
A Combination Method for Generating
Interpolants

Greta Yorsh1 and Madanlal Musuvathi2

1 School of Comp. Sci., Tel Aviv Univ., gretay@post.tau.ac.il,
2 Microsoft Research, Redmond, madanm@microsoft.com

Abstract. We present a combination method for generating interpolants
for a class of first-order theories. Using interpolant-generation procedures
for individual theories as black-boxes, our method modularly generates
interpolants for the combined theory. Our combination method applies
for a broad class of first-order theories, which we characterize as equality-
interpolating Nelson-Oppen theories. This class includes many useful the-
ories such as the quantifier-free theories of uninterpreted functions, linear
inequalities over reals, and Lisp structures. The combination method can
be implemented within existing Nelson-Oppen-style decision procedures
(such as Simplify, Verifun, ICS, CVC-Lite, and Zap).

1 Introduction

Given two logical formulas A and B such that A ∧ B is unsatisfiable, an in-
terpolant I is a formula such that (i) A implies I, (ii) I ∧ B is unsatisfiable,
and (iii) every non-logical symbol that appears in I appears in both A and B.
Craig interpolation theorem [2], a classic result in logic, proves the existence of
interpolants for all first-order formulas A and B.

Motivation While interpolation theorems are of great theoretical significance,
our interest in interpolants is particularly motivated by their use in program
analysis and model checking [12, 11, 13]. When A represents the current state of
a system, and B represents the error state of the system, an interpolant I for
A and B can be used as a goal-directed over-approximation of A. [12] uses this
technique to achieve faster termination while model checking finite state systems,
and [13] explores the possibility of using interpolants for model checking infinite
systems. Such applications typically require an efficient procedure to generate
an interpolant of A and B from the proof of unsatisfiability of A ∧ B. Existing
procedures are either too expensive or work only for specific first-order theories
(see Sec. 6).

In this paper, we provide a novel combination method for generating inter-
polants for a class of first-order theories. Using interpolant-generation procedures
for component theories as black-boxes, this method generates interpolants for
formulas in the combined theory. Provided the individual procedures for the

component theories can generate interpolants in polynomial time, our method
generates interpolants for the combined theory in polynomial time.

Our combination method relies on the Nelson-Oppen [14] framework for com-
bining decision procedures. In this framework, the decision procedures for com-
ponent theories communicate by propagating entailed equalities. The crucial idea
behind our combination method is to associate a partial interpolant (Sec. 3.1)
with each propagated equality. Whenever a component theory propagates an
equality, the combination method uses the interpolant-generation procedure for
that theory to generate the partial interpolant for the equality. When a theory
detects a contradiction, the combination method uses the partial interpolants of
all propagated equalities to compute the interpolant for the input formulas.

Our method places some restrictions on the theories that can be combined.
The Nelson-Oppen combination method requires that the component theories
have disjoint signatures and be stably-infinite [14, 16]. Our method naturally
inherits these restrictions. Additionally, our combination method restricts the
form of equalities that can be shared by the component theories. Specifically, if
a propagated equality contains a symbol that appears only in the input formula
A, then it does not contain symbols that appear only in B, and vice versa. We
show that this restricted form of equality propagation is sufficient for a class of
theories, which we characterize as equality-interpolating theories (Sec. 4). Many
useful theories including the quantifier-free theories of uninterpreted functions,
linear arithmetic, and Lisp structures are equality-interpolating, and thus can
be combined with our method.

Our method handles arbitrary quantifier-free input formulas. To handle Boolean
structure in the input formula and to extend the combination to non-convex
theories [14], we use an extended version of Pudlák’s algorithm for generating
interpolants for the propositional part. To show correctness of interpolants gen-
erated this way, we give an alternative explanation of Pudlák’s algorithm based
on partial interpolants.

The combination method has definite advantages over an interpolant gen-
eration procedure that is specific to a particular theory [17] or specific to a
particular combination of theories [13]. First, by being modular, this method
greatly simplifies the exposition, the proof of correctness, and the implementa-
tion of interpolant-generation procedures. More importantly, the combination
method makes it easy to incrementally extend interpolant generation for ad-
ditional theories. From a practical perspective, our combination method can
be easily integrated with existing Nelson-Oppen-style decision procedures, such
as [3, 1, 4, 5], greatly enhancing their utility for program analysis.

In summary, this paper makes the following contributions. First, the paper
presents an efficient method to generate interpolants for a general class of first-
order theories, namely the union of equality-interpolating theories. Second, this
paper shows that the classic Nelson-Oppen framework for combining decision
procedures can be extended in a novel way to combine interpolant-generation
procedures. Finally, we show that the basic combination algorithm can be gener-
alized to work for both convex and non-convex theories. Due to a lack of space,

2

this version does not contain proofs and contains only a partial discussion of the
results. For a full version, the reader is referred to our technical report [19].

2 Preliminaries

Throughout this paper we use A and B to denote logical formulas of interest,
restricting the syntax of A and B in different sections. Free variables in all
formulas are implicitly existentially quantified, as we are checking satisfiability.
We use symbol to refer to non-logical symbols and variables.3

Let V(φ) be the set of symbols that appear in a formula or a term φ. Given
formulas A and B, a symbol is A-local if it is in V(A)−V(B). Similarly, a symbol
is B-local if it is in V(B)−V(A). A symbol is AB-common if it is in V(A)∩V(B).
A formula or a term φ is AB-pure when either V(φ) ⊆ V(A) or V(φ) ⊆ V(B).
Otherwise, φ is AB-mixed. Note that an AB-mixed formula or term contains
at least one A-local symbol and at least one B-local symbol. Throughout this
paper, we use a to refer to an A-local variable, b to refer to a B-local variable,
and c, x and y to refer to a AB-common variables.

We use the standard notations `, ⊥, and > for entailment, contradiction,
and tautology.

Definition 1. (Craig interpolant) Given two first-order logical formulas A
and B such that A ∧ B ` ⊥, an interpolant for 〈A,B〉 is a first-order formula
I such that (i) A ` I, (ii) I ∧ B ` ⊥, and (iii) I refers only to AB-common
symbols.

Example 1. A is (a = c) ∧ (f(c) = a) and B is (c = b) ∧ ¬(b = f(c)). The
variables a, b, c are respectively A-local, B-local, AB-common variables, and f
is an AB-common function symbol. The interpolant f(c) = c for 〈A,B〉 involves
only AB-common symbols f and c. By definition, A and B contain only AB-
pure terms and formulas, however, AB-mixed terms and formulas may appear
in the proof of unsatisfiability of A∧B. In this example, an AB-mixed equality
a = b can be generated in a proof of unsatisfiability of A∧B, as discussed later.

2.1 Theory-Specific Interpolants

As opposed to a well-known definition of Craig interpolants (Def. 1), interpolants
for a specific first-order theory can be defined in several ways. In this section,
we provide the definition used in this paper, and discuss alternative definitions
in [19]. We adapt Def. 1 to the context of a specific first-order theory T . We
use `T to denote entailment in theory T . A theory T can contain uninterpreted

3 Like much literature on decision procedures and model-checking, we use the term
“variables” to refer to what in logic and theorem proving are “free constants.”
Similarly, “variables” in quantifier-free formulas refer to the corresponding Skolem-
constants, as the formulas are implicitly existentially quantified.

