 ∃v : nodeSui

(v)

∧ ∀w :
∨3

i=1 nodeSui
(w)

∧ ∀w1, w2 :
∧

k 6=j(nodeSuk
(w1) ∧ nodeSuj

(w2) ⇒ f1/2(w1, w2))

∧ ∀w1, w2 :
∧

k 6=j(nodeSuk
(w1) ∧ nodeSuj

(w2) ⇒ b1/2(w1, w2))

∧ ∀w1, w2 :
∧3

i=1(nodeSui
(w1) ∧ nodeSui

(w2) ⇒ b0(w1, w2))

∧ ∀w1, w2 :
∧3

i=1(nodeSui
(w1) ∧ nodeSui

(w2) ⇒ f0(w1, w2))

(20)
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Because this example does not include unary predicates, thenode formula given in
Lemma 3 evaluates to1 on all elements. Hence, Eq. (20) can be simplified to:

∧3
i=1 ∃v : 1

∧ ∀w :
∨3

i=1 1

∧ ∀w1, w2 :
∧

k 6=j(1 ∧ 1 ⇒ 1)

∧ ∀w1, w2 :
∧

k 6=j(1 ∧ 1 ⇒ 1)

∧ ∀w1, w2 :
∧3

i=1(1 ∧ 1 ⇒ ¬b(w1, w2))

∧ ∀w1, w2 :
∧3

i=1(1 ∧ 1 ⇒ ¬f(w1, w2))

After further simplification, we get the formula∀w1, w2 : ¬f(w1, w2) ∧ ∀w1, w2 :
¬b(w1, w2). The simplification is due to the fact that the implication inEq. (7) uncon-
ditionally holds for all pairs of distinct nodes, becausef andb evaluate to1/2 on those
pairs, except for the requirement imposed by the absence of self-loops inS.

This formula is only fulfilled by graphs with no edges, which are obviously3-
colorable. But this formula is too restrictive: it does not capture some3-colorable
graphs.

B.2 Characterizing General3-Valued Structures

Existential monadic second-order formulas are a subset of Fagin’s second-order formu-
las [14], named NP formulas, which capture NP computations.A formula in existential
monadic second-order logic has the form:

∃V1, V2, . . . , Vn : ϕ

where theVi are set variables, andϕ is a first-order formula that can use membership
tests inVi. We show that in this subset of second-order logic, the characteristic formula
from Definition 11 can be generalized to handle arbitrary3-valued structures using exis-
tential quantification over set variables (with one set variable for each abstract node).14

Definition 18. NP Characteristic Formula Let S = 〈U = {u1, u2, . . . , un}, ι〉 be a
3-valued structure.

We define the following formula to ensure that the sets are nonempty:

ξS
non empty[i]

def
= ∃wi : nodeSui

(wi) (21)

We define the following formula to ensure that the setsVk, Vj are disjoint:

ξS
disjoint[k, j]

def
= ∀w1, w2 : nodeSuk

(w1) ∧ nodeSuj
(w2) ⇒ ¬eq(w1, w2) (22)

TheNP characteristic formula of S is defined by:

ξS def
= ∃V1, . . . , Vn :

∧n
i=1 ξS

non empty[i] ∧
∧

k 6=j ξS
disjoint[k, j]

∧ ξS
total

∧ ξS
nullary

∧
∧maxR

r=1

∧
p∈Pr

ξS [p]

(23)

14 This result is mostly theoretical. In principle, this encoding falls into monadic-second order
logic, which is decidable if we restrict the concrete structures of interest totrees. However, we
have not investigated this direction further.
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whereξS
total, ξ

S
nullary, ξS [p] are defined as in Definition 11, except that nodeS

ui
is the NP

formula nodeSui
(w)

def
= (w ∈ Vi). (Here, we abuse notation slightly by referring toVi in

nodeSui
(w). This could have been formalized by passingV1, . . . , Vn as extra parameters

to nodeSui
.)

TheNP characteristic formula of a finite setX ⊆ 3-STRUCT[P] is defined by:

γ̂NP (X) = F ∧ (
∨

S∈X

ξS) (24)

Finally, for a singleton setX = {S} we writeγ̂NP (S) instead of̂γNP (X).

Example B2 After a small amount of simplification, the NP characteristic formulaξS

for the graph shown in Fig. 3 is:

∃V1, V2, V3 :
∧3

i=1(∃w : w ∈ Vi) (i)
∧
∧

k 6=j ∀w1, w2 : (w1 ∈ Vk ∧ w2 ∈ Vj ⇒ ¬eq(w1, w2)) (ii)

∧ ∀w :
∨3

i=1 w ∈ Vi (iii)

∧ ∀w1, w2 :
∧3

i=1(
∧

j=1,2 wj ∈ Vi ⇒ ¬e(w1, w2) ∧ ¬e(w2, w1)) (iv)

In this formula,V1, V2, andV3 represent the three color classes. Line by line, the for-
mula says: (i) each color class has at least one member; (ii) the color classes are
pairwise disjoint; (iii) every node is in a color class; (iv)nodes in the same color class
are not connected by an undirected edge.

The following theorem generalizes the result in Theorem 1 for an arbitrary3-valued
structureS, using NP-formulâγNP (S) to accept exactly the set of2-valued structures
represented byS.

Theorem 3. For every3-valued structureS, and2-valued structureS\:

S\ ∈ γ(S) iff S\ |= γ̂NP (S)

C Generating and Querying a Loop Invariant

Table 2 and Table 3 show the structures and the characteristic formulas for the experi-
ment described in Example 52.

It is interesting to note that the size ofξS2 is bigger than the size ofξS1 . This is
natural becauseS2 has more definite values, which impose more restrictions than are
imposed byS1.

