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Abstract
Unrestricted use of heap pointers makes software systems
particularly difficult to understand. Incidental and accidental
pointer aliasing result in unexpected side effects of seem-
ingly unrelated operations, and are a major source of system
failures. Such failures are hard to test or debug with existing
tools, especially for concurrent programs.

We present PHALANX — a practical framework for dy-
namically checking expressive heap properties such as own-
ership, sharing and reachability. PHALANX uses novel par-
allel algorithms to efficiently check heap properties utilizing
the available cores in the system.

To debug her program, a programmer can annotate it
with expressive heap assertions in JML, which use heap
primitives provided by PHALANX. The framework combines
a modified version of the JML compiler with a specialized
runtime to efficiently evaluate these assertions using parallel
algorithms. The PHALANX runtime has been implemented
on top of a production virtual machine.

We applied PHALANX to real world applications in var-
ious scenarios, and found expressive heap assertions to be
extremely valuable in debugging and program understand-
ing. Further, our experimental results indicate that evaluat-
ing heap queries using parallel algorithms can lead to sig-
nificant performance improvements, often resulting in linear
speedups as the number of cores increases.

[Copyright notice will appear here once ’preprint’ option is removed.]

1. Introduction
Unrestricted use of heap pointers makes software systems
particularly difficult to understand. Incidental and accidental
pointer aliasing result in unexpected side effects of seem-
ingly unrelated operations, and are a major source of system
failures.

Despite significant advances in checking and verification
of heap properties, it is still extremely challenging to check
them in real-world applications. Static approaches are either
imprecise (e.g., [3, 34]), do not scale to large applications
(e.g., [33, 13, 35, 37]), or focus on specific properties (e.g.,
[9]). Most of these approaches do not handle concurrency.
Dynamic approaches are more promising in terms of scal-
ing, but are either limited to local properties [10], require
heap snapshots to be analyzed offline [25], or support only a
limited set of simple heap queries [4, 1]. Specification lan-
guages for Java such as JML [21] allow the programmer to
specify expressive heap assertions, but lack runtime support
for checking them.

It is particularly challenging to check heap properties that
involve sharing, ownership, and transitive reachability. Their
evaluation might require multiple traversals of the entire
heap, and result in a prohibitive runtime. To alleviate this
worst case behavior, we identify common heap queries, and
provide a runtime environment that can leverage available
system cores for evaluating these queries in parallel.

With the advent of multicore systems, we envision that
some cores could be dedicated to performing software qual-
ity tasks, and in particular for checking properties that have
been traditionally considered too expensive even for debug-
ging scenarios. This work is a step in that general direction.

We present PHALANX — a practical tool for dynamically
checking a wide range of expressive heap assertions. To
make assertion checking practical, PHALANX provides: (i) a
small set of natural primitives that can be used in JML
assertions for reasoning about the heap, and (ii) parallel
algorithms for checking these assertions.
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Expressive Language of Heap Queries The common heap
queries we support are motivated by real usage scenarios,
in which they proved to be valuable. Many of these scenar-
ios reflect challenges with common programming patterns,
including ownership and aliasing control, resource manage-
ment, and event handling mechanisms. Our common queries
enable the programmer to check properties that are difficult
or impossible to check otherwise, such as properties that
conceptually require traversing pointers backwards.

Our experience indicates that the heap queries required
in practice are sometimes a significant refinement of the
naive queries one would write. For example, as demonstrated
in Section 2, practical queries may require reasoning about
reachability through paths that avoid a certain set of objects,
a property that cannot be phrased as a simple reachability
query. Similar adaptations are required for making other
queries useful in practice, and PHALANX provides parallel
implementations for these refined queries.

Evaluating a heap query requires it to hold pointers to the
relevant objects in the heap. The user-intended meaning of
the query might not want to take such pointers into account.
For example, when a user writes a query to check whether
an object is shared, the query itself must hold a pointer to the
object, which the user probably does not want to account for
as a source of sharing (otherwise, unless the query holds the
only pointer to the object, the query will always return true,
by definition). To clarify such subtleties, we define a formal
semantics for our heap queries. This also helps us in proving
that our parallel algorithms compute the intended results.

To make the deployment of common heap queries easy,
we provide a small set of simple primitives that can be used
in JML assertions for reasoning about the heap. Common
heap queries can be naturally expressed in JML using these
new primitives, together with quantifiers and set operations
available in JML. We use a modified version of the JML
compiler to map these queries to their parallel implemen-
tation in the PHALANX runtime.

Efficient Evaluation of Heap Queries To provide efficient
checking of heap assertions, our implementation is based
on a production virtual machine (VM). We use and adapt
existing components of the VM, combining them with novel
parallel algorithms. Having a parallel implementation inside
the VM achieves efficiency that is very hard to achieve by
any other means.

Since PHALANX is based on a production VM, we can
use it to run real-world applications. While adding mean-
ingful heap queries to such applications requires intimate
knowledge of the code, we experimented with several heap
queries that are of general applicability. Using these queries
we found a small number of potential sources of bugs and
inefficiencies.

While the parallel garbage collector (GC) inside the
VM provides us with some basic components, certain heap
queries, e.g., involving domination and disjointness, cannot

be checked in a single GC marking traversal. One of the
main contributions of this paper is novel parallel algorithms
that are designed to efficiently check common heap queries.

1.1 Main Contributions
The contributions of this paper include:

• A set of common heap queries pertaining to global prop-
erties of the heap (e.g., ownership, sharing, and reachabil-
ity), and usage scenarios where we found these common
heap queries to be useful.

• A small set of natural primitives that can be used to
express heap queries inside JML assertions, making the
use of heap queries easy and accessible.

• A modified JML compiler that maps common heap
queries to efficient implementations in the PHALANX
runtime.

• New parallel algorithms for efficient evaluation of the
common heap queries, and implementation of the par-
allel algorithms in a production virtual machine.

• Experimental evaluation of heap queries on synthetic
benchmarks and real-world applications, including com-
parison of the parallel implementation of the PHALANX
runtime on top of QVM to a reference implementation
based on JVMTI.

2. Motivating Example
In this section, we provide a simple motivating example for
the use of heap assertions, and explain the meaning of some
assertions in an informal manner. A more formal treatment
is provided in Section 3.

Fig. 1 shows a code fragment from JdbF, a sys-
tem for storing and retrieving objects in a relational
database. The Database class provides an interface to
clients of JdbF for performing various operations on the
database. Each operation acquires a connection, performs
its task on the database, and releases the connection. The
ConnectionManager class maintains a map of all avail-
able connections. Each Connection object is confined in a
ConnectionSource object. The invariant of the JdbF library
is that every Connection is used by at most one database
operation at a time.

A race in the original program, first reported in [28],
violates this invariant. Since getConnection methods are not
synchronized, two threads can concurrently pass the !used

guard on line 27 and wind up with the same Connection

c. An example of such memory configuration is shown in
Fig. 2, where the connection object in the middle is shared
by two running threads.

Instead of resorting to various methods for race-detection,
the programmer can detect that her code violates the invari-
ant. In our example, the programmer may want to check that
a connection object is reachable from at most one thread.
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1 p u b l i c c l a s s D a t a b a s e {
2 p r i v a t e Connec t ionManager cm ;
3 / / @ p r i v a t e i n v a r i a n t \ f o r a l l C o n n e c t i o n c ; t r u e ;
4 / / @ (\ num of Thread t ; Phalanx . r u n n i n g ( ) . has ( t ) ;
5 / / @ Phalanx . reach ( t , cm . conns . v a l u e s ( ) ) . has ( c ))<=1
6 p u b l i c i n t i n s e r t ( . . . ) throws MappingEx {
7 C o n n e c t i o n c = cm . g e t C o n n e c t i o n ( . . . ) ;
8 . . .
9 }

10 . . .
11 }
12 p u b l i c c l a s s Connec t ionManager {
13 p r i v a t e /∗@ s p e c p u b l i c @∗ / Map conns =
14 C o l l e c t i o n s . synchron izedMap ( new HashMap ( ) ) ;
15 p u b l i c C o n n e c t i o n g e t C o n n e c t i o n ( S t r i n g s )
16 throws MappingExcept ion {
17 t r y {
18 C o n n e c t i o n S o u r c e c = conns . g e t ( s ) ;
19 i f ( c != n u l l ) re turn c . g e t C o n n e c t i o n ( ) ;
20 throw new MappingExcep t ion ( . . . ) ;
21 } catch ( SQLEx e ) { . . . }
22 }
23 }
24 p u b l i c c l a s s C o n n e c t i o n S o u r c e {
25 p r i v a t e C o n n e c t i o n conn ;
26 p r i v a t e boolean used ;
27 p u b l i c C o n n e c t i o n g e t C o n n e c t i o n ( ) throws SQLEx {
28 i f ( ! used ) {
29 used = t r ue ;
30 re turn conn ;
31 }
32 throw new SQLEx ( . . . ) ;
33 }
34 }

Figure 1. Code fragment from JdbF.
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Figure 2. Example graph that represents a state of the pro-
gram JdbF from Fig. 1. We use dashed line for the special
nodes, which do not represent heap-allocated objects. All
other nodes represent objects labeled with their (short) class
name. We omit some details of the Map implementation for
clarity.