3

symbols (e.g., uninterpreted functions), as well as a designated set of interpreted
symbols (with intended meaning in T , or implicitly defined by T). 4

Definition 2. (theory-specific interpolant) Let T be a first-order theory of
a signature Σ and let L be the class of quantifier-free Σ-formulas. Let ΣT ⊆ Σ
denote a designated set of interpreted symbols in T . Let A and B be formulas in
L such that A ∧ B `T ⊥, i.e., the formula A ∧ B is unsatisfiable in the theory
T . We define a theory-specific interpolant for 〈A,B〉 in T to be a formula I in
L such that (i) A `T I, (ii) I ∧B `T ⊥, and (iii) I refers only to AB-common
symbols, and symbols in ΣT (interpreted by the theory T).

This definition differs from the traditional notion of an interpolant in two
important ways. First, we require a theory-specific interpolant to be a quantifier-
free formula. Second, a theory-specific interpolant can contain a symbol inter-
preted by the theory, even when if the symbol is A-local, or B-local or does not
appear at all in A and B. The following example and discussion motivates these
differences.

Example 2. Let A be c2 = car(c1) ∧ c3 = cdr(c1) ∧ ¬atom(c1) and B be
¬c1 = cons(c2, c3) in the theory of Lisp structures [15]. This theory interprets all
function symbols that appear in this example, i.e., ΣT = {car, cdr, cons, atom}.
The variables c1, c2, and c3 are AB-common, cons is B-local, and other func-
tion symbols are A-local. A ∧B is unsatisfiable in the theory of Lisp structures
because A entails c1 = cons(c2, c3) using the axiom: ∀x, y, z : ¬atom(x) ⇒
cons(car(x), cdr(x)) = x. According to Def. 2, c1 = cons(c2, c3) is a theory-
specific interpolant for 〈A,B〉. Note that if we do not allow cons, car, cdr, and
atom to appear in the interpolant, then there is no first-order formula that is an
interpolant for 〈A,B〉.

A theory T has no interpolants (or does not have the interpolation theorem),
if there exists a pair of input formulas A and B in L such that A ∧ B `T ⊥
but there exists no formula in L that satisfies conditions (i)-(iii). If we allow any
first-order Σ-formula as a theory-specific interpolant (instead of a quantifier-free
Σ-formula), then every theory has theory-specific interpolants, as follows from
Craig interpolation theorem. In practice however, we are interested in quantifier-
free interpolants to guarantee that the satisfiability checks involving interpolants
are complete, say in the subsequent stages of a program analysis. 5

If we strengthen requirement (iii) from Def. 2 to eliminate interpreted sym-
bols as well, then many interesting theories do not have interpolants (even if the
generated interpolants are not restricted to quantifier-free formulas). Example 2
demonstrates that the theory of Lisp structures does not have interpolants under

4 The details of how T is defined (e.g., set of axioms, set of models) are not essential
to our method.

5 In general, the language L of input formulas A and B is not necessarily the same as
the language of the generated interpolants. For example, one could require quantifier-
free formulas as input, but allow that generated interpolants contain quantifiers. Our
method applies to this generalized definition of theory-specific interpolants [19].

4

this stronger requirement. However, a weaker requirement, as stated in Def. 2,
is sufficient for our purposes, because in program analysis interpolants are used
to eliminate state information, encoded by uninterpreted symbols, whereas in-
terpreted symbols encode persistent semantics of statements, such as arithmetic
operations and memory manipulations.

2.2 Interpolants for Combined Theories

In this paper, we address the problem of computing interpolants for a combined
theory T . Without loss of generality, let T be a combination of two theories T1
and T2.6 Let Ti be a first-order theory of signature Σi, with a set of interpreted
symbols ΣTi

⊆ Σi, and Li be a class of Σi-formulas, for i = 1, 2. The signature
Σ of the combined theory T is a union of Σ1 and Σ2; also, the set of interpreted
symbols of T is ΣT = ΣT1 ∪ΣT2 . Let L be a class of Σ-formulas.

The input of the combination method consists of two L-formulas A and B.
Note that the input may contain mixed terms from both Σ1 and Σ2, but it does
not contain AB-mixed terms, by definition. An interpolant for 〈A,B〉 in the
combined theory T is an L-formula which may contain mixed terms from both
Σ1 and Σ2, but contains only AB-common uninterpreted symbols, or symbols
interpreted by T1 and T2.

Example 3. Consider a combination of the theory of uninterpreted functions and
the theory of linear inequalities (where the symbols {+, <,≤} have the standard
interpretation over reals) with the input formulas:

A
def
= (f(x1) + x2 = x3) ∧ (f(y1) + y2 = y3) ∧ (y1 ≤ x1)

B
def
= (x2 = g(b)) ∧ (y2 = g(b)) ∧ (x1 ≤ y1) ∧ (x3 < y3)

The first subformula of A contains a mixed term, with both f from the theory
of uninterpreted functions and + from the theory of linear inequalities.

We assume that T1 and T2 are stably-infinite theories with disjoint signatures,
i.e., the only common symbol for Σ1 and Σ2 is equality. Each Ti has a decision
procedure for satisfiability of a (quantifier-free) conjunction of Σi-literals (a lit-
eral is an atomic formula or its negation). These are standard requirements of
the component theories in the Nelson-Oppen framework. In addition, we assume
that each Ti has an efficient interpolant generation procedure that takes as in-
put a pair of conjunctions of Σi-literals Ai and Bi, (i.e., Ai and Bi are pure Σi

formulas). It returns an Li-formula as a theory-specific interpolant for Ai and
Bi. Finally, we make the assumption that each Ti is an equality-interpolating
theory; we explain and justify it in the next sections.

6 As usual, combination of theories means union of axioms or, equivalently, intersection
of sets of models.

5

3 The Combination Method

This section deals with the simple case in which (i) input formulas are con-
junctions of pure literals, and (ii) all theories are convex, i.e., if a disjunction
of equalities between variables is entailed, then at least one of the disjuncts is
entailed [14]. These restrictions greatly simplify our description, while capturing
the intuition behind our algorithm; they are relaxed in the following sections.

Purification Our method uses the Nelson-Oppen framework [14] to compute
an interpolant for the combined theory. We assume that the unsatisfiability of
input formula ψ was proved by a Nelson-Oppen procedure. The first step of the
Nelson-Oppen procedure is purification. Given a mixed formula ψ, it constructs
an equisatisfiable formula ψ1 ∧ ψ2, where ψi consists only of pure Σi-literals.
Purification introduces new variables to replace terms of one signature that
appear as sub-terms of terms in the other signature. Equalities defining these
variables are added to the input formulas.

In our setting, the input ψ is a conjunction A ∧ B. We purify A and B
separately. This guarantees that the new variables generated by the purification
of A do not appear in the interpolant, because these variables are A-local. The
result of purification of A is A1 ∧ A2 such that Ai contains only symbols from
Σi and A1 ∧A2 is satisfiable if and only if A is satisfiable; similarly, for B.

Example 4. After purifying A and B from Example 3 separately, we have that
A = AUIF ∧ALI and B = BUIF ∧BLI , where

AUIF
def
= a1 = f(x1) ∧ a2 = f(y1)

ALI
def
= a1 + x2 = x3 ∧ a2 + y2 = y3 ∧ y1 ≤ x1

BUIF
def
= x2 = g(b) ∧ y2 = g(b)

BLI
def
= x1 ≤ y1 ∧ x3 < y3

a1 and a2 are A-local variables, b is a B-local variables, and f and g are A-
local and B-local function symbols, respectively. We will use this as a running
example.