D Proofs

Lemma D1 Consider the3-valued structureS shown in Fig. 3. For all2-valued struc-
turesC, C can be embedded intoS if and only ifC can be colored using3 colors.
Proof of the if direction:Suppose thatC is 3-colorable, letc be a mapping from the
nodes ofC to the colors{1, 2, 3}. We define embedding functionf from C to S as
follows: f(u) = uc(u), i.e., a nodeu ∈ C that has colori is mapped toui ∈ S. It is
easy to see thatf preserves predicate values inS, because the only definite values inS
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Structure CharacteristicFormula

x, y // ?>=<89:;u1
n // u2

n

��

S1 rx, ry

OO

rx, ry

OO

nodeS1
u1

(w) = x(w) ∧ y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

nodeS1
u2

(w) = ¬x(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

ξS1 =
∧

i=1,2(∃v : nodeS1
ui

(v))

∧ ∀w :
∨

i=1,2 nodeS1
ui

(w)

∧ ∀w1, w2 :
∧

i=1,2 nodeS1
ui

(wi) ⇒

¬eq(w1, w2) ∧ ¬n(w2, w1)
∧ ∀w1, w2 :

∧
i=1,2 nodeS1

u1
(wi) ⇒

∧eq(w1, w2) ∧ ¬n(w1, w2)

x // ?>=<89:;u1
n // ?>=<89:;u2

S2 rx

OO

y, rx, ry

OO

nodeS2
u1

(w) = x(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ¬ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

nodeS2
u2

(w) = ¬x(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

ξS2 =
∧

i=1,2(∃v : nodeS2
ui

(v))

∧ ∀w :
∨

i=1,2 nodeS2
ui

(w)

∧ ∀w1, w2 :
∧

i=1,2 nodeS1
ui

(wi) ⇒

¬eq(w1, w2) ∧ ¬n(w2, w1) ∧ n(w1, w2)
∧ ∀w1, w2 :

∧
i=1,2 nodeS1

u1
(wi) ⇒

∧eq(w1, w2) ∧ ¬n(w1, w2)
∧ ∀w1, w2 :

∧
i=1,2 nodeS1

u2
(wi) ⇒

∧eq(w1, w2) ∧ ¬n(w1, w2)

x // ?>=<89:;u1
n // ?>=<89:;u2

n // u3

n

��

S3 rx

OO

y, rx, ry

OO

rx, ry

OO

nodeS3
u1

(w) = x(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ¬ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

nodeS3
u2

(w) = ¬x(w) ∧ y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

nodeS3
u3

(w) = ¬x(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

ξS3 =
∧

i=1,2,3(∃v : nodeS3
ui

(v))

∧ ∀w :
∨

i=1,2,3 nodeS3
ui

(w)

∧ ∀w1, w2 : (
∧

i=1,2 nodeS3
u1

(wi) ⇒

eq(w1, w2) ∧ ¬n(w1, w2))
∧ (
∧

i=1,2 nodeS3
u2

(wi) ⇒

eq(w1, w2) ∧ ¬n(w1, w2))
∧ (nodeS3

u1
(w1) ∧ nodeS3

u2
(w2) ⇒

¬eq(w1, w2) ∧ ¬n(w2, w1) ∧ n(w1, w2))
∧ (nodeS3

u2
(w1) ∧ nodeS3

u3
(w2) ⇒

¬eq(w1, w2) ∧ ¬n(w2, w1))
∧ (nodeS3

u1
(w1) ∧ nodeS3

u3
(w2) ⇒

¬eq(w1, w2) ∧ ¬n(w2, w1) ∧ ¬n(w1, w2))

Table 2. (Continued in Table 3.) The left column shows the structures that arise atthe beginning
of the loop in theinsert program from Fig. 1(b). The right column shows the characteristic
formula for each structure. Note that we omit the redundant sub-formulasξS [p], for p ∈ P1, that
are part ofξS

total and nodeSi
uj

(w) definitions.
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Structure CharacteristicFormula

x // ?>=<89:;u1
n // u2

n //

n

��
?>=<89:;u3

n // u4

n

��

S4 rx

OO

rx

OO

y, rx, ry

OO

rx, ry

OO

nodeS4
u1

(w) = x(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ¬ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

nodeS4
u1

(w) = ¬x(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ¬ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

nodeS4
u3

(w) = ¬x(w) ∧ y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

nodeS4
u4

(w) = ¬x(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

ξS1 =
∧

i=1,...,4(∃v : nodeS4
ui

(v))

∧ ∀w :
∨

i=1,...,4 nodeS4
ui

(w)

∧ ∀w1, w2 :
(
∧

i=1,2 nodeS4
u1

(wi) ⇒

eq(w1, w2) ∧ ¬n(w1, w2))
∧ (

∧
i=1,2 nodeS4

u3
(wi) ⇒

eq(w1, w2) ∧ ¬n(w1, w2))
∧ (nodeS4

u1
(w1) ∧ nodeS4

u2
(w2) ⇒

¬eq(w1, w2) ∧ ¬n(w2, w1))
∧ (nodeS4

u2
(w1) ∧ nodeS4

u3
(w2) ⇒

¬eq(w1, w2) ∧ ¬n(w2, w1))
∧ (nodeS4

u1
(w1) ∧ nodeS4

u3
(w2) ⇒

¬eq(w1, w2) ∧ ¬n(w2, w1) ∧ ¬n(w1, w2))
∧ (nodeS4

u3
(w1) ∧ nodeS4

u4
(w2) ⇒

¬eq(w1, w2) ∧ ¬n(w2, w1))
∧ (nodeS4

u1
(w1) ∧ nodeS4

u4
(w2) ⇒

¬eq(w1, w2) ∧ ¬n(w2, w1) ∧ ¬n(w1, w2))
∧ (nodeS4

u2
(w1) ∧ nodeS4

u4
(w2) ⇒

¬eq(w1, w2) ∧ ¬n(w2, w1) ∧ ¬n(w1, w2))

x // ?>=<89:;u1
n // u2

n //

n

��
?>=<89:;u3

S5 rx

OO

rx

OO

y, rx, ry

OO

nodeS5
u1

(w) = x(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ¬ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

nodeS5
u2

(w) = ¬x(w) ∧ ¬y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ¬ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

nodeS5
u3

(w) = ¬x(w) ∧ y(w) ∧ ¬t(w) ∧ ¬e(w)
∧ rx(w) ∧ ry(w) ∧ ¬rt(w) ∧ ¬re(w) ∧ ¬is(w)