This property can be expressed in JML by (\num of Thread

t; t.isAlive(); \reach(t).has(c))<=1.
The quantifier \num of returns the number of thread

objects t that satisfy both assertions t.isAlive() and
\reach(t).has(c). The primitive \reach, built-in in JML,
returns the set of all objects reachable from the object ref-
erenced by t. The method call has(c) returns true when the
Connection object c is in the set.

It is worth noting that efficient evaluation of the above
heap query is nontrivial. The query iterates over the set of
executing threads and checks (transitive) reachability from
each one of these threads. Indeed, the JML compiler treats it
as a non-executable assertion.

PHALANX can efficiently evaluate this assertion, using
parallel heap traversal to implement the reachability check
\reach(t).has(c). PHALANX also provides a new primi-
tive running, which returns the set of all executing threads.
This primitive is easy to implement efficiently in PHALANX
runtime, which has access to the VM’s internal information.
Finally, PHALANX evaluates this assertion atomically, i.e.,
all subexpressions are evaluated on the same snapshot of the
heap and the application threads are suspended during the
evaluation. Otherwise, a thread may be alive when we begin
evaluating the assertion, but dead by the time we finish the it-
eration; or a thread may be modifying fields of objects while
the assertion is being evaluated, thus altering reachability.

Even if the clients of JdbF are synchronized, the above
assertion fails. In fact, all connection objects are reachable
from all client threads, through the connection manager’s
connection map, as we see in Fig. 2. Note that such path
properties are more complex than reachability.

Path properties cannot be expressed in JML in a natu-
ral way. Fortunately, JML language is designed to be easily
extensible: new primitives are simply calls to (pure) meth-
ods implemented elsewhere. PHALANX uses this capability
to provide primitives that capture path properties, such as
reachability through or avoiding certain objects, and domi-
nation.

Using the primitives running and reach provided by
PHALANX, a correct invariant can be expressed in JML, as
shown in Fig. 1(lines 3-4).

In Section 4, we describe a number of parallel algorithms
for evaluating such queries. The basic idea behind these
algorithms is to parallelize the multiple transitive traversals
required to evaluate certain queries. For most queries, this
requires sophisticated coordination between heap-traversing
threads.

3. Expressive Language of Heap Queries
JML assertion language [21] supports quantifiers and set
operations; extended with a few primitives about the heap, it
gives us a natural way to specify expressive heap properties.
Additionally, JML assertion language allows us to write
rich assertions that combine reasoning about the heap with
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reasoning about other aspects of the program, and we benefit
from the JML compiler support for method specification,
inheritance of specification, invariant evaluation, etc.

In this section, we start by formally defining the meaning
of heap queries. We present the primitives supported by
PHALANX and their semantics in Table 1. Common heap
queries that arise in many real-world usage scenarios can
be written using the new primitives together with standard
quantifiers and set operations, as shown in Table 2.

3.1 Semantics of Heap Queries
In this section, we define the meaning of heap queries in
terms of Java program state. Towards this end, we define
an abstraction function mapping concrete program states to
their representation as graphs, and then define the meaning
of queries on these graphs. It makes the semantics more
accessible. It also simplifies the reasoning about correctness
of our parallel implementation of the common heap queries,
described in Section 4.

In Java operational semantics (e.g., see [23]), a program
state consists of a global program counter, a current thread
register, a heap, a thread table, an internal class table that
records the runtime representations of the loaded classes, an
environment that represents the source from which classes
are to be loaded, and error flags.

To define the meaning of heap queries, we consider a
program state that consists of: information about the heap,
the thread table, and the internal class table. The heap is a
map from addresses to objects. The thread table contains,
for each running thread, the program counter and the method
invocation stack (a.k.a. “call stack”). The call stack is a list
of frames; a frame includes the method being invoked, its
operands, local variables, and an object on which the invo-
cation is synchronized. The internal class table is a map from
class names to direct superclass, interfaces, fields, methods,
access flags, and byte code.

Graph definition g(s): For a state s as above, we define a
directed graph g(s) whose nodes include the heap-allocated
objects labeled by types, and whose edges represent refer-
ences between objects. The meaning of heap queries is de-
fined by graph- and set-theoretic operations on g(s).

EXAMPLE 3.1. Consider a state of the JdbF program
of Fig. 1, in which two threads concurrently execute insert

on the same Database object. Fig. 2 shows the corre-
sponding graph. In this graph, nodes with solid boundary
lines represent heap allocated objects. Nodes with dashed
lines represent additional information such as threads run-
time information and thread stacks. In the graph of Fig. 2,
the database contains three elements of ConnectionSource,
each of which has a field pointer to its Connection object.
Each thread has a stack pointer to a Connection object,
via local variable c. Note that for each thread, this stack
pointer goes from the corresponding stack node in the graph.
Each thread also has a field pointing to the shared Database

object. Note that this heap pointer goes directly from the
Thread object to the Database object. Every Connection

object is transitively reachable from all running threads
through the Map object. Furthermore, both running threads
refer to the same Connection object from their stack.

Formally, given a state s we define g(s) to be a
tuple 〈V,E, L〉 where V is the set of nodes, E ⊆
V × V is the set of edges, and L : V → Classes ∪
{root, stack, running, static} is the node-labeling function.
The graph g(s) is defined as follows.

Every allocated object in the heap of s is represented
by a node in the graph. The node is labeled with the dy-
namic type of the object, from Classes. The set of nodes that
represent heap objects in s is denoted by heapg(s) ⊆ V .
For every object o and every non-primitive, non-null field
f of the object’s dynamic type, including private and pro-
tected fields, and including all those defined in superclasses,
there is an edge in the graph from the node representing
o to the node representing the value of the field f . Every
thread object is represented in the graph by a node, labeled
with its type, just like any other object. If the thread is run-
ning, the graph will include two more nodes: a node la-
beled by running, which represents the thread’s runtime in-
formation, and a node labeled by stack, which represent the
thread’s call stack. The set of running nodes is denoted by
runningg(s) ⊆ V . The set of nodes that represent call stacks
is denoted by stackg(s) ⊆ V . There are edges from the node
that represents a running thread (labeled with running) to
the node that represents its call stack and to the node that
represents its thread object. For a node r ∈ runningg(s), we
use r.stack and r.obj to denote the corresponding stack and
thread-object nodes. For every thread, for every method on
the thread’s call stack, and for every non-null, non-primitive
local variable of the method, including formal parameters,
there is an edge in the graph from the stack node that rep-
resents the thread’s call stack to the node that represent the
value of the local variable. Note that a single node represents
all the stack frames together. As g(s) is not a multigraph,
there is a single edge from a stack node to an object refer-
enced from the stack, even if many stack variables refer to
the same object.

The graph contains a designated node, labeled by static.
For every loaded class, and every static non-primitive non-
null field in the class, including private and protected fields,
there is an edge from the node labeled with static to the
node that represents the value of the field. The graph also
contains a designated node, labeled with root. For every
running thread, there is an edge from the root node to the
node that represents the running thread. Additionally, there
is an edge from the root node to the static node. Finally, the
node ct ∈ runningg(s) refers to the currently-running thread.

Graph Operations We now introduce some standard nota-
tions for the graph operations which we use in the definition
of the semantics. Let g(s) = 〈V, E, L〉 be a graph as above.
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For a node v ∈ V , we use predg(s)(v) ⊆ V to denote the
predecessors of v. A path in g(s) is a (non-empty) sequence
of nodes v1, . . . , vm such that for all i = 1, . . . , m − 1,
(vi, vi+1) ∈ E. We use src(π) and dst(π) to denote the first
and last nodes of the path π. For a path π, we use nodes(π) to
denote the set of nodes on the path, including the endpoints.
The set of all paths in the graph g(s) is denoted by Πg(s).
We use Πg(s)(v, v′) to denote the set of paths in g(s) from v
to v′:

Π(v, v′) def= {π ∈ Π | src(π) = v, dst(π) = v′}

3.2 Heap Primitives Provided by PHALANX

The primitives supported in PHALANX and their seman-
tics are shown in Table 1. The primitive dom which returns
boolean. All other the primitives return JMLObjectSet, a set
implementing standard set-operations such as membership
test, intersection, and size.

We use a standard Java semantics to evaluate the formal
parameters of the primitives and require that the their values
are non-null. The semantics of a parameter o of type Object

in a state s is the node in g(s) that represent the object
pointed to by o in state s. Similarly, the semantics of a
parameter avoid of type array of Object, is the set of nodes
in g(s) that represent the objects in the array. We abuse
the notations slightly and use o and a to represent both the
parameters and their semantics in s.

EXAMPLE 3.2. Consider the state of the JdbF program
of Fig. 1 shown in Fig. 2. The following JML assertion uses
the primitive pred to check the Connection object pointed
to by c has exactly one predecessor: pred(c).size() == 1.
This assertion is satisfied because every Connection object
has only the corresponding ConnectionSource object as its
predecessor from the heap.