Equality Propagation Let A and B be conjunctions of pure literals in the
signature Σ of the combined theory T . A is A1 ∧ A2 such that Ai contains

only symbols from Σi; similarly, for B. Let ψi
def
= Ai ∧ Bi, for i = 1, 2. Note

that ψi is a pure formula in Σi, but it is not AB-pure. Suppose that a Nelson-
Oppen procedure shows the unsatisfiability of ψ1 ∧ ψ2 in T . It generates the
set of equalities between variables, denoted by Eq.7 Eq is sufficient to show the
unsatisfiability of A ∧ B using only one of the theories; assume, without loss of
generality, that this theory is T1. That is, A∧B `T ⊥ follows from the fact that
Eq ∧A1 ∧B1 `T1 ⊥.

7 [14] shows that it is sufficient to propagate only equalities between variables.

6

Example 5. The input A∧B from Example 4 is not satisfiable, because A∧B `T
x1 = y1 ∧ a1 = a2 ∧ x2 = y2 ∧ x3 = y3, which contradicts x3 < y3 from
B. The set of equalities Eq = {x1 = y1, a1 = a2, x2 = y2} is sufficient to
derive a contradiction using only the theory of linear inequalities: ALI ∧ BLI ∧
Eq `LI ⊥. An interpolant for 〈A,B〉 is y1 < x1 ∨ x2 − y2 = x3 − y3. Note that
the symbols g and f are eliminated because they denote local uninterpreted
functions, but theory-specific interpreted functions + and < are not eliminated,
recall the discussion of Def. 2(iii).

Overview of our combination method The idea is to use an interpolant
generated by T1 from a proof of unsatisfiability of Eq ∧A1 ∧B1, to generate an
interpolant for 〈A,B〉 in the combined theory T .

The interpolant-generation procedure for T1 takes as input two formulas A′

and B′ for which the conjunction A′ ∧ B′ is not satisfiable. In our case, the
unsatisfiable conjunction is Eq ∧ A1 ∧ B1. The question is how to split it into
two formulas, A′ and B′. The condition for splitting is that the common symbols
for 〈A′, B′〉 should be (a subset of) AB-common symbols, because we would like
to use the resultant interpolant for 〈A′, B′〉 as a part of an interpolant for the
original A and B.

Suppose that Eq contains only AB-pure equalities. We split Eq into an A-
part and a B-part: all the equalities from Eq that involve A-local symbols are
added to the A-part; the B-part contains the rest of Eq.8 We define A′ to be
a conjunction of A1 and the A-part of Eq, and similarly for B′. Now, we can
generate an interpolant for 〈A′, B′〉 in theory T1, using the interpolant generation
procedure for T1, as we planned.

It is important to note that the theory-specific interpolant for 〈A′, B′〉 in
theory T1 is not an interpolant for the input formula 〈A,B〉 in the combined
theory T . It uses only AB-common symbols, i.e., satisfies property (iii) of Def. 2,
but it need not satisfy the properties (i) and (ii). The reason, intuitively, is that
A does not imply A′, because A′ contains equalities which cannot be derived
without information from B, as shown in the following example:

Example 6. In Example 5, the theory of linear inequalities derives a contra-
diction from A′ = ALI ∧ a1 = a2 and B′ = BLI ∧ x1 = y1 ∧ x2 = y2. The
theory-specific partial interpolant for 〈A′, B′〉 is x2 − y2 = x3 − y3. It is not an
interpolant for the input 〈A,B〉, because A does not entail x2− y2 = x3− y3 (in
the combined theory), as A alone does not entail a1 = a2.

To address this problem, we attach, for each propagated equality, addi-
tional information, called “partial interpolant”. This notion is formally defined in

8 For equalities with only AB-common variables, the question as to whether to add
them “to B or not to B” can be answered in either way, as long as the answer is
always the same for a given variable, and consistent for all equalities that appear
in the proof of unsatisfiability. This gives us some control over how precise the
interpolant is (how “close” it is to A or B), but we have not explored this direction
yet. In all our examples, we add AB-common equalities to the B-part.

7

Sec. 3.1, and used along with a theory-specific interpolant for 〈A′, B′〉 in theory
T1 to generate an interpolant for 〈A,B〉 in T .

Finally, if Eq contains AB-mixed equalities, we construct an equivalent set
of AB-pure equalities, as explained in Sec. 4. This is the reason for restricting
our method only to equality-interpolating theories.

3.1 Partial Interpolants

In the following definitions we assume that all equalities generated in the Nelson-
Oppen framework are AB-pure equalities, as guaranteed by Sec. 4.

A partial interpolant is a formula associated with each formula derived by
the theories in the proof of unsatisfiability. To simplify the definitions, we as-
sociate a (trivial) partial interpolant with each input formula as well. A partial
interpolant for ⊥ is the interpolant for the input formula 〈A,B〉. The crucial
part of our combination method is a way to associate a partial interpolant with
each propagated equality. Whenever a decision procedure for a component the-
ory Ti generates an equality e that needs to be propagated, our method provides
a partial interpolant for that equality. Our method does not require a special
interface for generating partial interpolants, but uses the interpolant-generation
procedures of the component theories. A partial interpolant is a boolean com-
bination of the partial interpolants for the inputs and a theory-specific partial
interpolant. A theory-specific partial interpolant is generated by T1 using only
the input formulas and equalities generated for other theories, without using
their partial interpolants.

Definition 3. (projection) Let Θ be a conjunction of AB-pure literals. Let
Θ|A be a conjunction of A-local literals of Θ, and Θ|B be a conjunction of B-
local and AB-common literals of Θ. Note that Θ = Θ|A ∧Θ|B.

Definition 4. (theory-specific partial interpolant) Let A′ and B′ be con-
junctions of pure literals in Σi, and let e be an AB-pure atomic formula gen-
erated by the decision procedure for the theory Ti, i.e., A′ ∧ B′ `Ti

e (thus,
A′ ∧B′ ∧ ¬e `Ti

⊥).
An interpolant generated for 〈A′ ∧ ¬(e|A′), B′ ∧ ¬(e|B′)〉 by Ti’s procedure is

a theory-specific partial interpolant for e w.r.t. 〈A′, B′〉, denoted by φiA′,B′(e).

Intuitively, we add ¬e to A′ if e contains an A-local symbol, otherwise we add
it to B′, using the assumption that e is AB-pure, i.e., e cannot contain both
A-local and B-local symbols. Thus, any theory-specific partial interpolant for e
contains only AB-common symbols.

Example 7. The first step of a proof of unsatisfiability in Example 4 uses the

theory of linear inequalities to derive the equality x1 = y1 from A′
def
= ALI ,

which contains the literal (y1 ≤ x1), and B′
def
= BLI , which contains the literal

(x1 ≤ y1). We use interpolant generation of the theory of linear inequalities
to derive an interpolant for (y1 ≤ x1) and (x1 ≤ y1) ∧ ¬(x1 = y1). Trivially,
the interpolant is y1 ≤ x1, which is the theory-specific partial interpolant for
x1 = y1, denoted by φLI

A′,B′(x1 = y1).

8

Let e be an AB-pure equality such that A ∧ B ` e. We define a partial
interpolant for e w.r.t. 〈A,B〉 as follows.