ξS3 =
∧

i=1,2,3(∃v : nodeS5
ui

(v))

∧ ∀w :
∨

i=1,2,3 nodeS5
ui

(w)

∧ ∀w1, w2 :
(
∧

i=1,2 nodeS5
u1

(wi) ⇒

eq(w1, w2) ∧ ¬n(w1, w2))
∧ (

∧
i=1,2 nodeS5

u3
(wi) ⇒

eq(w1, w2) ∧ ¬n(w1, w2))
∧ (nodeS5

u1
(w1) ∧ nodeS5

u2
(w2) ⇒

¬eq(w1, w2) ∧ ¬n(w2, w1))
∧ (nodeS5

u2
(w2) ∧ nodeS5

u3
(w2) ⇒

¬eq(w1, w2) ∧ ¬n(w2, w1))
∧ (nodeS5

u1
(w1) ∧ nodeS5

u3
(w2) ⇒

¬eq(w1, w2) ∧ ¬n(w2, w1) ∧ ¬n(w1, w2))

Table 3.Table 2 continued.
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indicate the absence of self-loops. It is preserved, because there are no edges inC with
both endpoints in the same color.
Proof of the only-if direction:Suppose thatC is embedded intoS usingf . We show that
C is 3-colorable. For each nodeu ∈ C, let the color of u,c(u), be the name of the cor-
responding node inS, i.e.,c(u) = f(u). The absence of self loops on any of the three
summary nodes guarantees that a pair of adjacent nodes inC cannot be mapped byf to
the same summary node. That is, for any edge inC the endpoints must be mapped by
f to different summary nodes, thus they have different colors.

Lemma 1 LetS be an FO-identifiable structure and letu1, u2 ∈ S be distinct individ-
uals. LetS\ be a 2-valued structure that embeds intoS and letu\ ∈ S\. At most one of
the following can hold, but not both:

1. S\, [w 7→ u\] |= nodeSu1
(w)

2. S\, [w 7→ u\] |= nodeSu2
(w)

Proof. BecauseS\ embeds intoS, there exists an embedding functionf , such that
S\ vf S. For the sake of argument, assume that both claims hold. By Definition 8, we
get thatf(u\) = u1 andf(u\) = u2; becausef is a function, we get thatu1 = u2.
This yields a contradiction to the assumption thatu1 andu2 are distinct individuals.

Lemma 2For every2-valued structureS\ and assignmentZ

S\, Z |= pB(v1, v2, . . . , vk) iff ιS
\

(p)(Z(v1), Z(v2), . . . , Z(vk)) v B

Proof of the if direction:Suppose thatιS
\

(p)(Z(v1), Z(v2), . . . , Z(vk)) v B. There
are two cases to consider: (i)B = 1/2 or (ii) ιS

\

(p)(Z(v1), Z(v2), . . . , Z(vk)) =
B. If B = 1/2, then by Definition 9,pB(v1, v2, . . . , vk) = 1 and thusS\, Z |=

pB(v1, v2, . . . , vk) for all Z. If B = 1, then ιS
\

(p)(Z(v1), Z(v2), . . . , Z(vk)) = 1,
thusS\, Z |= p(v1, v2, . . . , vk) which isS\, Z |= p1(v1, v2, . . . , vk) by Definition 9.
Similarly, if B = 0, thenιS

\

(p)(Z(v1), Z(v2), . . . , Z(vk)) = 0 implies thatS\, Z |=
¬p(v1, v2, . . . , vk) = p0(v1, v2, . . . , vk).
Proof of the only-if direction:Assume thatS\, Z |= pB(v1, v2, . . . , vk). If B = 1/2,
then ιS

\

(p)(Z(v1), Z(v2), . . . , Z(vk)) v B trivially holds. If B = 0, apply Defini-
tion 9 to the assumption to getS\, Z |= ¬p(v1, v2, . . . , vk), which implies
ιS

\

(p)(Z(v1), Z(v2), . . . , Z(vk)) = 0 = B. Similarly, if B = 1, the assumption im-
pliesιS

\

(p)(Z(v1), Z(v2), . . . , Z(vk)) = 1 = B.
Lemma 3Every bounded3-valued structureS is FO-identifiable, where

nodeSui
(w)

def
=
∧

p∈P1

pιS(p)(ui)(w)

Proof: Consider a bounded3-valued structureS = {U, ιS}. We shall show that every
elementu ∈ U is FO-identifiable using the formula defined in Eq. (4). LetS\ be a2-
valued structure that embeds intoS using a functionf , and letu\ be a concrete element
in US\

. By Definition 8, we have to show that the following holds:

f(u\) = u ⇐⇒ S\, [w 7→ u\] |= nodeSu(w)
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Proof of the if direction:Suppose thatS\, [w 7→ u\] |= nodeSu(w). In particular,
each conjunct of nodeSu must hold, i.e., for each predicatep ∈ P1, S\, [w 7→ u\] |=

pιS(p)(u)(w). Using Lemma 2 we get thatιS
\

(p)(u\) v ιS(p)(u). In addition, the em-
bedding condition in Eq. (1), requires, in particular, thatfor each unary predicatep
ιS

\

(p)(u\) v ιS(p)(f(u\)) holds. Letu1 = f(u\). For the sake of argument, assume
thatu1 6= u. Recall thatS is a bounded structure, in which every individual must have
a unique combination of definite values of unary predicates.As a consequence, there
must be a unary predicatep such thatιS(p)(u1) 6= ιS(p)(u) and the value ofp on both
u1 andu is definite. This yields a contradiction, becausev on definite values implies
equality; howeverιS