The assertion dom(stack(Thread.currentThread()),

c) is not satisfied because the Connection object in the cen-
ter is pointed to from the stacks of both client threads. Sup-
pose that the client threads are correctly synchronized, i.e.,
only one of them has a stack pointer to c. Then, according to
the semantics defined above, the assertion holds.

Note that when the query dom(o1,o2) is evaluated, the
thread that invokes it is the current thread ct, and it has
at least one stack pointer to the object pointed to by o2,
namely the argument o2 of the query. Therefore, the object
pointed to by o2 is not dominated by the object pointed to by
o1. Intuitively, the stack pointer to the object pointed to by
o2 should be ignored for the purpose of domination check,
because it exists solely for invoking the query, but does
not violate the domination/ownership relation that the user
intended to check with this query. Similarly, it is possible
that there are multiple pointers from other stack frames of
the current thread that are there solely for acquiring the
pointer to o2 to invoke the query.

To address it, the semantics of dom ignores all paths that
go through the stack of the current thread. It is possible
that this semantics is ignoring paths that violate thread-
local ownership through the stack. Note that the semantics
does consider paths that go through stacks of other running
threads as violating the domination.

3.3 Common Heap Queries and their Usage Scenarios
Table 2 shows how to express common heap queries us-
ing JML assertions with the heap primitives provided by
PHALANX. The last column lists names of heap probes —
PHALANX runtime methods that efficiently implement these
queries, as described in Section 4.

We illustrate the use of these queries with a series of
examples drawn from common programming situations and
design patterns, showing the effectiveness of heap queries
for debugging the code. 1

Note that queries related to threads (e.g., getThreadReach
and isThreadOwned) can have 3 versions: stack only, thread
object only, and both. The semantics supports such distinc-
tions by having 3 nodes for every running thread of g(s),
where the nodes labelled with stack and running do not rep-
resent objects, but were introduced to refine the notion of
reachability from threads. It is useful to have a shorthand
which returns all the “roots” of a given thread; we provide
it along with the PHALANX primitives. roots(Thread t) re-
turns the JMLObjectSet which consists of all objects pointed
from the thread’s stack and the thread object itself:

roots(Thread t)
def= stack(t).insert(t)

Confinement A standard pattern for maintaining sanity in
concurrent programming is object confinement [20]: all ref-
erences to a resource o come from a single thread t. This
pattern guarantees that only one thread at a time can modify
o, and thus no synchronization on o is necessary. The heap
assertion dom(t,r) allows t to confirm that r is confined.

Fig. 3 shows a code fragment adapted from
SimpleWebServer [18] with an additional heap asser-
tion. In SimpleWebServer, a new thread is created for every
request received by the web-server. The new RequestThread

is passed a Socket through which it communicates with
the client. The heap assertion in the method run of
RequestThread checks that the Socket is confined to its
RequestThread.

Escape Analysis It is often desirable to check that an ob-
ject does not escape from a procedure. This is particularly
important in a concurrent setting where exposing a heap ref-
erence to an object without proper synchronization might
lead to an undesirable modification by another thread. Using

1 The source code of our examples available from
http://heapassertions.unfuddle.com/projects/33697/repositories, login
and password are oopsla09. Due to restrictions on distributing the
production VM, we cannot make it available at this time.

5 2009/5/13



Name Semantics Description
running() {r.obj | L(r) = running} Running threads
stack(Thread t) {v | (r.stack, v) ∈ E ∧ L(r) = running ∧ r.obj = t} Objects pointed-to from the stack of thread t

reach() {v | L(v) ∈ Classes ∧Π(root, v) 6= ∅} Reachable objects
reach(Object o) {v | Π(o, v) 6= ∅} Objects reachable from object o
reach(Object o,Object[] a) {v | ∃π ∈ Π(o, v′).nodes(π) ∩ a = ∅} Objects reachable from object o

without going through any of the objects in a

pred(Object o) {v | (v, o) ∈ E ∧ L(v) ∈ Classes ∧Π(root, v) 6= ∅} Reachable objects pointing to object o
dom(Object o1,Object o2) ∃π ∈ Π(o1, o2)∧ There is a path from o1 to o2,

∀π ∈ Π(root, o2)o1 ∈ nodes(π) ∨ ct.stack ∈ nodes(π) and every path from root to o2 go through o1

Table 1. Primitives for reasoning about the heap and their semantics in state s, where g(s) = 〈V, E, L〉.

Query Description Probe Name
pred(o).size() > 0 Is o pointed to by a heap object? isHeap(Object o)
pred(o).size() > 1 Is o pointed to by two or more heap objects? isShared(Object o)
reach(src).has(dst) Is dst reachable from src? isReachable(Object src, Object dst)
!(exists Object v; Is there an object reachable isDisjoint(Object o1, Object o2)

reach(o1).has(v) ; reach(o2).has(v)) from both o1 and o2?
!(exists Object v ; Does o dominate all objects isUniqueOwner(Object o)

reach(o).has(v) ; !dom(o,v)) reachable from it?
!reach(o1,cut).has(o2) Does every path from o1 to o2 reachThrough(Object o1, o2, Object[] cut)

go through an object in cut

dom(Thread.currentThread(), o) Does the current thread dominate o? isObjectOwned(Object o1, Object o2)
dom(stack(Thread.currentThread()), o) Does the current thread’s stack dominate o? isThreadStackOwned(Object o)
dom(roots(Thread.currentThread()), o) Does the current thread dominate o? isThreadOwned(Object o)
{Thread t | running().has(t) Threads from which object o getThreadReach(Object o, Object [] avoid)
&& (reach(t,avoid).has(o) is reachable not through avoid
|| reach(stack(t),avoid).has(o))}

Table 2. Common heap queries and their corresponding probe names.

the primitive pred(o), the programmer can check whether
or not there are heap references to o.

The run() method of SimpleWebServer class in Fig. 3
has a simple defense against Denial of Service (DoS) at-
tacks. The server keeps a set clients of currently connected
clients. When a new client connects, it is added to the set.
Multiple connections from the same client are scrutinized
by the suspicious method, checking for evidence that the
client may be executing a DoS attack on the server, and may
be rejected. The decision must be made quickly, to keep the
defense from being a denial of service in its own right.

In particular we do not wish to synchronize. This is le-
gitimate if clients is confined to run(). But, clients is
passed to suspicious, so confinement is not instantly obvi-
ous. We can check (during testing rather than deployment)
that clients is only used by the server thread, and no ref-
erences to it are stored in the heap, by the heap assertion
pred(clients).size() == 0.

Wrappers The Wrapper design pattern is a staple of pro-
gramming. When one is trying to glue two big systems
A and B together, A’s objects will sometimes need to re-
fer to B’s, and vice-versa. It is generally impractical to

fully unify two independently-developed object hierarchies.
So the programmers create wrapper classes, WrapBObject,
which present an A-style interface for a B object.

It is generally desirable that all access to B objects
from A go through the wrappers. (Not all access in
the system: B will generally access its own objects di-
rectly.) PHALANX provides a straightforward check for
this: !Phalanx.reach(a, new Object[]{w}).has(w.b) re-
turns true iff all paths from a to w.b go through the wrapper
w. The middle argument can be an array, in case there are
several legitimate access paths.

Splitting tasks among threads A common way to speed
up a computation on a multicore machine is to have multi-
ple threads working on disjoint, non-interfering parts of the
same problem. Examples include implementation of matrix
multiplications, union-find, mergesort, and tree traversals.
The correctness of the computation often relies on the data
processed by one thread being disjoint from data processed
by all others. This property might not be obvious when the
data is stored in multiple collections. The programmer can
use the heap query isDisjoint to check this assumption.
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p u b l i c c l a s s SimpleWebServer . . . {
p u b l i c vo id run ( ) {

S e t c l i e n t s = new HashSet ( ) ;
whi le ( r u n n i n g ) {

So ck e t wsocke t = s e r v e r S o c k e t . a c c e p t ( ) ;
I n e t A d d r e s s a d d r e s s = wsocke t . g e t I n e t A d d r e s s ( ) ;
/ /@ a s s e r t ( Phalanx . pred ( c l i e n t s ) . s i z e ( ) == 0 ) ;
i f ( c l i e n t s . c o n t a i n s ( a d d r e s s ) )

i f ( s u s p i c i o u s ( c l i e n t s , a d d r e s s ) ) wsocke t . c l o s e ( ) ;
e l s e {

c l i e n t s . add ( a d d r e s s ) ;
Re q ues tTh r e ad r t = new Reques tTh read ( wsocket , r o o t D i r ) ;
wsocke t = n u l l ;
r t . s t a r t ( ) ;
}
}

}
/ / @return t r u e when DoS a t t a c k from a d d r e s s i s s u s p e c t e d .
p r i v a t e Boolean s u s p i c i o u s ( S e t c l i e n t s , I n e t A d d r e s s a d d r e s s ){

. . .
}
. . .

}
p u b l i c c l a s s Req u e s tTh read ex tends Thread {

p r i v a t e S oc k e t s o c k e t ;
. . .
p u b l i c Reques t Th read ( S oc ke t s o c k e t , F i l e r o o t D i r ) {

s o c k e t = s o c k e t ;
r o o t D i r = d i r ;

}
p u b l i c vo id run ( ) {

/ / @asser t Phalanx . dom ( t h i s , s o c k e t ) ;
. . .