Definition 5. (partial interpolant) Suppose that e is derived from A ∧B in
the Nelson-Oppen framework by a theory Ti. Suppose that Ti derives e from two
conjunctions of pure literals in Σi, denoted by Ai and Bi, and a set of AB-pure
equalities Eq: Ai ∧Bi ∧ Eq ` e.

A partial interpolant for e w.r.t. 〈A,B〉 denoted by φA,B(e) is defined induc-
tively. The base cases: If e ∈ Ai then φA,B(e) is ⊥. If e ∈ Bi then φA,B(e) is >.

The inductive definition: Let A′
def
= Ai ∧ Eq|A and B′

def
= Bi ∧ Eq|B.

φA,B(e) = (φiA′,B′(e) ∨
∨

a∈A′

φA,B(a)) ∧
∧
b∈B′

φA,B(b) (1)

Note that this definition includes the special case when e is ⊥.

Example 8. Table 1 shows the partial interpolants generated by the combination
method for the input formulas from Example 4. In the second step of the proof,
the decision procedure for the theory of uninterpreted functions generates the
equality a1 = a2 from the input AUIF and BUIF defined in Example 4, and the
equality (x1 = y1). First, we compute a theory-specific partial interpolant for
a1 = a2, denoted by φUIF

A′,B′(a1 = a2), where A′ = AUIF and B′ = BUIF ∧ (x1 =
y1), because x1 and y1 are AB-common. By Def. 4, we run the interpolant-
generation procedure of the theory of uninterpreted functions with the input
A′ ∧ ¬(a1 = a2) and B′, and we get ¬(x1 = y1), which is φUIF

A′,B′(a1 = a2).

We compute a partial interpolant φA,B(a1 = a2) using φUIF
A′,B′(a1 = a2) =

¬(x1 = y1) and φA,B(x1 = y1) = (y1 ≤ x1) (and the partial interpolant for the
input equality x1 = y1, generated in the previous step). The result φA,B(a1 = a2)
is (y1 ≤ x1) ∧ ¬(x1 = y1).

Theory T e φT
A′,B′(a1 = a2) φA,B(e)

LI x1 = y1 y1 ≤ x1 y1 ≤ x1
UIF a1 = a2 ¬(x1 = y1) y1 < x1
UIF x2 = y2 > >
LI ⊥ x2 − y2 = x3 − y3 x2 − y2 = x3 − y3 ∨ y1 < x1

Table 1. Partial interpolants generated by the combination method for the input
formulas from Example 4. In each step of the process, the decision procedure for the
component theory T generates a formula e and the corresponding partial interpolant.

If a theory proves unsatisfiability, the partial interpolant φA,B(⊥) is an inter-
polant for 〈A,B〉, as shown in the following lemma.

Lemma 1. The partial interpolant φA,B(e) from Def. 5 is an interpolant for
A∧¬(e|A) and B ∧¬(e|B) in the combined theory T . In the special case when e
is ⊥, φA,B(⊥) is an interpolant for 〈A,B〉.

9

Example 9. In the last step of the proof, the decision procedure for the theory of

linear inequalities derives a contradiction from A′
def
= ALI ∧ (a1 = a2) and B′

def
=

BLI ∧ (x2 = y2), and generates a theory-specific partial interpolant φLI
A′,B′(⊥)

def
=

(x2 − y2) = (x3 − y3). It is then used together with the partial interpolant for
a1 = a2 in the A-part (and the trivial partial interpolant > for x2 = y2 in the B-

part) to generate a partial interpolant for ⊥: φA,B(⊥)
def
= φLI

A′,B′(⊥)∨ φA,B(a1 =
a2) In the last step, φA,B(⊥) is x2 − y2 = x3 − y3 ∨ y1 < x1. It is easy to verify
that φA,B(⊥) is an interpolant for the input formulas A and B from Example 3.

4 Equality-Interpolating Theories

The combination method in Sec. 3 requires that each component theory only
propagates AB-pure equalities. This restriction arose as partial interpolants are
not defined for AB-mixed equalities. This section justifies the restriction by
showing that for a class of first-order theories, defined as equality-interpolating
theories, it is sufficient to share AB-pure equalities. Also, this section shows that
many interesting theories including the quantifier-free theories of uninterpreted
functions, linear arithmetic, and Lisp structures are equality-interpolating.

The basic idea behind equality-interpolating theories is the following. When-
ever a decision procedure for a component theory generates an equality a = b,
where a is an A-local variable and b is a B-local variable the combination method
requires that the theory also produce an AB-common term t, such that a = t
and t = b. Instead of propagating a = b, the theory now propagates these two
AB-pure equalities separately. For an equality-interpolating theory, such an AB-
common term t exists for all entailed AB-mixed equalities:

Definition 6. (equality-interpolating theory) Theory T is equality-interpolating
when for all A and B in T , and for all AB-mixed equalities between variables
a = b such that A ∧ B `T a = b, there exists a term t such that A ∧ B `
a = t ∧ t = b and t contains only AB-common symbols. We say that t is an
equality-interpolating term for a = b w.r.t. 〈A,B〉.

Example 10. This example shows that not all theories are equality-interpolating.
Consider a theory with two relation symbols P andQ, and the axiom ∀abc P (a, c)∧
Q(c, b)⇒ a = b. When A contains P (a, c) and B contains Q(c, b), A∧B ` a = b.
However, there is no equality-interpolating term for a = b.

The proof of correctness of the combination method for equality-interpolating
theories follows from Def. 6 and Lem. 1. Whenever a decision procedure for
a component theory generates an AB-mixed equality a = b, the combination
method propagates two equalities a = vt and vt = b, where vt is a previously
unseen variable representing the equality-interpolating term t. The combination
method treats these new variables vt as AB-common symbols, thus the two
equalities propagated instead of a = b are AB-pure and so the correctness of
the combination method described in Sec. 3 applies. After the interpolant is
generated, occurrences of vt in it are replaced by the associated term t. By

10

Def. 6, t contains only AB-common symbols, thus the interpolant is an AB-
common formula, as required.

The modification mentioned above does not affect the Nelson-Oppen frame-
work in terms of complexity, termination or soundness. All component theories
contain equality axioms, thus each theory can infer a = b from the equalities
a = vt and vt = b. Moreover, as the variable vt is previously unseen, this is
the only inference the theories can make. Note, the number of new variables vt
generated in this process is bounded by the number of AB-mixed equalities used
in the proof of unsatisfiability of A ∧B.

In the remainder of this section, we prove that some useful theories are
equality-interpolating.

The theory of uninterpreted functions A decision procedure for the the-
ory of uninterpreted functions can be easily modified to generate only AB-pure
equalities. The idea is to modify the implementation of the congruence closure
algorithm [15] to choose a representative for an equivalence class to be an AB-
common term, whenever an equivalence class contains at least one such term.
When an equivalence class contains both A-local and B-local terms, it also con-
tains an AB-common term, as follows from:

Lemma 2. The theory of uninterpreted functions is equality-interpolating.
Sketch of Proof: We prove a stronger claim: there exists an interpolating term t
for all equalities of the form ta = tb entailed by A ∧ B, where ta is an A-local
term (involves at least one A-local symbols or variable) and tb is a B-local term.