\

(p)(u\) = ιS(p)(u) andιS
\

(p)(u\) = ιS(p)(f(u\)) = ιS(p)(u1)
can not hold simultaneously, by the assumption.
Proof of the only-if direction:Suppose thatf(u\) = u. Using Eq. (1), the embed-
ding functionf guarantees that for each unary predicatep, ιS

\

(p)(u\) v ιS(p)(f(u\)).
This means thatS\, [w 7→ u\] |= pιS(p)(f(u\))(w) by Lemma 2, orS\, [w 7→ u\] |=

pιS(p)(u)(w) by the assumption. This holds for all unary predicates, and thus holds for
their conjunction as well, namely, for the formula nodeS

u .
Lemma D2 Given a set of formulasF and a3-valued structureS, if the “focus” algo-
rithm [35, Sec.6] terminates, it returns a set of structuresX such thatγ(S) = γ(X) and
every formulaϕ ∈ F evaluates, using the compositional semantics, to a definitevalue
in every structure inX, for every assignment. If the input structureS is FO-Identifiable,
then all structures inX are FO-Identifiable.
Proof: By induction on the iterations of the loop in the “focus” algorithm, it is suffi-
cient to show that the structures returned by the procedureFocusAssignment from
[35, Fig.17] are FO-Identifiable. The only interesting caseis when the input literal of
FocusAssignment is of the formp(u1, . . . , uk). The resulting set of structuresX
is {S0, S1, S

′′} whereS0 andS1 are copies ofS with p(u1, . . . , uk) set to0 and1,
respectively. Thus, ifS is FO-identifiable, thenS0 andS1 are FO-identifiable.S′′ is a
result of splitting a nodeui ∈ S into u.0 andu.1, and settingp(u1, . . . , uk) to 0 on
one of the copies, and to1 on the other. To simplify the exposition, suppose that the
first nodeu1 is split. ThenS′′ is FO-identifiable using the formulas nodeS

u(w) for all u
exceptu.0, u.1, and

nodeS
′′

u.0(w)
def
= ∃v2, . . . , vk.¬p(w, v2, . . . , vk) ∧ nodeSu(w) ∧

∧
j=2,...,k nodeSuj

(vj)

nodeS
′′

u.1(w)
def
= ∃v2, . . . , vk.p(w, v2, . . . , vk) ∧ nodeSu(w) ∧

∧
j=2,...,k nodeSuj

(vj)

Theorem 1For every FO-identifiable3-valued structureS, and2-valued structureS\

S\ ∈ γ(S) iff S\ |= γ̂(S)

Proof: In Lemma D3, we show that the if-direction holds, evenwhen S is not FO-
identifiable, i.e., every concrete structure satisfying the characteristic formulâγ(S) is
indeed inγ(S). In Lemma D4 we show the only-if part, i.e., for an FO-identifiable
structure, the other direction is also true.
Lemma D3 LetS be a first-order structure with set of individualsU = {u1, u2, . . . , un}.
Let nodeSui

(w) used inγ̂(S) be an arbitrary first-order formula free inw, such that
Lemma 1 holds. Then, for allS\ such thatS\ |= γ̂(S), S\ ∈ γ(S).
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Proof: LetS\ = 〈U \, ι\〉 be a concrete structure such thatS\ |= γ̂(S). We shall con-
struct a surjective functionf : U \ → U such thatS\ vf S. Let Z\ be an assignment
overv1, . . . , vn such thatS\, Z\ |= ϕ, whereϕ

def
=
∧n

i=1 nodeSui
(vi), i.e.,ϕ is the first

line of Eq. (8) without the existential quantification. Notethat allZ\(vi) are distinct,
according to Lemma 1. Define the functionf : U \ → U by:

f(u\) =






ui if Z\(vi) = u\

uj if for all i, Z\(vi) 6= u\ anduj is an arbitrary element such that
S\, [w 7→ u\] |= nodeSuj

(w)
(25)

Let us show that every concrete element is mapped to some element in U . In the
case thatZ(vi) = u\, the concrete elementu\ is mapped toui ∈ U by f . Otherwise,
becauseS\ |= ξS [total] holds, at least one of its disjuncts must be satisfied by eachu\,
i.e. S\, [w 7→ u\] must satisfy nodeSuj

(w) for someuj ; thusf ’s definition will mapu\

to thisuj . Therefore,f(u\) is well-defined.
In addition, every elementui ∈ U is assigned byf to some concrete elementu\

i ∈

U \ such thatZ(vi) = u\
i . According to Lemma 1, all such elementsu\

i are different.
Therefore,f(u\) is surjective.

Let p be a nullary predicate. BecauseS\ satisfiesξS
nullary, it must satisfy each con-

junct, in particularS\ |= pιS(p)(). Using Lemma 2 we get thatιS
\

(p)() v ιS(p)().
Let p ∈ P be a predicate of arityr ≥ 1. Let u\

1, u
\
2, . . . , u

\
r ∈ U \ and let us show

that
ιS

\

(p)(u\
1, u

\
2, . . . , u

\
r) v ιS(p)(f(u\

1), f(u\
2), . . . , f(u\

r)) (26)

LetZ be an assignment such thatZ(wi) = u\
i for i = 1, . . . , r. BecauseS\ |= ξS [p], we

conclude thatS\, Z satisfies the body of Eq. (7). Consider the conjunct of the body with
premise

∧r
j=1 nodeS

f(u\
j)

(wj). By definition off , S\, wj 7→ u\
j satisfies nodeS

f(u\
j)

(wj)

for all j = 1, . . . , r, which means that the premise is satisfied byS\, Z. Therefore,
the conclusion must hold:S\, Z |= pιS(p)(f(u\

1
),...,f(u\

r))(w1, . . . , wr)) and the result
follows from Lemma 2.