}
}

Figure 3. Confinement of Socket in RequestThread.

4. Heap Probes Algorithms
In this section, we present the design of our new parallel
algorithms for evaluation of heap queries. We also discuss
some high-level challenges we faced when implementing
and integrating these algorithms into a production-grade vir-
tual machine. Additional lower-level implementation chal-
lenges are discussed in Section 5.

Rationale In this work, we are interested in: (i) answer-
ing expressive heap queries, including queries that involve
path properties; (ii) keeping the auxiliary space required to
answer a query to a minimum.

These two requirements preclude approaches based on
pre-computation of a transitive closure graph. Transitive clo-
sure can be pre-computed in O(V ∗(V +E)) operations (for
a heap with V objects and E references), and updated using
incremental algorithms (e.g., Roditty [32]). However, pre-
computation incurs a prohibitive space overhead, as well as
a significant time overhead when the heap is modified fre-
quently. Furthermore, this approach does not support path
queries which we show to be of practical importance (e.g.,
for ownership and reachability with an avoidance set).

For these reasons, we chose to evaluate queries directly
on the heap graph. The worst-case time complexity for most
our algorithms is O(V + E) operations for a heap with
V objects and E references. Evaluating P of them could
take O(P (V + E)) operations. However, in practice, we
expect P << V and heap queries are much less frequent

trace(tm)
while (tm.pending 6= ∅)

remove s from tm.pending
for each o ∈ {v | (s, v) ∈ E}
trace-step(s, o)
mark-object(tm, o)

tag-object(tm, o)
if (tag-step(o) = false)
return false

atomic
if (o 6∈ Marked)
Marked ← Marked ∪ {o};
return true

else return false

mark-object(tm, o)
if (tag-object(tm, o) = true)
push-object(tm, o)

push-object(tm, o)
tm.pending ← tm.pending ∪ {o}

mark-thread(tm, ta)
for each o ∈ roots(ta.stack)
mark-object(tm, o)

mark-object(tm, ta.obj)

mark-roots(tm, T )
for each ta ∈ T
mark-thread(tm, ta)

mark-object(tm, static)

Figure 4. Basic Components

than heap updates, and hence for large program heaps, this
approach is likely to be superior to incrementally updating a
pre-computed transitive closure when the heap is modified.

To speed up the evaluation of heap queries, we designed
new parallel algorithms that can leverage all of the avail-
able cores in the system for evaluating a query. Our algo-
rithms operate by stopping the application, evaluating the
heap query in parallel on the program heap, and then resum-
ing the application.

We have implemented our parallel algorithms as part of a
production virtual machine. The VM already contains much
of the necessary infrastructure required for efficient imple-
mentation of these algorithms. However, production grade
virtual machines are complex pieces of code, and correctly
implementing the algorithms is quite challenging.

Heap Query Evaluation vs. Garbage Collection Many of
our heap queries check path properties and therefore can-
not be implemented by piggybacking a tracing garbage col-
lector. There are many variants of tracing collectors (e.g.
what regions of the heap it focuses on), when it is triggered
(e.g work-based, time-based, etc) and what actions are taken
when it encounters an object (e.g. copying or marking). Re-
gardless, at its core, a tracing collector computes reachabil-
ity.

However, heap probes such as isObjectOwned compute
path properties, and cannot be evaluated by computing tran-
sitive reachability.

Hence, rather than trying to piggyback on an existing col-
lector (e.g. as in [1]), we focus on a more flexible solution:
using existing components of the runtime to efficiently im-
plement our parallel algorithms for evaluating heap queries.
Specifically, we reuse components used by a parallel garbage
collector to compute transitive reachability, but put them to-
gether to yield the more general computations required by
our queries.

Performing Garbage Collection during Heap Query Eval-
uation Our parallel algorithms are designed and integrated
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into the virtual machine such that the work done during
query evaluation can be re-used by the garbage collector.
Hence, in addition to answering the required heap query,
we have the option to perform garbage collection right af-
ter the probe finishes, leveraging the tracing work done by
the probe. That is, the collector can piggyback on our heap
query evaluation, rather than opposite, which is not possible
for most of our algorithms.

4.1 Virtual Machine Components Used By Parallel
Probe Implementations

Much of the machinery necessary to implement our parallel
algorithms is already present in the virtual machine and is
used by the existing parallel garbage collector in a specific
manner. We now describe the machinery that is used by our
implementation.

When the virtual machine starts, a set of evaluator
threads Tm are created, one for each core. These evaluator
threads are initially blocked. The runtime uses these threads
for parallel garbage collection. We use these threads for eval-
uation of our heap queries.

Heap Traversal Components The basic components of a
parallel garbage collector are shown in Fig. 4. Each proce-
dure has an evaluator thread tm as a parameter. The set Ta

denotes the set of (running) application threads in the sys-
tem at the time a probe is invoked. Thread-local variables
are written with the prefix of the thread to avoid confusion:
e.g., tm.temp is a local variable temp of thread tm. For an
application thread ta, we use ta.stack and ta.obj to denote
the thread’s stack and the thread object. In pseudocode we
assume that all sets are initially empty.

The procedure mark-thread() marks the objects di-
rectly pointed to by an application (running) thread stack
and thread-object, but does not perform further traversal
from that set. The procedure trace() performs heap traver-
sal to computes the set of objects reachable from the set
tm.pending. The marking proceeds as usual in garbage col-
lection, but we have added callback procedures trace-step
and tag-step, which are called on each newly-encountered
reference. Different implementations of the various heap
probes customize these routines in specific ways. The de-
fault return value of tag-step is true.

Synchronization Primitives Our parallel algorithms re-
quire careful attention to synchronization. Some probes are
implemented using a multi-phase traversal, and thus need
synchronization barriers. Our implementation uses two main
forms of synchronization, as follows:

Barrier: A standard barrier is provided by the function
barrier(). When an evaluator thread calls barrier(), it
blocks and waits for all other evaluator threads to arrive at
the barrier. When they have all called barrier(), all of the
evaluator threads are released to continue.

Barrier with Master thread: On startup of the virtual ma-
chine, one of the evaluator threads is designated as the mas-

ter thread. When a thread calls the function barrier-and-

-release-master(), it blocks, just like in the case of
barrier(). When all of the evaluator threads have called
the function, only the master thread is released and allowed
to continue, while the other threads remain blocked. These
threads remain blocked until the master releases them by a
call to the function release-blocked-evaluators(). The
procedure barrier-and-release-master() returns true for
the master thread and false for all others threads.

Object Sets The virtual machine already provides efficient
implementation of various set operations. This facility is
typically used by the garbage collector to put objects in a
marked set (implemented via marked bits that can be effi-
ciently set and cleared). For our probes, when necessary, we
use this capability to create and manipulate other sets (such
as the Owned set).

4.2 Parallel Implementation of Individual Probes
Next, we present the parallel algorithms used for evaluating
heap probes. Our algorithms are not specific to a particular
runtime, and only rely on the common primitives discussed
in Section 4.1.

4.2.1 Single-Phase Algorithms
We begin by describing three probes that only require a
single phase during their evaluation. In Section 4.2.2, we
present more involved algorithms for handling path proper-
ties such as object ownership, domination, as well as algo-
rithm checking disjointness.

isReachable Fig. 5(a) shows the algorithm for evaluating
our simplest probe, isReachable(source, target). This
probes operates by marking the set of objects reachable from
source, and therefore resembles tracing garbage collection.
Note that the code shown in the figure is executed in parallel
by a all evaluation threads. The probe starts by marking the
source object, and then traces from it. All evaluation threads
eventually block at barrier-and-release-master(). When
this happens, the object pointed to by target is guaranteed
to be marked if it is reachable from source. At this point,
the master thread sets the return value based on whether the
target object is marked (this need only be done by one
thread, hence the use of the master) and then releases the
other evaluator threads. trace-step() is not needed in this
probe and is left empty (hence omitted from figure).

isShared Fig. 5(b) shows the implementation of the probe
isShared(o). In this algorithm, every evaluator thread uses
a private set tm.sources to record the objects pointing to o
that it encountered during its traversal. By using private sets,
we avoid the need for synchronization between evaluator
threads during the tracing phase (e.g., this is an alternative
to incrementing a shared counter). When the tracing phase
completes, evaluator threads combine their local sets into
a global view by updating a global set allsources under a
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isReachable(tm, source, target)
mark-object(tm, source)
trace(tm)
if barrier-and-release-master()

if (target ∈ Marked) result ← true
else result ← false
release-blocked-evaluators()

(a) Reachability

isShared(tm, o)
tm.sources ← ∅
mark-threads(tm, Ta)
trace(tm)
lock(allsources)
allsources ← allsources ∪ tm.sources
unlock(allsources)
if barrier-and-release-master()

if |allsources| > 1 result ← true
else result ← false
release-blocked-evaluators()

trace-step(s, t)
if (o = t) tm.sources ← tm.sources ∪ {s}

(b) Shared from Heap

isThreadOwned(tm, ta, o)
mark-roots(tm, Ta \ {ta})
trace(tm)
if barrier-and-release-master()

if (o ∈ Marked) result ← false
else result ← true
release-blocked-evaluators()

(c) Thread ownership

Figure 5. Single-phase parallel algorithms for checking
reachability, sharing, and thread ownership.

lock. Combining the local sets is required as it is possible
that o is shared but each parallel evaluator tm reached it only
once during its traversal. Finally, the threads synchronize,
the master thread computes the result (if we have more than
one object in allsource, we return true, otherwise false) and
releases the rest of the evaluator threads.