Note that ta = tb is an AB-mixed equality, but it does not contain AB-mixed
terms. Every proof of ta = tb that uses AB-mixed terms can be transformed into
a proof of ta = tb, in which all derivations involve only AB-pure terms. Assume
that a proof of ta = tb from A ∧ B uses only AB-pure terms in all derivations.
The proof proceeds by induction on the proof tree of ta = tb from A ∧B.

The theory of Lisp structures A decision procedure for the theory of Lisp
structures based on the congruence closure algorithm is described in [15]. A proof
generated by the decision procedure for the theory of Lisp structures can contain
proof rules of the theory of uninterpreted functions and an additional rule:

z = cons(x, y)

x = car(z) ∧ y = cdr(z) ∧ ¬atom(z)
(2)

The interpolant-generation procedure for the theory of uninterpreted functions
[13] can be adapted to the theory of Lisp structures, as follows. Given a proof
P of unsatisfiability of A ∧ B in the theory of Lisp structures, we replace each
derivation in P that uses proof rule (2) by the formula it derives, which is
treated as an axiom. The result is a proof of unsatisfiability PUIF in the theory
of uninterpreted functions, where the symbols car, cdr, cons, and atom are
treated as uninterpreted function symbols.

11

Let H be the set of new axioms added to P . Using Lem. 2, we can ensure that
all formulas in H are AB-pure. Thus, the interpolant generated for A ∧ (H|A)
and B ∧ (H|B) by the theory of uninterpreted functions using the proof PUIF ,
is the interpolant for 〈A,B〉 in the theory of Lisp structures.

The theory of linear inequalities To show that the theory of linear in-
equalities is equality-interpolating, we first show that there is an inequality-
interpolating term for every AB-mixed inequality between variables, entailed by
A ∧B.

Definition 7. (inequality-interpolant) For an AB-mixed inequality a ≤ b
such that A ∧ B ` a ≤ b, an inequality-interpolant is an AB-common term t
such that A ∧B ` a ≤ t ≤ b.

If A ∧B ` (a ≤ b) ∧ (b ≤ a) and t1, t2 are the inequality-interpolating terms for
a ≤ b and b ≤ a respectively, it follows that a = b = t1 = t2. Thus, t1 (or t2) is
an equality-interpolating term for a = b.

Lemma 3. Given conjunctions of linear arithmetic constraints A,B, an inequality-
interpolant exists for every AB-mixed inequality a ≤ b entailed by A ∧B.

Proof: Consider an AB-mixed inequality a ≤ b derived from A ∧ B. Let A and
B respectively contain m and n linear constraints. These constraints are of the
following form

A ≡
∧

1≤i≤m

0 ≤ si + ti and B ≡
∧

1≤j≤n

0 ≤ s′j + t′j

where the terms si are A-local, the terms s′j are B-local, and the terms ti and
t′j are AB-common. Any linear inequality that can be derived from A and B
can be obtained by a linear combination of the constraints in A and B. As
A ∧ B ` a ≤ b (or equivalently 0 ≤ −a + b), there exist non-negative constants
d1, d2, . . . , dm, d

′
1, d
′
2, . . . , d

′
n such that

0 ≤
m∑
i=1

di(si + ti) +

n∑
j=1

d′j(s
′
j + t′j) = −a+ b (3)

Consider the linear combination in Equation 3 restricted to the terms in A. As
the terms s′j and t′j contain no A-local variables, we have 0 ≤

∑m
i=1 di(si +

ti) = −a + t for some AB-common term t. Similarly, considering the linear
combination restricted to terms in B, we have 0 ≤

∑n
j=1 d

′
j(s
′
j + t′j) = t′ + b

for some AB-common term t′. From Equation 3 it follows that t = −t′. Thus,
A ∧B ` (a ≤ t) ∧ (t ≤ b), and t is the inequality-interpolating term for a ≤ b.

Lemma 4. Theory of linear arithmetic is equality-interpolating.

Proof: Directly follows from Lem. 3 and the discussion following Def. 7.

12

5 Interpolants for Arbitrary Quantifier-Free Formulas

Sec. 3 describes the combination of interpolant-generation procedures for con-
vex theories with disjoint signatures, when the input formulas A and B are
conjunctions of literals. This section relaxes these constraints. First, we describe
Pudlák’s algorithm for generating propositional interpolants [17]. Then, we in-
tegrate our method with an extended version of Pudlák’s algorithm in the lazy-
proof-explication framework for checking satisfiability of quantifier free first-order
formulas with arbitrary boolean structure.

Pudlák’s Algorithm We describe Pudlák’s algorithm for generating proposi-
tional interpolants and give an alternative correctness argument based on partial
interpolants. This algorithm takes as input a proof of unsatisfiability of a propo-
sitional formula A ∧ B and generates a propositional interpolant I for 〈A,B〉.
The algorithm generates a partial interpolant p(c) for each clause c derived in
the proof, as described below. The partial interpolant generated for the empty
clause p(⊥) is an interpolant I for 〈A,B〉.

Definition 8. Given two clauses of the form c1
def
= x∨ c′1 and c2

def
= ¬x∨ c′2, the

resolution of c1 and c2 is a clause c
def
= c′1 ∨ c′2, denoted by c = resolvex(c1, c2),

where x is called the pivot variable.
Let 〈A,B〉 be a pair of clause sets such that A ∧B ` ⊥. Let T be a proof of

unsatisfiability of A ∧ B. The propositional formula p(c) for a clause c in T is
defined by induction on the proof structure:

(i) if c is one of the input clauses then
(a) if c ∈ A, then p(c) := ⊥;
(b) if c ∈ B, then p(c) := >.

(ii) otherwise, c is a result of resolution, i.e., c = resolvex(c1, c2)
(a) if x ∈ A and x /∈ B (x is A-local), then p(c) := p(c1) ∨ p(c2)
(b) if x /∈ A and x ∈ B (x is B-local), then p(c) := p(c1) ∧ p(c2)
(c) otherwise (x is AB-common), p(c) := (x ∨ p(c1)) ∧ (¬x ∨ p(c2)).

The correctness of the algorithm is guaranteed by the following invariant: for
each clause c ∈ T , the partial interpolant p(c) is an interpolant for 〈gA(c), gB(c)〉
where gA(c)

def
= A∧((¬c)|A) and gB(c)

def
= B∧((¬c)|B) When c is an empty clause

⊥, we get that 〈gA(⊥), gB(⊥)〉 is 〈A,B〉, and the formula p(⊥) is the result.

Lazy Proof-Explication Framework In order to leverage advances in SAT
solving, state-of-the-art decision procedures [1, 4, 5] based on the Nelson-Oppen
framework use a SAT solver to perform propositional reasoning. Given an input
formula, the SAT solver treats all atomic formulas occurring in the input formula
as free boolean variables. Suppose that the SAT solver finds an assignment to
the boolean variables that satisfies the input formula propositionally. This as-
signment is a conjunction of (first-order) literals. It is passed to a Nelson-Oppen
decision procedure.

13

The decision procedure attempts to derive a contradiction from this conjunc-
tion of literals. If it cannot derive a contradiction, the input formula is declared
as satisfiable. If a contradiction is detected, the negation of the current assign-
ment is added to the SAT solver as a new conflict clause. Because this new clause
is in conflict with the current assignment, the SAT solver backtracks, searching
for a new assignment. If it cannot find another assignment, it has proved that
the propositional abstraction is unsatisfiable. Thus, the input formula is unsat-
isfiable.