Lemma D4 For every3-valued FO-identifiable structureS, and2-valued structureS\

such thatS\ |= F andS\ v S, S\ |= ξS .
Proof: Letf : S\ → S be a surjective function such thatS\ vf S. Letu\

i be an arbitrary
element such thatf(u\

i) = ui. Define an assignmentZ\ such thatZ\(vi) = u\
i ; u\

i must
exist becausef is surjective. BecauseS is FO-identifiable, by Definition 8 we conclude
that for every1 ≤ i ≤ n, S\, Z\ |= nodeSui

(vi). Becausef is a function, allu\
i are

distinct elements, according to Lemma 1.
Becausef is a function, for everyu\ there isu such thatf(u\) = u. Then, by

Definition 8, S\, [w 7→ u\] |= nodeSu(w), i.e., every assignment tow in S\ satisfies
some disjunct ofξS

total. That isS\ satisfiesξS
total.

For every nullary predicatep ∈ P0, using Eq. (1) and Lemma 2, we conclude that
S\ satisfiespιS(p)(). Therefore,S\ satisfiesξS

nullary.

Letp ∈ P be a predicate of arityr. Letu\
1, . . . , u

\
r ∈ U \ and letZ\ be an assignment

such thatZ\(wi) = u\
i . We shall show thatS\, Z\ satisfy the body of Eq. (7). If the
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premise of the implication is not satisfied then the formula vacuously holds. Otherwise,
S\, Z\ |= nodeSui

(wi) for all i = 1, . . . , r. Then, by Definition 8,f(u\
i) = ui. Using

Eq. (1) onf , we getιS
\

(p)(u\
1, . . . , u

\
r) v ιS(p)(f(u\

1), . . . , f(u\
r)), which means that

ιS
\

(p)(u\
1, . . . , u

\
r) v ιS(p)(u1, . . . , ur) holds. By Lemma 2, we conclude thatS\, Z\

satisfiespιS(p)(u1,...,ur)(w1, . . . , wr).

Lemma 4 If 3-valued structureS = 〈U, ιS〉 over vocabularyP is ICA then:

(i) S is a bounded structure.
(ii) For each nullary predicatep, ιS(p)() ∈ {0, 1}.
(iii) For each elementu ∈ U , and each unary predicatep, ιS(p)(u) ∈ {0, 1}.

Proof: LetS\ = {U \, ιS
\

} be a2-valued structure, such thatS is the canonical abstrac-
tion of S\. Let canonical : U \ → U be the mapping that identifiesS as the canonical
abstraction ofS\.

(i) Show thatS is a bounded structure. By Eq. (11), every abstract element represents
concrete elements with the same canonical name. Thus, for two distinct abstract
elementsu0, u1 ∈ US , the canonical name of concrete elements represented by
u0 is different from the canonical name of concrete elements represented byu1.
Without loss of generality, assume that the canonical namesdiffer in a unary predi-
catep, such thatp evaluates to0 on all concrete elements represented byu0, andp
evaluates to1 on all concrete elements represented byu1. From the join operation
in Eq. (12), it follows that the value ofp on u0 must be0 and the value ofp on u1

must be1. This shows that, in general, every pair of distinct elements in S differs
in a definite value of some unary predicate, proving thatS is a bounded structure.

(ii) Let p be a nullary predicate. Show thatιS(p)() ∈ {0, 1}. By Eq. (12),ιS(p)() =

t{ιS
\

(p)()} = ιS
\

(p)(). This means thatp has the same value inS andS\. Because
S\ is a concrete structure, the value ofp must be definite.

(iii) Let p be a unary predicate and letu ∈ U . Show thatιS(p)(u) ∈ {0, 1}. Suppose
that the opposite holds:ιS(p)(u) = 1/2. By Eq. (12), there exist two concrete ele-
ments, denoted byu0 andu1, such thatcanonical(u0) = u andcanonical(u0) =
u, andp evaluates to0 on u0 and to1 on u1. Hence, these concrete elements have
different canonical names and by Eq. (11) they cannot be mapped bycanonical to
the same abstract element; this contradicts the supposition and henceιS(p)(u) ∈
{0, 1}.

Lemma 5 Every 3-valued structureS that is an ICA is canonical-FO-identifiable,
where

nodeSui
(w)

def
=
∧

p∈P1

pιS(p)(ui)(w) (27)

Proof: LetS = {U, ιS} be a3-valued structure that isICA. We shall show that every
elementu ∈ U is canonical-FO-identifiable using the formula defined in Eq. (15). Let
S\ = {U \, ιS

\

} be a2-valued structure, such thatS is the canonical abstraction ofS\,
induced by a functioncanonical , and letu\ ∈ US\

. By Definition 16, we have to show
that the following holds:

canonical(u\) = u ⇐⇒ S\, [w 7→ u\] |= nodeSu(w)
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Proof of the if direction:Suppose thatS\, [w 7→ u\] |= nodeSu(w). Letu1 = canonical(u\).
For the sake of argument, assume thatu1 6= u. S is anICA and using Lemma 4(i) we
get thatS is a bounded structure. By Definition 10, there exists a unarypredicatep that
evaluates to different definite values onu andu1. Without loss of generality, suppose
thatp evaluates to0 on u and to1 on u1. This implies the following two facts. First,
from property Eq. (12) of the definition of canonical abstraction, p also evaluates to1
on all concrete values mapped tou1 by canonical ; in particular,p must evaluate to1
on u\. Second, recall that by assumption, each conjunct of nodeS

u must hold, i.e., for
each predicatep ∈ P1, S\, [w 7→ u\] |= pιS(p)(u)(w). Becausep evaluates to0 on u,
we get from Definition 9 thatS\, [w 7→ u\] |= p0(w), which meansιS

\

(p)(u\) = 0 and
a contradiction is obtained.
Proof of the only-if direction:Suppose thatcanonical(u\) = u. BecauseS is anICA
by Lemma 4(iii) we know that all unary predicates have definite values inS. Let p
be a unary predicate. LetB ∈ {1, 0} be such thatιS(p)(u) = B. Becausep has
definite valueB on u in S, by Eq. (12) it must have the same definite valueB on
all concrete nodes inS\ that are mapped tou by canonical ; in particular, onu\:
ιS

\

(p)(u\) = B. Therefore, using Definition 9,S\, [w 7→ u\] |= pB(w), in other words,
S\, [w 7→ u\] |= pιS(p)(u)(w). This holds for all unary predicates, and thus holds for
their conjunction as well, i.e., for the formula nodeS

u .
Theorem 2For every3-valued structureS that is anICA and2-valued structureS\

S\ ∈ γc(S) iff S\ |= γ̂c(S)

Proof: In Lemma D5, we show that the if-direction holds, i.e., a 3-valued structure
S is the canonical abstraction of every concrete structure satisfying the characteristic
formula γ̂c(S); in Lemma D6 we show the other direction.