For clarity of presentation we have omitted some trivial
implementation details from the figures such as sizes of
tm.sources and allsources. During tracing, each evaluator
thread stops recording once tm.sources contains more than
two objects, as the object o is then known to be shared. In
this case, the probe can return true immediately if we do not
require garbage collection to start after probe computation.

isThreadOwned The implementation of the probe
isThreadOwned(ta, o) is shown in Fig. 5(c). This probe
checks if object o is reachable only from the calling applica-
tion thread ta. To compute this, we trace from all application
threads except from ta. If object o is marked, then it is not
owned by ta and we return false, otherwise we return true.
Note that this probe assumes that ta is the application thread
that invokes the probe, hence object o is always reachable
from ta (and we do not need to explicitly check that).

The operation of this probe is quite similar to tracing
collectors, with the key difference being that there is specific
order on the way threads are processed. Note that if we
would like to perform garbage collection during this probe,
after the probe completes, we can proceed to mark and trace
from only the roots of the current application thread ta. That
is, collection can reuse the rest of the work that was done for
the probe.

4.2.2 Multi-Phase Algorithms
We now describe more complicated algorithms that requires
multiple synchronization barriers during their operation.

isObjectOwned The implementation of the probe
isObjectOwned(source, target) is shown in Fig. 6(a).
Recall that this probe only returns true when all heap paths
to target go through source and there is at least one such
path. The algorithm uses a special sequence for processing
nodes, and only uses the single set Marked. The basic
idea is to mark source without tracing from it, and then
trace through all other roots. Since source is marked during
tracing, it won’t be traced through and all objects that are
reachable only through source will remain unmarked. The
actual algorithm is a bit more involved, and its schematic
operation is shown in Fig. 7. In the figure, barriers between
phases are shown as vertical lines labelled with the name of
the updated phase. The main stages of the algorithm are:

• mark source — the algorithm uses tag-object() to
mark the source object without tracing from it.

• mark all objects pointed to from the roots (except target)
without tracing from them yet. The purpose this phase is
to avoid marking target if it is pointed directly from the
roots as we want to reason only about heap paths.

• perform tracing — during tracing, if evaluation threads
encounter the object source, they do not trace from it
because it is already in the Marked set. Upon comple-
tion of the tracing phase, threads synchronize and check
whether target is marked. If it is marked, then the probe
returns false. Otherwise we proceed to check if target is
reachable from source and if it is, the result is set to true.

Finally, note that we need to manage the object source
carefully, because it has been marked already but was not
placed in the pending set. That is, if target is not marked
and we requested garbage collection to be performed during
this probe, we need to make sure that source is added to
pending before we continue with the collection operation.

One of the inherent challenges of implementing probes
of this type in a language runtime, is dealing with stack
pointers. In particular, objects source and target are always
reachable from the stack of the application thread that in-
voked the heap probe. Our current implementation focuses
on domination through heap paths, and ignores all stack
pointers to target. Alternative implementations could iden-
tify which stack pointers to consider and which stack point-
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isObjectOwned(tm, source, target)
tag-object(tm, source)
result ← false
phase ← skip
barrier()
mark-roots(tm, Ta)
barrier()
phase ← none
trace(tm)
barrier()
if (target /∈ Marked)
barrier()
push-object(tm, source)
trace(tm)
if barrier-and-release-master()

if (target ∈ Marked) result ← true
release-blocked-evaluators()

tag-step(t)
if (phase = skip ∧ t = target)
return false

(a) Object Ownership

thread[] getThreadReach(tm, o, avoid[])
foreach ta ∈ Ta

foreach a ∈ avoid[]
tag-object(tm, a)

barrier()
mark-thread(tm, ta)
trace(tm)
if barrier-and-release-master()

if (o ∈ Marked) out ← out ∪ ta.obj
Marked ← ∅
release-blocked-evaluators()

return out

(b) Get Reaching Threads

reachThrough(tm, o1, cut[], o2)
result ← true
foreach c ∈ cut[]
tag-object(tm, c)

barrier()
mark-object(tm, o1)
trace(tm)
barrier()
if (o2 ∈ Marked) result ← false

(c) Dominates Through

Figure 6. Parallel algorithms for path properties (ownership, reachability with avoidance set)

��� ��� ����	
 ��� ��� ����� �
�	
�� ����
�� �	� ���	
 ���� ���
� �����
����	
������

����
� ����	
������
����
�����	
������

����
�
���� ����

Figure 7. Schematic operation of isObjectOwned(source, target). r1, r2, r3 and source,target are roots. Circle nodes
denote heap allocated objects, triangles denote parts of the heap that are transitively reachable from the object they emanate
from. Vertical lines denote synchronization barriers used in the algorithm. In this example, target is owned by source.

ers to ignore, but this is very challenging in practice, espe-
cially due to various JIT optimizations.

getThreadReach The implementation of the probe
getThreadReach(o, avoid) is shown in Fig. 6(b). This
probe returns all application thread objects which can reach
object o without going through any object in the avoid set.
We consider each application thread ta in turn, to see if
o can be reached from that thread. As in isThreadOwned,
we first tag all objects in avoid set. Then we compute the
transitive closure from that thread. If after that, o is marked,
then the application thread is inserted into the out set,
otherwise, we do not insert it. Note that, after processing
each application thread, the Marked set is initialized to ∅.
Practically, this is possible in our virtual machine because
the marked bits for each object can reside in a continuous
memory region outside of the object space, making it easy
to re-initialize that space. The set out is assumed to be

initialized to ∅ on startup of the probe. Also note that this
probe tracks reachability from both thread stacks and thread
objects. We can specialize it further as described in Table 2
to track reachability only from thread stacks or only from
thread objects.

reachThrough The implementation of the probe
reachThrough(o1, cut, o2) is shown in Fig. 6(c).
This probe checks that all paths from object o1 to object o2
go through at least one object in the set cut. The algorithm
uses a similar trick to isObjectOwned. First, it marks all the
objects in the set cut but does not trace from them. Then it
marks and traces from object o1. If during this process, we
encounter an object in the cut, we will not trace through
the object as it was already marked initially. At the end of
the tracing from o1, if we see that object o2 is marked, then
there must have been a path from o1 to o2 not going through
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isDisjoint(tm, o1, o2)
result ← true
phase ← dual
mark-object(tm, o1)
trace(tm)
if (o2 ∈ Marked) result ← false
barrier()
phase ← check
tm.temp ← result
barrier()
if (tm.temp = true)
mark-object(tm, o2)
trace(tm)
barrier()

phase ← none

trace-step(s, t)
if (phase = dual) Owned ← Owned ∪ {t}
else if (phase = check ∧ t ∈ Owned)
result ← false

Figure 8. Parallel algorithm for disjointness.

any object in the set cut. In that case, the probe returns false.
Otherwise, the probe returns true.

isDisjoint Fig. 8 shows the implementation of the probe
isDisjoint(o1,o2). Note that this property cannot be com-
puted by a single reachability computation. In particular, the
computation of this probe requires two sets of objects (as
opposed to the single Marked set when computing reacha-
bility). The basic idea is to compute the set of objects reach-
able from o1 and intersect it with the set of objects reachable
from o2. However, we do this more efficiently, and in a way
that guarantees that work performed by probe computation
can be re-used for garbage collection.

• Initialization — each thread sets the shared result vari-
able to true and sets the phase to double marking (dual).

• The dual phase (tracing from o1) — during this phase,
traced objects are added to the Owned set and to the
Marked set. The set Owned is not updated in later
phases, and identifies the objects reachable from o1.
When a thread finishes tracing, it checks whether o2 is
marked and if it is, sets result to false.

• switching the phase — all threads synchronizes via the
barrier to ensure completion of the dual phase. All
threads then synchronously switch the phase to check
and read the value of result. If after the barrier the re-
sult is still true, then all threads attempt to trace from o2.

• The check phase (tracing from o2) — in this phase, each
evaluator thread checks if it encounters an object in the
Owned set during tracing, and sets the result to false if
it does. Upon completion, we synchronize the evaluator
threads and switch the final phase (none).

• final phase — after the first evaluator thread changes the
phase to none, all objects reachable from o1 and o2 are
guaranteed to be in the Marked set. This means that if

we would like to proceed with garbage collection, we can
do so in the usual manner.

The probe isUniqueOwner is implemented by an elabora-
tion of this scheme and we do not present it here.