Integration with an Extended Pudlák’s Algorithm We assume that the
unsatisfiability of A and B in theory T is proved by a lazy proof-explication
framework. That is, a SAT solver proved propositional unsatisfiability of A and B
using a set of conflict clauses C. For each conflict clause c in C, ¬c is a conjunction
of (first-order) literals. By construction, we have a proof of unsatisfiability of ¬c.
Also, it is guaranteed that ¬c contains only AB-pure literals, as it contains
only the original literals from A or B (each of which is AB-pure by definition).
Therefore, we can use the method described in Sec. 3 to generate an interpolant
between the A-part of ¬c and the B-part of ¬c, which is also called a partial
interpolant for the conflict clause c.

Definition 9. (partial interpolants for clauses) Let A ∧B `T ⊥ be proved
by a decision procedure for T using a corresponding set of conflict clauses C,
such that A ∧ B ∧ C is propositionally unsatisfiable. A partial interpolant for
a clause c is denoted by φA,B(c). If c ∈ A, then φA,B(c) = ⊥, if c ∈ B, then
φA,B(c) = >, otherwise, for a conflict clause c ∈ C, a partial interpolant φA,B(c)
is the interpolant for 〈(¬c)|A, (¬c)|B〉 in theory T , where the projection operation
is given in Def. 3.

We use partial interpolants φA,B(c) defined above as initial values for p(c)
in the extended version of Pudlák’s algorithm, instead of using the standard
initialization of Pudlák’s algorithm from Def. 8(i). (To see why this change is
necessary, recall that a conflict clause may involve both A-local and B-local
literals.) Partial interpolants in Def. 9 satisfy the invariant of Pudlak’s algorithm.

There is no change in phase (ii) of Def. 8. The input for the extended algo-
rithm consists of three clause sets, denoted by 〈A,B;C〉, all three of them are
necessary for an unsatisfiability proof. However, in each resolution step, the pivot
is guarantee to be in A or B, because all literals in conflict clauses C appear in
the original formulas A and B. Note that the result is a first-order interpolant,
which is a combination of the original clauses and the interpolants generated for
the conflict clauses. The correctness of the interpolant generated by the extended
Pudlák’s algorithm follows from the correctness of theory-specific interpolants
for conflict clauses.

Lemma 5. The interpolant for 〈A,B;C〉 generated by the extended Pudlak’s
algorithm using partial interpolants for clauses as in Def. 9 is an interpolant for
the input 〈A,B〉 in theory T .

14

6 Related Work

Interpolants are of great theoretical and practical significance. Our interest in
interpolants is particularly motivated by their use in program analysis and model
checking. [12] uses interpolants to achieve faster termination while model check-
ing finite state systems, and [13] explores the possibility of using interpolants for
model checking infinite systems.

Craig interpolation theorem for first-order logic [2] shows the existence of a
first-order interpolant for any pair of formulas in first-order logic. While con-
structive proofs of Craig interpolation theorem exist [6, 18, 9], these proofs are
(to the best of our knowledge) based on cut elimination and result in very expen-
sive interplation-generation procedures. (See [8] for references on the complexity
of cut elimination.)

On the other hand, interpolants can be generated efficiently for formulas
in a restricted subclass of first-order logic. When the input formulas A and
B are propositional, or when they are both conjunctions of linear constraints,
Pudlák [17] provides interpolant-generation procedures that are linear in the
proof of unsatisfiability of A ∧ B. McMillan [13] extends these procedures to
compute interpolants for quantifier-free formulas in the combined theory of un-
interpreted functions and linear arithmetic.

Finally, the Nelson-Oppen framework is being constantly improved. For ex-
ample, a recent work by [7] defines sufficient conditions for extending the Nelson-
Oppen framework to theories with non-disjoint signatures, e.g., the theory of
bit-vectors, presburger arithmetic, a theory of Lists with length operator, or
theories of many-sorted logics. In the extended framework, the theories can ex-
change atomic formulas over the intersection of their signatures, and not only
equalities between variables. Our method, by being modular, is well-suited to
support such advances in the Nelson-Oppen framework. Given the unsatisfiabil-
ity proof with only AB-pure equalities, our method can generate interpolants
for non-disjoint theories, because partial interpolants in Def. 4 and Def. 5 do not
assume that the theories exchange only equalities.

7 Conclusions and Future Work

The combination method for equality-interpolating theories presented in this
paper proves existence of quantifier-free interpolants for a combined theory, if all
the component theories have quantifier-free interpolants. If some of the theories
has quantified interpolants, our method produces correct, quantified interpolant
for the combined theory. Currently, our method applies only to quantifier-free
input formulas. We believe the method can be extended to handle quantified
formulas, because the proof of unsatisfiability contains a finite instantiation of
the quantified variables.

Our method shows how to integrate interpolant generation for various theo-
ries within the existing satisfiability-checking tools, adding only a small overhead.
This provides a practical way to use interpolants for speeding up termination of
software model checking and real-time model checking.

15

Finally, the combination of interpolant-generation procedures demonstrates
that equality propagation in the Nelson-Oppen framework can be used to combine
operations other than satisfiability checking. Recently, [10] have used a similar
approach to combine abstract domains. We believe that similar combination
methods for operations would enhance program analysis tools while retaining the
flexibility of the Nelson-Oppen framework to extend with additional theories.

References

1. C. Barrett and S. Berezin. CVC Lite: A new implementation of the cooperating
validity checker. In CAV, pages 515–518, 2004.

2. W. Craig. Linear reasoning. a new form of the herbrand-gentzen theorem. J.
Symbolic Logic, 22:250–268, 1957.

3. D. Detlefs, G. Nelson, and J. Saxe. Simplify theorem prover.
http://research.compaq.com/SRC/esc/Simplify.html.

4. J.-C. Filliâtre, S. Owre, H. Rueß, and N. Shankar. ICS: integrated canonizer and
solver. In CAV, pages 246–249, 2001.

5. C. Flanagan, R. Joshi, X. Ou, and J. B. Saxe. Theorem proving using lazy proof
explication. In CAV, pages 355–367, 2003.

6. J. H. Gallier. Logic for Computer Science: Foundations of Automatic Theorem
Proving. John Wiley & Sons, New York, 1987.

7. V. Ganesh, S. Berezin, C. Tinelli, and D. L. Dill. Combination results for many-
sorted theories with overlapping signatures. Technical report, Department of Com-
puter Science, Stanford University, 2004.

8. P. Gerhardy. Refined Complexity Analysis of Cut Elimination. In CSL, pages
212–225, 2003.

9. G.Takeuti. Studies in Logic, volume 81. Elsevier, Amsterdam, North Holland,
1975.

10. Sumit Gulwani and Ashish Tiwari. Unpublished manuscript.

11. T. A. Henzinger, R. Jhala, R. Majumdar, and K. L. McMillan. Abstractions from
proofs. In POPL, pages 232–244, 2004.

12. K.L. McMillan. Interpolation and sat-based model checking. In CAV, pages 1–13,
2003.

13. K.L. McMillan. An interpolating theorem prover. In TACAS, pages 16–30, 2004.

14. G. Nelson and D. C. Oppen. Simplification by cooperating decision procedures.
ACM Transactions on Programming Languages and Systems, 1(2):245–257, Octo-
ber 1979.