Lemma D5 LetS be anICA with set of individualsU = {u1, u2, . . . , un}. Let nodeSui
(w)

be an arbitrary formula free inw, used inγ̂c, such that Lemma 1 holds. Then, for allS\

such thatS\ |= γ̂c(S), S is a canonical abstraction ofS\.
Proof: LetS\ = 〈U \, ι\〉 be a concrete structure such thatS\ |= γ̂c(S). We shall con-
struct a surjective functioncanonical : U \ → U such thatS\ is a canonical abstraction
of S. From Definition 17 it follows, in particular, thatS\ |= ξS . Let Z\ be an assign-
ment overv1, . . . , vn such thatS\, Z\ |= ϕ, whereϕ

def
=
∧n

i=1 nodeSui
(vi), i.e., ϕ is

the first line of Eq. (8) without the existential quantification). Note that allZ\(vi) are
distinct, according to Lemma 1. Define the functioncanonical : U \ → U by:

canonical(u\) =






ui if Z\(vi) = u\

uj if for all i, Z\(vi) 6= u\ anduj is an arbitrary element such that
S\, [w 7→ u\] |= nodeSuj

(w)
(28)

Let us show that every concrete element is mapped to some element in U . In the
case thatZ(vi) = u\, the concrete elementu\ is mapped toui ∈ U by canonical .
Otherwise, becauseS\ |= ξS [total] holds, at least one of its disjuncts must be satisfied
by eachu\, i.e., S\, [w 7→ u\] must satisfy nodeSui

(w) for someui; thuscanonical ’s
definition will mapu\ to thisui. Therefore,canonical(u\) is well-defined.
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In addition, every elementui ∈ U is assigned bycanonical to some concrete ele-
mentu\

i ∈ U \ such thatZ(vi) = u\
i . According to Lemma 1, all such elementsu\

i are
different. Therefore,canonical(u\) is surjective.

We shall show thatcanonical satisfies Eq. (11) and Eq. (12); that is,canonical

identifiesS as the canonical abstraction ofS\.
First, let us show that Eq. (12) holds for the abstraction imposed bycanonical ,

namely that a predicatep in S has the most precise abstract value w.r.t. the concrete
values that it represents, as is imposed bycanonical .

BecauseS is an ICA, all nullary predicates inS must have definite values, by
Lemma 4(ii).S\ satisfiesξS

nullary; therefore, by Definition 9, nullary predicates inS\

must have the same definite values as inS; this shows that Eq. (12) holds for nullary
predicates.

BecauseS is anICA, all unary predicates inS must have definite values, by Lemma 4(iii).
Let p be a unary predicate and letu ∈ U be an individual ofS such thatιS(p)(u) = b.
We shall show thatp has the same definite valueb on all concrete elements mapped to
u by canonical . Because the join of these values is alsob, we will get that Eq. (12)
holds forp andu. Recall thatS\ satisfies formulaξS [p], hence each assignment tow
satisfies the conjunct nodeS

u(w) ⇒ pb(w) of ξS [p]. Let u\ ∈ U \ be an individual ofU \

such thatcanonical(u\) = u and consider an assignment in whichw is mapped tou\.
By the definition ofcanonical , this assignment satisfies nodeS

u(w), the premise of the
conjunct. Therefore, it satisfies the conclusion, i.e.,S\, [w 7→ u\] satisfiespb(w). Using
Definition 9 we get thatιS

\

(p)(u\) = b.
Let p be a predicate of arityr > 1. If p has a definite valueb in S on a tuple

u1, . . . , ur, ξS [p] requires thatp evaluates to the same definite valueb on every concrete
tuple u\

1, . . . , u
\
r such thatcanonical(u\

i) = ui (by the same argument as for unary
predicates). Therefore, the join operation returnsb as the most precise abstract value
of p for these concrete tuples. Otherwise, ifp evaluates to1/2 on u1, . . . , ur ∈ U ,
there must be two tuples of elements inU \, sayu\

01, . . . , u
\
0r andu\

11, . . . , u
\
1r, such

thatS\, [w1 7→ u\
01, . . . , wr 7→ u\

0r] |= ¬p(w1, . . . , wr) andS\, [w1 7→ u\
11, . . . , w1 7→

u\
1r] |= p(w1, . . . , wr), becauseS\ |= τS [p]. Thus,p evaluates to0 on the first tuple

and to1 on the second tuple of the concrete structure; therefore, the most precise value
obtained by the join operation on these values is1/2.

We shall show thatcanonical satisfies Eq. (11), i.e., it maps elements according to
their canonical names. This involves showing two directions:

1. For the sake of contradiction, assume that there are two distinct elementsu\
0, u

\
1 ∈

U \ that have the same canonical name (meaning that for allp ∈ P1, ιS
\

(p)(u\
0) =

ιS
\

(p)(u\
1)), but canonical(u\

0) 6= canonical(u\
1). BecauseS is a bounded struc-

ture, there must be unary predicatep that evaluates to0 on canonical(u\
0) and to1

on canonical(u\
1). As shown above,p evaluates to the same definite values in the

concrete structureS\: ιS
\

(p)(u\
0) = 0, andιS

\

(p)(u\
1) = 1 and a contradiction is

obtained.