5. Implementation Details
5.1 Modifying the JML Compiler
We modified the JML compiler to identify common queries
and translate them into calls to heap probes in the PHALANX
runtime. Our replacement uses simple pattern matching on
the AST, and is performed at the code generation phase of
the JML compiler.

Specifically, we modify the translation of quantified ex-
pressions. The original compiler does not produce any code
for quantified expressions, as their evaluation cost may be
prohibitive in practice (the compiler notifies the user that no
code is generated in these cases). We modify the compiler
to generate the appropriate calls to the PHALANX runtime
when the quantified expression match one of the common
heap queries.

Technically, we managed to keep our changes to min-
imum by modifying the translation step in the compiler,
where java code is generated from JML expressions. In this
phase, we replace the quantified expression by a method
call expression invoking the appropriate probe method in the
PHALANX runtime. We extract the arguments for the probe
from the original JML expression, and use it to construct a
new valid expression for translation.

5.2 Modifying the VM
Heap probes are implemented on the QVM platform [4],
which is based on IBM’s J9 production virtual machine.

Intercepting calls to Heap Queries User-level code inter-
acts with our heap probes via specially provided library. All
of the probes in this library call a single designated internal
method, which is intercepted by the VM on JIT compilation.
If intercepted, we patch that internal library call with a call
to the internal VM functions required for running the probes.

Sharing Components between Heap Probes and Garbage
Collection Some of the components used by our heap
probes are also used by garbage collection. Care must be
taken to make sure that changes to these components do not
affect the operation of the normal collector. For example, as
mentioned in Section 4.1, heap traversal routines now con-
tain calls to trace-step or tag-step, which should not be
invoked during normal garbage collection cycles.

To distinguish an evaluator thread performing heap query
evaluation from a thread performing garbage collection, we
re-use some of the free space in each evaluator-thread struc-
ture to denote its kind. The kind of a thread is set when the
operation starts (i.e., query evaluation or garbage collection)
and is used only when necessary. An alternative implemen-
tation strategy would have been to add arguments to exist-
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ing functions, but such changes would have spanned a large
number of VM modules, making implementation harder and
more error-prone.

In general, some probes make heavy use of the free
space available in the evaluator-thread structure. For exam-
ple, rather than storing information in a shared location that
requires synchronization on each access, some of the algo-
rithms store the information locally in the evaluator-thread
structure, and synchronize and merge it into a shared result
only at the end of query computation.

Interaction between Heap Probes and Garbage Collection
Some of our probes require marking an object without trac-
ing from it (e.g., isObjectOwned). To enable reuse of the
work performed by heap probe for query evaluation for
garbage collection, we must keep track of such objects. If
GC is requested when the probe computation finishes, these
tracked objects must be pushed on the marking stack for
garbage collection. Failure to do so might lead to sweeping
of live objects (the ones reachable from the tracked objects).

If the probe is not required to perform garbage collection
and returns immediately, we need to make sure that all in-
termediate state used by the probe that may be used by the
normal collection cycle is reset (e.g. the Marked and the
pending sets).

Load Balancing for Heap Probes The main challenge we
addressed when designing the parallel algorithms is correct
placement of synchronization barriers. Our parallel algo-
rithms for heap probe evaluation can utilize any of the ex-
isting parallel algorithms for heap traversal, with any kind
of load balancing (e.g. work dealing, work stealing), and can
benefit from developments in load balancing techniques (e.g.
[24]).

In general, as with all dynamic load balancing schemes,
it is always possible to come up with a demonic graph
topology (e.g. a singly linked list) that defeats parallelism of
our probe algorithms. However, with increasing heap sizes
and the increasing variety of structures found in the heap,
it is likely that the parallel heap traversal algorithms will
perform well in most applications.

6. Experimental Evaluation
In this section, we describe the evaluation of our implemen-
tation. We evaluate the implementation in several respects:

• evaluate the PHALANX implementation compared to a
reference implementation in JVMTI

• evaluate the scalability of parallel query evaluation
• evaluate the usefulness of the queries in real applications.

6.1 Implementation of Heap Probes using JVMTI
The Java Virtual Machine Tools Interface (JVMTI) is a vir-
tual machine independent powerful native programming in-
terface for use by tools that need access to JVM state for

profiling, debugging, monitoring, and coverage analysis. It
provides a way to inspect the state and to control the execu-
tion of applications running in the Java virtual machine.

Recently, the JVMTI was extended with new methods,
enabling the programmer to write to request traversal of
the entire heap. This new capability allows us to implement
our algorithms using JVMTI, as an alternative to the QVM-
based implementation presented earlier.

QVM vs. JVMTI The key advantage of implementing
heap probes using JVMTI is its portability across differ-
ent virtual machines. However, heap traversal in JVMTI is
required to “stop-the-world”: explicitly stop all threads ex-
cept the thread that invokes the traversal. That is, if several
threads invoke heap traversal of JVMTI, their traversals will
be performed sequentially. Certainly, if parallel traversal be-
comes available in future versions of JVMTI, our parallel
algorithms would be applicable.

We implemented sequential simplified variants of all of
the probes in JVMTI. We could have used the parallel algo-
rithms as is and just run them sequentially, but we wanted
to avoid unnecessary synchronization when using the algo-
rithms in a pure sequential setting.

We evaluated the performance of our heap probes im-
plemented using JVMTI in several different virtual ma-
chines, from different vendors, including Sun and IBM. Im-
plementation using JVMTI is about five (5) times slower
on average than the QVM implementation on a single CPU
(see Fig. 10). QVM-based implementation re-uses existing
machinery inside the VM, tailored for heap traversals.

6.2 Benefits of Parallelization
We performed experiments with synthetic benchmarks with
large heap size, complex heap structure, and different heap
probes, to evaluate the scalability of the parallel algorithms
with respect to increasing number of worker threads. We ran
our experiments on 8-core 2.4 GHz AMD Opteron. Fig. 9
shows almost linear speedup in the evaluation time. In this
benchmark, we evaluate the probe isShared on a heap with
numerous threads, arrays and linked objects, total of nearly
8.3 million objects. To stress test the parallel implementa-
tion, we designed the benchmark such that the evaluation of
the probe requires traversing the entire heap (i.e., the probe
isShared returns false).

We also evaluate the parallel algorithms on heaps of dif-
ferent sizes. Fig. 11 shows that the speedup gained by in-
creasing the number of cores is uniform for heaps of dif-
ferent sizes. Finally, Fig. 10 shows that as the heap size in-
creases, the evaluation time using JVMTI implementation is
higher (i.e., slower) than the time it takes the QVM imple-
mentation even on a single core. Moreover, the difference
between evaluation time on a single core and on 8 cores in-
creases with heap size. To summarize, this benchmark shows
significant benefit of parallelization and shows that the ben-
efit increases with heap size.

12 2009/5/13



���� ���� ���� ���� ��	
 	��	 	�� ����
� � � � 	 � � 


�������
� �����

Figure 9. Speedup in probe evaluation time with increasing
number of cores.
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Figure 10. Probe evaluation time for increasing heap sizes.
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Figure 11. Probe evaluation time for increasing heap sizes
and increasing number of cores.

6.3 Applications
Adding meaningful heap assertions to real world applica-
tions requires deep understanding of program invariants,
which may be difficult even for the original developer of the
code.

Adding arbitrary assertions just to measure performance
misses the mark, because in many of the applications we
considered the assertions might be evaluated on different
heap graphs during different executions. Further, the cost of
evaluating a heap query depends on its answer, for exam-
ples, when an object is not shared, evaluating isShared on
it requires traversing the entire heap. This may lead to sig-
nificant variance in the cost of assertions, especially in real
applications where the behavior may be non-deterministic
and depend on an elaborate environment (e.g., network con-
nections).

To eliminate these factors, we conducted a controlled
evaluation of performance with the synthetic benchmarks
mentioned earlier.

In this section, we evaluate the usefulness of heap asser-
tions on several real-world applications in two ways:

• we pick two applications that we are fairly familiar with,
and manually add meaningful heap assertions after care-
ful inspection of the code.

• we use a script to add a large number of assertions based
on two common scenarios that are of general applicabil-
ity.

Application LOC Probes Violations

AOI 111,333 10 0
Azureus 425,367 334 16

Freemind 70,483 16 2
Frostwire 245,959 184 2

JEdit 93,790 66 0
jrisk 20,807 45 12

rssowl 74,280 95 3
tvbrowser 105,471 40 1

TVLA 57,594 10 0

Table 3. Evaluation in real-world applications

Table 3 shows the applications we use in this study. For
each application, the table shows the number of lines of Java
code (generated using David A. Wheeler’s SLOCCount),
and the number of probes we inserted into the code.

Manually Added Assertions
In TVLA and AoI we manually added assertions that were
picked after careful examination of the code.

AoI ArtOfIllusion (AoI) is an open source application for
3-D modelling, animation and rendering, written entirely in
Java. Our benchmark consists of loading and rendering 11
existing 3-D models, which present complex scenes with
many hundreds of 3-D objects, as well as several lights
and cameras, created by professional artists for production
purposes.