15. G. Nelson and D. C. Oppen. Fast decision procedures based on congruence closure.
J. ACM, 27(2):356–364, 1980.

16. Derek C. Oppen. Complexity, convexity and combinations of theories. In Theoret-
ical Computer Science, volume 12, pages 291–302, 1980.

17. P. Pudlák. Lower bounds for resolution and cutting planes proofs and monotone
computations. J. of Symbolic Logic, 62(3):981–998, 1995.

18. S.C.Kleene. Mathematical Logic. Wiley Interscience, New York, 1967.

19. G. Yorsh and M. Musuvathi. A combination method for generating interpolants.
Technical Report MSR-TR-2004-108, Microsoft Research, October 2004.

16

A Proof of Correctness of Partial Interpolants

Lemma 1 The partial interpolant φA,B(e) from Def. 5 is an interpolant for
A ∧ ¬(e|A) and B ∧ ¬(e|B). In the special case when e is ⊥, φA,B(⊥) is an
interpolant for 〈A,B〉.
Proof: Suppose that Ti derives e from two conjunctions of pure literals in Ti,
denoted by Ai and Bi, and a set of AB-pure equalities Eq. We prove by induction
on Eq. Before we proceed, note that we can replace e|A′ by e|A, because the set
of symbols that occur in e is a subset of those in A′, which is a subset of those
in A. Similarly, we can replace e|B′ by e|B .

Base case: suppose that Eq is empty, then A′ = Ai and B′ = Bi. Using the
base case of Def. 5, we get that for all a ∈ A′, φA,B(a) = ⊥ and for all b ∈ B′,
φA,B(b) = >; thus, φA,B(e) = φiAi,Bi

(e). Using Def. 4 we get that φA,B(e) is an
interpolant for 〈Ai ∧ ¬(e|A), Bi ∧ ¬(e|B)〉. The literals of Ai and Bi are subsets
of the literals of A and B, respectively, A ` Ai and B ` Bi. Thus, φA,B(e) is an
interpolant for 〈A ∧ ¬(e|A), B ∧ ¬(e|B)〉.

We show the inductive step for the case where Eq containing two equalities,
an A-local equality a and a B-local equality b. In this case, A′ = Ai ∧ a and
B′ = Bi∧ b. and φA,B(e) = (φiA′,B′(e)∨φA,B(a))∧φA,B(b). It is straightforward
to generalized the proof for an arbitrary number of AB-pure equalities Eq. In-
ductive hypothesis: φA,B(a) is an interpolant for 〈A ∧ ¬a,B〉, and φA,B(b) is an
interpolant for 〈A,B ∧ ¬b〉.

Show that A ` φA,B(e). By Def. 4 we get that (Ai ∧ a) ∧ ¬(e|A) ` φiA′,B′(e),

which is equivalent to Ai ∧ ¬(e|A) ` (φiA′,B′(e) ∨ ¬a). By inductive hypothesis
for a we get that A ∧ ¬a ` φA,B(a), which is equivalent to A ` (φA,B(a) ∨ a).
The conjunction of the above facts, along with A ` Ai, produces A ∧ ¬(e|A) `
(φiA′,B′(e)∨¬a)∧ (φA,B(a)∨a) ` φiA′,B′(e)∨φA,B(a), last step using resolution.
By inductive hypothesis for b to get that A ` φA,B(b). Combining these, we get
that A ∧ ¬(e|A) ` (φiA′,B′(e) ∨ φA,B(a)) ∧ φA,B(b).

Show that B∧φA,B(e) ` ⊥. By Def. 4 we get that Bi∧b∧¬(e|B)∧φiA′,B′(e) `
⊥. We can replace Bi with B because B ` Bi. It implies that B ∧ b ∧ ¬(e|B) ∧
φA,B(a) ` ⊥. By inductive hypothesis for a we get that B ∧ φA,B(a) ` ⊥.
Therefore, the disjunction of the above implies ⊥, and after regrouping, we get
that B ∧ b ∧ ¬(e|B) ∧ (φiA′,B′(e) ∨ φA,B(a)) ` ⊥. By inductive hypothesis for b
we get that B ∧ ¬b ∧ φA,B(b) ` ⊥. Combining these, we get that B ∧ b ∧ ¬b ∧
¬(e|B)∧ (φiA′,B′(e)∨ φA,B(a))∧ φA,B(b) ` ⊥, that is, B ∧¬(e|B)∧ φA,B(e) ` ⊥.

Property (iii) of interpolant follows because all components of φA,B(e) use
only common variables between subsets of A and B, by induction and by Def. 4.

B Proof of equality-interpolation for the theory of
uninterpreted functions

Lemma 2 Let A and B be conjunctions of literals in the theory of uninterpreted
functions. Let a = b be an equality between A-local variable a and B-local variable
b. Suppose that the decision procedure for the theory of uninterpreted functions

17

generates a = b from A ∧ B. There exists an interpolating term t such that
A ∧B ` a = t ∧ t = b and t contains only AB-common variables and symbols.

Proof: We prove a stronger claim: there exists an interpolating term t for all
equalities of the form ta = tb entailed by A ∧ B, where ta is an A-local term
(involves at least one A-local symbols or variable) and tb is a B-local term.

Note that ta = tb is an AB-mixed equality, but it does not contain AB-mixed
terms. We assume that a proof of ta = tb from A ∧B uses only AB-pure terms
in all derivations. This assumption is without loss of generality, because every
proof of ta = tb that uses AB-mixed terms can be transformed into a normal
proof of ta = tb, in which all derivations involve only AB-pure terms.

We prove by induction on the proof tree of ta = tb from A ∧ B. ta = tb is
not a root, because all roots belong either to A or B and thus do not contain
AB-mixed equalities. Assume by induction that all equalities in the proof tree of
ta = tb are either AB-pure equalities, or have interpolating terms. If ta = tb is a
conclusion of a reflexivity proof rule or a symmetry proof rule, then by induction
an interpolating term for the premises is also an interpolating term for ta = tb.

Suppose that ta = tb is a conclusion of the transitivity proof rule, with the
premises ta = t and t = tb for some term t. If t is an AB-common term, t is an
interpolating term for ta = tb. Assume that t is an A-local term (the case were t
is B-local is symmetrical). Thus ta = t is an AB-pure equality, and t = tb is an
AB-mixed term, which, by assumption, has an interpolating term t′ such that
t = t′ and t′ = tb and t′ refers only to AB-common symbols. From ta = t and
t = t′ we get that ta = t′, thus t′ is an interpolating term for ta = tb.

Suppose that ta = tb is a conclusion of a congruence proof rule that applies
a function symbols f , that is, there exists some t′a and t′b such that ta is f(t′a)
and tb is f(t′b), and t′a = t′b is the premise of the congruence rule. Because ta
refers to A-local symbols, tb refers to B-local symbols, but the terms are not AB-
mixed, f must be an AB-common function symbol, t′a is an A-local term and t′b
is B-local. Thus, t′a = t′b is an AB-mixed equality, which, by assumption, has an
interpolating term t′ such that t′a = t′ and t′ = t′b. By applying the congruence
rule to each of these equalities, we get that f(t′a) = f(t′) and f(t′) = f(t′a), that
is ta = f(t′) and f(t′) = tb. f(t′) is AB-common, because f is an AB-common
symbols, and t′ is AB-common term. Therefore, f(t′) is an interpolating term
for ta = tb.