2. For the sake of contradiction, assume that two concrete elements, denoted byu\
0, u

\
1 ∈

U \, have different canonical names, but are mapped bycanonical to the same same
element inU : canonical(u\

0) = canonical(u\
1), denoted byu. By definition of
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canonical , S\, [w 7→ u\
i ] satisfies nodeS

canonical(u\
i)

(w), for i = 0, 1, in other words

S\, [w 7→ u\
i ] satisfies nodeSu(w). Therefore, it satisfies each conjunct ofnode for-

mula, i.e., for allp, S\, [w 7→ u\
i ] satisfiespιS(p)(u)(w). From this and the fact that

all unary predicates inS have definite values becauseS is an ICA, we conclude
by Definition 9, thatιS

\

(p)(u\
i) = ιS(p)(u). Therefore,ιS

\

(p)(u\
0) = ιS(p)(u)

andιS
\

(p)(u\
1) = ιS(p)(u), for all p ∈ P1. Therefore,u\

0 andu\
1 have the same

canonical name and a contradiction is obtained.

Lemma D6 For every3-valued structureS that is anICA and2-valued structureS\

such thatS\ |= F , such thatS is the canonical abstraction ofS\, S\ |= τS .
Proof: Let canonical : U \ → U be the mapping that identifiesS as the canonical
abstraction ofS\. canonical is a surjective function and possesses the properties in
Eq. (11) and Eq. (12).

First, we show thatS\ |= ξS . Letu\
i be an arbitrary element such thatcanonical(u\

i) =

ui. Define an assignmentZ\ such thatZ\(vi) = u\
i ; u\

i must exist becausecanonical

is surjective. BecauseS is canonical-FO-identifiable, by Lemma 5 we conclude that for
every1 ≤ i ≤ n, S\, Z\ |= nodeSui

(vi). According to Lemma 1, all theu\
i are distinct

elements.
Becausecanonical is a function, for everyu\ there is au such thatcanonical(u\) =

u. Then, by Definition 16,S\, [w 7→ u\] |= nodeSu(w), i.e., every assignment tow in S\

satisfies some disjunct ofξS
total. That is,S\ satisfiesξS

total.
BecauseS is anICA, nullary predicates have the same definite values inS and in

S\, by Lemma 4(ii). Therefore, by Definition 9,S\ satisfiespιS(p)(), for every nullary
predicatep ∈ P0, which means thatS\ satisfiesξS

nullary.

Let p ∈ P be a predicate of arityr. Let u\
1, . . . , u

\
r ∈ U \ and letZ\ be an assign-

ment such thatZ\(wi) = u\
i . We shall show thatS\, Z\ satisfies the body of Eq. (7).

Consider a conjunct of the body. If the premise of the implication in this conjunct is not
satisfied, then the conjunct vacuously holds. Otherwise,S\, Z\ |= nodeSui

(wi) for all

i = 1, . . . , r. Then, by Lemma 5,canonical(u\
i) = ui. We have two cases to consider:

(i) if ιS(p)(u1, . . . , ur) = b ∈ {1, 0} then by Eq. (12)ιS
\

(p)(u\
1, . . . , u

\
r) = b, in other

words,S\, Z\ satisfiespb(w1, . . . , wr). (ii) if ιS(p)(u1, . . . , ur) = 1/2 then by Defi-
nition 9, pιS(p)(u1,...,ur)(w1, . . . , wr) = p1/2(w1, . . . , wr) = 1, which holds for any
assignment.

To complete the proof, we show that for everyp ∈ Pr of arity r > 1, τS [p] holds.
Let p be a predicate that evaluates to1/2 on a tupleu1, . . . , ur ∈ S. BecauseS is an
ICA ιS(p)(u1, . . . , ur) = 1/2 means that the join operation in Eq. (12) yields1/2.
By the definition of join as the least upper bound, and using the information order in
Definition 4, we conclude that (i)S\ must contain at least two distinct tuples; denoted
by u\

01, . . . , u
\
0r andu\

11, . . . , u
\
1r. Becausecanonical(u\

ij) = uj for i = 0, 1 andj =

1, . . . , r, by Lemma 5 we get thatS\, [w 7→ u\
ij ] |= nodeSuj

(w). Therefore, each tuple

satisfies
∧r

j=1 nodeSuj
(wj). (ii) p evaluates to0 on the first tuple and1 on the second

tuple. This shows thatS\ |= τS [p].
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Lemma 6 Denote byD the set of all2-valued structures that satisfy the integrity for-
mulaF : D

def
= {S\ ∈ 2-STRUCT[P] | S\ |= F}. LetS be an ICA structure. There exists

a set of ICA structuresX such thatγc(X) = D r γc(S).
Proof: Denote byY the set of all ICA structures over a fixed vocabularyP, i.e.,γc(Y ) =
D. We claim thatX is defined byY r S. By definition,γc(X) = γc(Y r S), and we
show thatγc(Y r S) = γc(Y ) r γc(S). By the definitions ofY andγc in Eq. (13),
γc(Y rS) ⊇ Drγc(S) holds. To complete the proof, we show that the other direction
of inclusion holds as well. For the sake of argument, assume that there exists a2-valued
structureS\ that belongs to bothγc(S) andγc(Y r S). Thus, by Definition 15, there
exists an ICA structureS′ such thatcanonical(S\) = S′, andS′ is different fromS.
From Eq. (12), it follows thatcanonical(S\) 6= S, which contradicts the assumption
thatS\ ∈ γc(S).
Lemma 7 Consider the formulaτS from Eq. (17), for some ICA structureS. There
exists a set of ICA structuresX, such that the formulaF ∧ ¬τS is equivalent to the
formula γ̂c(X).
Proof: LetD be the set of all2-valued structures that satisfy the integrity formulaF .
Let X be the set of ICA structures that describes the complement ofγc(S), as given
by Lemma 6. LetS\ be a2-valued structure such thatS\ ∈ γc(X) if and only if
S\ ∈ D r γc(S). The right-hand side simplifies toS\ ∈ D andS\ /∈ γc(S). Applying
Theorem 2, we get thatS\ |= γ̂c(X) if and only if S\ satisfiesF but does not satisfy
γ̂c(S). Using Eq. (18), this is equivalent toS\ |= F ∧ ¬τS .
Theorem 3For every3-valued structureS, and a2-valued structureS\:

S\ ∈ γ(S) iff S\ |= γ̂NP (S)

Proof: In Lemma D7, we show that the if-direction holds, i.e., every concrete structure
satisfying the NP-characteristic formulaγ̂NP is indeed inγ(S). In Lemma D8 we show
the only-if part.