The 3-D objects in a scene are arranged hierarchically,
such that moving, scaling and rotating a parent object can
result in the children objects also being transformed. More-
over, several 3-D objects can share graphic elements, such
as textures and skeleton objects for controlling animation.

To speed up rendering, AoI automatically creates a num-
ber of worker threads based on the number of available pro-
cessors. Each worker thread repeatedly executes small tasks
such as tracing a ray through a single pixel or shading a tri-
angle.

We added assertions to check (i) structural properties of
the scene and (ii) correct coordination of rendering threads.
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In this application, the assertions we added were not
violated in all of our test runs, and incurred no observable
slowdown in the operation of the application when running
with PHALANX.

TVLA TVLA [22] is a parametric framework for shape
analysis that can be easily instantiated to create different
kinds of analyzers for checking properties of programs that
use linked data structures. In TVLA, program states are rep-
resented as three-valued logical structures, and the programs
transition system is defined using first-order logical formu-
las.

To reduce its space usage, TVLA uses shared representa-
tion of logical structures and formulas. We check that the im-
plementation of abstract transformers copies the structures
it modifies. We also added assertions to check that opera-
tions of formulas do not violate the structural properties of
formulas. Another optimization, in the chaotic iteration of
TVLA, maintains a pending list of structures to process only
the structures that changed. We added assertion to check that
the pending list is correctly manipulated.

In this application, the assertions we added were not
violated in all of our test runs.

Heap Assertions Added Automatically
For the rest of the applications, we used scripts to automat-
ically insert heap-assertions for several scenarios. Unfortu-
nately, we could not make the JML compiler compile these
entire real-world applications, and therefore in these appli-
cations we added direct calls the PHALANX probes.

Most of the applications we considered are interactive
ones, and the specific probes being executed therefore often
depend on user interactions.

Sharing of Disposed Resources Many of the applications
in Table 3 use a GUI based on the Standard Widget Toolkit
(SWT) [14]. GUI elements in SWT have to be manually al-
located and disposed by the programmer. Disposing an SWT
resource is performed by explicitly invoking the method
dispose() on it. Failure to properly dispose SWT re-
sources leads to leakage of OS-level resources and may grad-
ually hinder performance and even lead to a system crash. In
many cases, programming patterns help. But widely-shared
resources like Colors, Fonts, and Images, are notoriously
hard to manage properly.

Our heap assertions allow the programmer to check, at the
point of calling dispose(), whether the resource about to
be disposed is shared. Using our heap queries, the program-
mer can also get a list of threads that can reach the resource,
which is extremely useful for debugging.

To identify such potential cases, we replace code of the
form:
exp . d i s p o s e ( ) ;

with code of the form
i f ( Pha l anx . i s S h a r e d ( exp ) )

Pha l anx . warn ing ( ” d i s p o s a l o f s h a r e d r e s o u r c e ” + exp ) ;

exp . d i s p o s e ( ) ;
}

We ran our benchmarks with the added assertions, for the
most part, the frequency of resource disposal is low enough
such that the application exhibits very little observable slow-
down when running on PHALANX. We observed that in sev-
eral of the applications our assertions are sometimes vio-
lated, and disposed resources are indeed shared.

In Azureus, we added reporting of stack-trace informa-
tion when the assertion is violated, and identified 16 pro-
gram locations in which disposed resources are shared. Of
course, not every shared resource leads to a problem in run-
time, and this depends in part on the user interaction with the
application (whether the shared resource is indeed used after
it has been disposed). We note that this dependency on user
interaction makes such bugs very hard to reproduce, and that
currently there are several such open bugs in the Azureues

bug-tracker. Heap assertions make it easy to identify the po-
tential sources of these bugs.

Running the other applications for short user interactions,
we also found such suspicious disposal in: frostwire (2),
freemind (2), tvbrowser (1), and rssowl (3).

Redundant Synchronization for Owned Objects Fearing
unexpected effects of concurrency, Java programmers often
defensively over-synchronize their programs. A programmer
trying to improve concurrency of a given code-base may
want to remove redundant synchronization. One common
case in which synchronization can be safely removed is
when synchronized is used on a thread-owned object.

To identify such potential cases, we replace code of the
form:
synchronized ( exp ) {

. . .
}

with code of the form
synchronized ( exp ) {

i f ( Pha l anx . dom ( Thread . c u r r e n t T h r e a d ( ) , exp ) )
Pha lanx . warn ing ( ” s y n c h r o n i z a t i o n on owned o b j e c t ” + exp ) ;
. . .

}

where exp can be any pure expression.
We added such assertions to all points using synchronize

in our applications. In some applications (notably jrisk),
automatically adding assertions to all synchronized blocks
resulted in assertions added into the main UI event loop.
Obviously, this had catastrophic results in terms of perfor-
mance. Otherwise, when assertions are removed from the
main event loop, all applications suffered an observable
slowdown, but were still operational.

In several applications we found place that synchronized
on thread-owned objects. In jrisk we added reporting of
stack-trace information and found 12 synchronized blocks
where an owned object was used for synchronization. Of
course, this does not mean that in different configurations of
the system synchronization is not needed, but this can direct
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a programmer to potential redundant synchronization in her
code.

In JEdit, we have identified several places where syn-
chronization is clearly performed on a thread-owned object
(by inspecting the code). However, our heap probe check-
ing thread ownership evaluated to false. We used the probe
getThreadReach to check what threads are reaching the
synchronization object, and found out that the object is
reachable from several AWT system threads, which was not
at all apparent from the application code.

7. Discussion
Heap queries are an extremely powerful tool for getting
global knowledge about program state at runtime. Here we
discuss potential improvements for heap queries in terms of
efficiency and usability.

7.1 Further Improving Throughput and Pause Times
Section 4 provides the core machinery for efficiently evalu-
ating heap probes, and shows how to benefit from their paral-
lelization. Here, we list some of the ways to further improve
the throughput and response times.

Evaluating multiple probes in parallel PHALANX allows
multiple probe requests to be issued in parallel. The VM
provides many bits for object tagging, so in principle we can
evaluate several probes simultaneously using different bits.

Concurrent Evaluation with Snapshots A possible con-
cern for our implementation is the pausing of the application
while the probe is evaluated. One solution to this problem is
performing a heap snapshot by using a copy-on-write write
barrier as in Yuasa’s concurrent scheme [36]. In this way,
we could evaluate a probe while the application continues
to execute. One challenge for this approach is dealing with
the case where a second probe is started before the first has
finished.

Using Local Information The global nature of our probes
means that modifying references to objects other than the pa-
rameters can affect the result of the probe. One optimization
involves remembering local information (e.g., the value of a
probe), and updating it locally when the heap changes (e.g.,
on write barrier). For example, if we are monitoring whether
the object is pointed to from the heap, we could set a specific
bit in the object header whenever a reference to the object
from the heap is created; cf. dynamic escape analysis [30].
Although this technique can tell conclusively that an object
is not pointed to from the heap, it cannot tell conclusively
that it is pointed to.

7.2 Expressiveness of Heap Probes
Access to Objects If a probe says that a thread T refers to
object O, then, indeed, there is some pointer chain from T to
O – at the level of pointers in the heap. That does not imply
that this chain can actually be followed. For example, if T

refers to some object U, which holds a reference to O in a
private field that is never exposed, there is no way for T to
touch O in Java. Even distinguishing between private and
non-private fields would not suffice: a standard Java coding
style involves private fields x and public methods getX() for
accessing them. Checking statically whether T can get at O
in general is undecidable. Checking it efficiently in runtime
is a worthy challenge.

Constraining Reachability When debugging or specifying
a program with heap probes, it is often necessary to ignore
some of the references to get useful information. For exam-
ple, it may be necessary to ignore ThreadGroups, which pro-
vide cross-references between potentially large collections
of threads, and can result in irrelevant sharing. Another ex-
ample is ignoring paths through the ConnectionManager’s
map from Fig. 1. Our experience to date suggests that it is
easy to avoid such references using the parameters avoid

and cut of the probes getThreadReach and reachThrough,
respectively.

Atomicity A single heap probe, by itself, is atomic, e.g.,
getThreadReach(t, a) gives the threads which own t at
one instant of computation. In some case we need to eval-
uate several probes atomically, on the same snapshot, for ex-
ample, to check that the threads referring to t are disjoint
from those referring to u. We can capture the first set of
threads with one heap probe, and the second with another –
but these probes do not happen on the same snapshot of the
heap. The heap may change between the evaluation of two
probes; a thread might gain or lose references to t or u in
between, making the disjointness test have the wrong result.
We plan to extend our implementation to perform multiple
heap probes on a single snapshot of the heap.

Lock Assertions In a concurrent setting, the programmer
may design locking mechanisms that require that a specific
lock (or set of locks) would be to acquired prior to accessing
a field. To support it, the probes can be extended to check
that on relevant field accesses the protecting locks are indeed
acquired.

7.3 Transfer of Ownership and Uniqueness
In addition to the heap probes of Table 2, we provide an
update operation unique(ref) that enforces the uniqueness
of ref as a unique reference to its object by invalidating
all other references to it. They are replaced by a special
value which, when dereferenced, causes an exception. This
is similar to the widely used notion of uniqueness (e.g.,
[17, 5, 2]), except that we allow the creation of new aliases
to the object after the existing ones have been invalidated.