C Proof of Correctness of Pudlák’s Algorithm

In this section, we give an alternative proof Pudlák’s algorithm, based on partial
interpolants.9

Lemma ?? Let 〈A,B〉 be a pair of clause sets such that A∧B ` ⊥. Let T be the
proof tree for unsatisfiability of A∧B. The partial interpolant p(⊥) generated by
for T using the modified Pudlák’s algorithm is an interpolant for 〈A,B〉.

9 The proof is along the same lines as McMillan’s “clause interpolants” in [13].

18

Proof: We will prove a stronger invariant that implies the lemma. For each c ∈ T
we show that p(c) is an interpolant for 〈gA, gB〉 defined by:

gA(c)
def
= A ∧ ¬(c|A) (4)

gB(c)
def
= B ∧ ¬(c|B) (5)

By this definition, for all clauses c ∈ T , the symbols that appear in gA(c) and
gB(c) is a subset of the symbols in A and B, respectively. When c is an empty
clause ⊥, we get that 〈gA, gB〉 is 〈A,B〉, and the formula p(⊥) is the desired
result.

We proceed by induction on the proof tree, following the structure of Def. 8.

(i) The base case: c ∈ roots(T).

(a) Suppose that c ∈ A, then p(c) := ⊥. (i) Show that gA(c) ` p(c). Because
c ∈ A, A ` c and c|A is c; thus gA(c) = A ∧ ¬(c|A) = A ∧ ¬c ` ⊥.
(ii) gB(c) ∧ p(c) =` ⊥ because p(c) is ⊥. (iii) p(c) contains no variables.

(b) if c ∈ B, p(c) := >. Suppose that c ∈ B, then p(c) := >. (i) gA(c) ` p(c)
because p(c) is >. (ii) Show that gB(c) ∧ p(c) =` ⊥. Because c ∈ B,
B ` c and c|B is c; thus, gB(c) ∧ p(c) = B ∧ ¬(c|B) = B ∧ ¬c ` ⊥.
(iii) p(c) contains no variables.

(ii) For the inductive step, let c /∈ roots(T) such that c = resolvex(c1, c2).

Let c1
def
= x ∨ c′1 and c2

def
= ¬x ∨ c′2; thus, c

def
= c′1 ∨ c′2. First, note that

gA(c) ∧ gB(c) ` ⊥, because gA(c) ∧ gB(c) = A ∧ B ∧ ¬c but by resolution
A ∧B ` c1 ∧ c2 ` c.
Inductive hypothesis (for i = 1, 2): p(ci) is an interpolant for 〈gA(ci), gB(ci)〉,
that is: (i) gA(ci) ` p(ci), (ii) p(ci) ∧ gB(ci) ` ⊥, and (iii) p(ci) refers only
to the “common” variables of gA(ci) and gB(ci), that is, p(ci) refers only to
the common variables of A and B.
Show that p(c) is an interpolant for 〈gA(c), gB(c)〉.
(a) Suppose that x ∈ A and x /∈ B (x is A-local), then p(c) := p(c1)∨ p(c2).

First, we show that

(c1|A) ∧ (c2|A) ` (c′1|A) ∨ ¬(c′2|A) (6)

Because x ∈ A, c2|A = (x ∨ c′1)|A can be rewritten as x ∨ (c′1|A), and
similarly for c2|A. Thus, (c1|A) ∧ (c2|A) = (x ∨ (c′1|A)) ∧ (¬x ∨ (c′2|A)).
Using resolution with x as a pivot variable, this implies (c′1|A) ∨ (c′2|A).
(i) Show that gA(c) ` p(c).

gA(c) = A ∧ ¬((c′1 ∨ c′2)|A) =
A ∧ ¬((c′1|A) ∨ ¬(c′2|A)) ` using (6)
A ∧ ¬((c1|A) ∧ (c2|A)) =
A ∧ (¬(c1|A) ∨ ¬(c2|A)) =
(A ∧ ¬(c1|A)) ∨ (A ∧ ¬(c1|A)) =
gA(c1) ∨ gA(c2) ` using inductive hypothesis
p(c1) ∨ p(c2)

19

(ii) Show that gB(c) ∧ p(c) ` ⊥.

gB(c) ∧ p(c) = B ∧ ¬(c′1|B) ∧ ¬(c′2|B) ∧ (p(c1) ∨ p(c2)) `
(B ∧ ¬(c′1|B) ∧ p(c1)) ∨ (B ∧ ¬(c′2|B) ∧ p(c2)) = because x /∈ B
(gB(c1) ∧ p(c1)) ∨ (gB(c2) ∧ p(c2)) ` ⊥ using inductive hypothesis

(iii) Because c is a resolution of c1 and c2, and the variable x is A-
local, Σ(gA(c)) = (Sigma(gA(c1))∪Sigma(gA(c2))) \x and Σ(gB(c)) =
Σ(gB(c1))∪Σ(gB(c2)). Thus,Σ(gA(c))∪Σ(gB(c)) = (Σ(gA(c1))∩Σ(gB(c1)))∪
(Σ(gA(c2)) ∩ Σ(gB(c2))). By definition of p(c), Σ(p(c)) = Σ(p(c1)) ∪
Σ(p(c2)) ⊆, and from the inductive hypothesis it follows that p(c) refers
only to the common variables of gA(c) and gB(c).

(b) Suppose that x /∈ A and x ∈ B (x is B-local), then p(c) := p(c1)∧ p(c2).
This case is dual to the previous.

(c) Suppose that x ∈ A and x ∈ B (x is AB-common), then p(c) := (x ∨
p(c1)) ∧ (¬x ∨ p(c2)).
(i) Show that gA(c) ∧ ¬p(c) ` ⊥.

gA(c) ∧ ¬p(c) = A ∧ ¬(c′1|A) ∧ ¬(c′2|A) ∧ ¬((x ∨ p(c1)) ∧ (¬x ∨ p(c2))) `
A ∧ ¬(c′1|A) ∧ ¬(c′2|A) ∧ (¬(x ∨ p(c1)) ∨ ¬(¬x ∨ p(c2))) `
(A ∧ ¬(c′1|A) ∧ ¬(x ∨ p(c1))) ∨ (A ∧ ¬(c′2|A) ∧ ¬(¬x ∨ p(c2))) `
because x is AB-common

(A ∧ ¬((x ∨ c′1)|A) ∧ ¬p(c1)) ∨ (A ∧ ¬((¬x ∨ c′2)|A) ∧ ¬p(c2)) `
(gA(c1) ∧ ¬p(c1)) ∨ (gA(c2) ∧ ¬p(c2)) ` ⊥
using inductive hypothesis

(ii) Show that gB(c) ∧ p(c) ` ⊥.

gB(c) ∧ p(c) = B ∧ ¬(c′1|B) ∧ ¬(c′2|B) ∧ p(c)) ` case split on x
(B ∧ ¬(c′1|B) ∧ ¬(c′2|B) ∧ p(c1) ∧ ¬x)∨
(B ∧ ¬(c′1|B) ∧ ¬(c′2|B) ∧ p(c2) ∧ x) ` because x is AB-common
(B ∧ ¬((x ∨ c′1)|B) ∧ p(c1)) ∨ (B ∧ ¬((¬x ∨ c′2)|B) ∧ p(c2)) ` ⊥
using inductive hypothesis

(iii) Follows from the assumption that x is AB-common and from the
inductive hypothesis regarding p(c1) and p(c2).

20