Lemma D7 LetS be a logical structure with set of individualsU = {u1, u2, . . . , un}.
Then, for allS\ such thatS\ |= γ̂NP (S), S\ ∈ γ(S).
Proof: LetS\ = 〈U \, ι\〉 be a concrete structure such thatS\ |= γ̂(S). We shall con-
struct a surjective functionf : U \ → U such thatS\ vf S. Let Z\ be an assignment
such thatS\, Z\ |= ϕ whereϕ is the body ofξS without the existential quantifiers on
sets. LetZ\(Vi) = Ui ⊆ U \. Consider the following definition:

f(u\) = {ui | u\ ∈ Ui} (29)

f(u\) is a set of size at most1 because the pairS\, Z\ satisfies the sub-formula
ξS
disjoint. This insures that the setsU1, . . . , Un are disjoint, i.e., each concrete element

belongs to at most one set. For simplicity, we say thatf(u\) = ui, wheneverf(u\) =
{ui}.

We shall show that every concrete element is mapped byf to some element inU .
BecauseS\, Z\ satisfiesξS

total, we conclude that every concrete element satisfies the
formula nodeSui

(w) for someui. Also, nodeSui
(w) given in Definition 18 is a member-

ship test in the setVi; therefore, every concrete element must be a member of some set
Ui. Thus,u\ is mapped toui ∈ U , by the definition off in Eq. (29). This shows thatf
is well-defined.
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BecauseS\, Z\ satisfies|= ξS
non empty[i] for i = 1, . . . , n, it must be that everyUi

contains at least one element, sayu\
i , that is mapped toui by f . Because the sets are

disjoint, all such elementsu\
i are different. Therefore,f is surjective.

Let p be a nullary predicate. BecauseS\ satisfiesξS
nullary, it must satisfy each con-

junct, in particularS\ |= pιS(p)(). Using Lemma 2 we get thatιS
\

(p)() v ιS(p)().
Let p ∈ P be a predicate of arityr ≥ 1. Let u\

1, u
\
2, . . . , u

\
r ∈ U \ and let us show

that
ιS

\

(p)(u\
1, u

\
2, . . . , u

\
r) v ιS(p)(f(u\

1), f(u\
2), . . . , f(u\

r)) (30)

Let Z\
1 be an extension of assignmentZ\ such thatZ\

1(wi) = u\
i for i = 1, . . . , r.

BecauseS\, Z\ |= ξS [p], we conclude thatS\, Z\
1 satisfies the body of Eq. (7). Con-

sider the conjunct of the body with premise
∧r

j=1 nodeS
f(u\

j)
(wj). By definition off ,

S\, wj 7→ u\
j satisfies nodeS

f(u\
j)

(wj) for all j = 1, . . . , r, which means that the premise

is satisfied byS\, Z\
1. Therefore, the conclusion must hold:

S\, Z\
1 |= pιS(p)(f(u\

1
),...,f(u\

r))(w1, . . . , wr)) and the result follows from Lemma 2.

Lemma D8 For every3-valued structureS, and2-valued structureS\ such thatS\ |=
F andS\ v S, S\ |= ξS .
Proof: Letf : S\ → S be a surjective function such thatS\ vf S. Define an assignment
Z\ such thatZ\(Vi) = Ui ⊆ U \ andUi = {u\

i | f(u\
i) = ui}.

Becausef is a surjective function, there must exist at least one concrete element
that is mapped toui by f . This element belongs to the setUi. Therefore,S\, Z\ |=∧n

i=1 ξS
non empty[i].

Becausef is a well-defined function, it maps each concrete element to exactly one
elementui ∈ U , which induces the setUi. Therefore, a concrete element cannot belong
to more than one set; henceS\, Z\ |=

∧
k 6=j ξS

disjoint[k, j].
Becausef is a function,f maps every concrete element to some element inU .

Therefore, every concrete element belongs to some set, i.e., satisfies some disjunct of
ξS
total. That isS\, Z\ |= ξS

total.
For every nullary predicatep ∈ P0, using Eq. (1) and Lemma 2, we conclude that

S\, Z\ satisfiespιS(p)(). Therefore,S\, Z\ |= ξS
nullary.

Let p ∈ P be a predicate of arityr. Let u\
1, . . . , u

\
r ∈ U \ and letZ\

1 be an ex-
tension of assignmentZ\ such thatZ\

1(wi) = u\
i . We shall show thatS\, Z\

1 satisfy
the body of Eq. (7). If the premise of the implication is not satisfied, then the formula
vacuously holds. Otherwise,S\, Z\

1 |= nodeSui
(wi) for all i = 1, . . . , r. Then, by Def-

inition 18, u\
i belongs to the setUi. The definition ofUi implies thatf(u\

i) = ui.
Using Eq. (1), we getιS

\

(p)(u\
1, . . . , u

\
r) v ιS(p)(f(u\

1), . . . , f(u\
r)) which means

ιS
\

(p)(u\
1, . . . , u

\
r) v ιS(p)(u1, . . . , ur). By Lemma 2 we conclude thatS\, Z\ satis-

fiespιS(p)(u1,...,ur)(w1, . . . , wr).
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