In Fig. 3, we want to transfer ownership of the newly-
created socket to the RequestThread. The local variable
wsocket is explicitly set to null so that the RequestThread

actually does own the socket. Leaving wsocket set would
violate the invariant, albeit harmlessly because that variable
is dead at that point.
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We would like to guarantee that the ownership
of the newly created socket is transferred from the
SimpleWebServer to the RequestThread. In the example of
Fig. 3 the programmer has to explicitly set the local variable
wsocket in run() to null such that the RequestThread thread
would indeed own the socket object when its execution be-
gins.

This could also be accomplished by a call to
unique(socket) inside of RequestThread, instead of the as-
sertion. This approach could be useful to detect, e.g., spuri-
ous references to the socket from inside the RequestThread,
as well as from outside.

7.4 Using Heap Probes in Production
Heap probes in our current implementation are excellent tool
for testing and debugging, but it is not yet clear whether they
are mature enough for deployment in a production system.
In principle they could be, since most of the expensive com-
putation in most heap probes can be reused for garbage col-
lection. Several concerns must be addressed before they are
production-strength.

Overhead Control PHALANX can use QVM’s overhead
manager to enforce an overhead limit for evaluating asser-
tions. The QVM overhead manager supports sampling of as-
sertions and can adaptively adjust sampling rates based on
the observed time consumed by assertion evaluation. We do
not describe this functionality here, as it is not a contribution
of this paper, but it can be leveraged in a realistic deployment
of heap queries.

Security and privacy Since heap queries are allowed to
observe the whole heap, there is a concern that a user can
gain access to information that would have been otherwise
protected by the Java security system. Note, however, that
our current heap probes only allow to reason about the shape
relationships between objects and do not allow to examine
the actual values stored in an object’s fields. The information
they reveal may be acceptable for many non-safety-critical
systems.

7.5 Integrating Heap Probes with other Tools
When assertions are not sampled, our approach is also ap-
plicable for reducing verification efforts. For example, es-
tablishing at runtime that parts of the heap are disjoint may
guide us to employ more efficient verification techniques
that abstract each part of the heap separately.

The heap probes can be extended to provide a compre-
hensive runtime support for ownership (e.g., the release and
capture operations of [27]). The unique operation we pro-
vide to enforce reference uniqueness is a first step in that
direction.

8. Related Work
QVM This work extends the previous work on QVM [4]
in the following aspects. We define a language for specify-

ing heap properties using new heap primitives and set oper-
ations. We modified JML compiler for intercepting quanti-
fied JML queries and mapping them to PHALANX routines.
We support new queries about path properties such as reach-
ability through or avoiding certain objects. We provide par-
allel algorithms for these queries and also significantly im-
prove the algorithms from [4] by reducing synchronization.
We define formal semantics of heap assertions, and show
that the parallel algorithms, some of which are quite subtle,
correctly implement this semantics. We provide a highly-
optimized implementation of all the parallel algorithms on
top of QVM. A reference implementation of PHALANX
based on JVMTI. This allows us to swap the implementa-
tion layer of PHALANX, and use it even without a specialized
VM. Of course, we use the specialized VM whenever possi-
ble to enjoy the significant performance improvement. We
evaluate the scalability of the parallel implementation and
compare it to reference implementation with JVMTI. We
explore real-world usage scenarios for heap assertions, and
demonstrating their usefulness for debugging and program
understanding. We evaluate the usefulness of heap asser-
tions in existing applications.

Heap Properties Mitchell [25] provides concise and in-
formative summaries of real world heap graphs arising in
production applications. The summaries are done offline and
follow a set of useful heuristic patterns for summarizing
graphs. In contrast, our goal is to check various user spec-
ified heap properties online. [26] studies offline heap snap-
shots with the goal of finding inefficiencies in memory usage
caused by program design.

Chilimbi et. al. [10] provide a two-stage framework suit-
able for testing, where in the first stage a set of likely heap
invariants based on node degree are computed at a small
number of program points. Then the instrumented program
is executed and checked against these invariants and a bug is
reported if a deviation is observed.

SLICK [29] is a runtime tool for checking separation
logic specifications of Java programs. It can check that a
footprint of the caller’s precondition contains the footprint
of the callee’s precondition, and that methods do not access
memory outside of their footprints. It can also check invari-
ants of linked data-structures, e.g., disjointness and reach-
ability through specific fields. In contrast, our tool does not
presently distinguish fields, which can be done easily enough
from Java. SLICK compiles the specification into Java meth-
ods, and instruments the program with calls to these meth-
ods. To track the footprints, each object is augmented with an
integer “color” field. This approach has higher space over-
head than ours; we do not use auxiliary fields. We support
thread ownership and other probes that traverse the entire
heap, whereas [29] only traverses the portion of the heap
reachable within the current method.

Various works have relied on the garbage collector to find
memory leaks. Jump et al. [19] use the collector to help in
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suggesting potential leaks. Bond et al. [7] studies efficient
leak detection for Java. Similarly to us, they make use of
available bits in the object header and the adaptive profiling
techniques from [16] applied on object use sites, in order
to reduce the space and time overheads. This concept could
be incorporated into our specialized VM as well. In a recent
paper by Aftandilian et al. [1], the authors suggest the idea
of piggybacking on an existing garbage collector in order to
check various heap properties. They propose isShared and
isObjectOwned, but do not provide an implementation of
these probes. In contrast, we support heap queries specified
in JML, and provide novel parallel algorithms for evaluation
of common queries.

Even though it is possible to create an arbitrary aliasing
structure, a recent study [15] identifies common patterns of
aliasing that arise in practice. These patterns account for
nearly all aliasing in their extensive study. We aim to provide
programmers with a way to express common patterns and
check them during runtime.

The combination of JML and heap primitives allows us
to express, and check, a rich range of queries. However, we
only provide optimized implementation for some of these
queries. In the future, we intend to implement more general
query-optimization strategies (e.g., see [12]) into our query
translation.

JVMTI JVMTI could also be used to implement heap
probes, though it would not work as well as our parallel
implementation in the VM. Unfortunately JVMTI does not
directly provide heap traversal from a thread. Implement-
ing a traversal from a thread using JVMTI hooks is possi-
ble but inefficient. This hampers the viability of some of our
most important heap probes. Furthermore, JVMTI hides the
garbage collector’s parallelism from the programmer. Using
JVMTI would add extra inefficiency to our probes, which do
a great deal of concurrent computation. Working inside the
virtual machine allows the use of crucial optimizations that
JVMTI resists.

Ownership Control Ownership simplifies reasoning about
object-oriented programs by controlling the permitted alias-
ing. Ownership has been used in many settings. It has been
used to ensure representation independence (e.g., [6]), to
guarantee thread safety (e.g., [8]), and to enable modular rea-
soning (e.g., [31]).

A wide variety of static approaches have been proposed
for enforcing ownership (e.g., see [11]). These approaches
typically impose strict restriction on ownership transfer, re-
quiring that uniqueness holds on transfer (e.g., [17, 5, 2]), or
impose a high annotation burden.

We believe that there is a way to express and enforce
ownership and sharing properties, without the need to transi-
tion into a full-fledged ownership type system. We hope that
over time this would lead to better structured code in terms
of ownership, and ultimately to the eventual adoption of a
proper ownership type system.

Our approach to ownership assertions complements static
approaches for enforcing ownership. In particular, our ap-
proach may enable a type system to tentatively allow some
cases when ownership cannot be established, leaving an
ownership check to be performed at runtime. In addition, the
VM support for ownership properties can provide an alterna-
tive efficient implementation to the runtime support required
by some ownership type systems (e.g., [27]).

9. Conclusion
In this paper, we presented PHALANX, a practical tool for
dynamically checking expressive heap queries. PHALANX
evaluates queries using parallel algorithms, thus leveraging
available system cores to speed up evaluation.

PHALANX provides primitives that can be used for rea-
soning about heap properties in JML annotations. This al-
lows us to harness the full power of JML annotations and
use heap queries inside preconditions, postconditions, in-
variants, and assertions. Common queries are translated by a
modified JML compiler into calls to the PHALANX runtime,
which evaluates them efficiently using parallel algorithms.

We presented an overall of 7 novel parallel algorithms for
heap queries, the algorithms use involved synchronization to
efficiently parallelize query evaluation.

We implemented PHALANX on top of a production virtual
machine, enabling us to use it on real world applications.
We also implemented a portable version of PHALANX using
JVMTI. Our evaluation demonstrates that: (i) PHALANX is
significantly more efficient than the JVMTI reference imple-
mentation; and (ii) parallel query evaluation scales almost
linearly with the number of cores.

Our preliminary study shows that heap queries are useful
in realistic scenarios for real applications. In particular, we
show how heap queries help us to easily detect several cases
of suspicious disposal of shared resources, and cases of re-
dundant synchronization over objects that are thread-owned.

We believe that PHALANX greatly increases the value
that programmers get from writing expressive assertions,
and hope that this additional benefit would lead to wider
adoption of annotation-based techniques.
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